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Abstract—Thanks to advances in the computing capabilities
and added functionalities of modern mobile devices, creating
and consuming digital media on the move has never been so
easy and popular. There exist cases where the people producing
such media content, and those interested in receiving it, tend
to be living in the same geographical area. Delay Tolerant
Networking (DTN) protocols have been investigated as an
effective means to distribute content in these dynamically
changing settings. The main challenge addressed by researchers
so far has been the maximisation of delivery probability, while
also minimising the overall network overhead (e.g., number
of replicas in the system, messages’ path length); because
of the participatory nature of these networks, recent efforts
have looked not simply to keep the overall network load
low, but also to spread it equally across devices. Common to
all these approaches is the treatment of messages as if they
were all worth the same to recipients; as such, messages are
forwarded hop-by-hop from source to destination in a sort of
first-encountered/first-forwarded fashion. However, because of
resource limitations on mobile devices (namely, battery), it is
often the case that not all messages can be delivered. In this
paper, we propose a new approach for priority-scheduling in
participatory DTNs, whereby messages are being forwarded
based on a combination of the likelihood of future encounters
(physical layer) and the value that recipients attach to such
messages (e.g., based on who produced the message). We
implemented this priority scheduling on top of an existing DTN
protocol, and evaluated the gain it entails in both end-user
satisfaction and delivery, over a variety of real mobility traces
(physical layer) and message values’ distributions (application
layer).

Keywords-content distribution, prioritisation, human delay-
tolerant networks

I. INTRODUCTION

Modern mobile phones (e.g., iPhone, Android-powered
devices, Blackberry) have been rapidly gaining widespread
popularity: functionalities such as high-resolution cameras,
MP3 players, and GPS receivers have become a commod-
ity; furthermore, multiple network interfaces of increasing
bandwidth (e.g., 3G, Wi-Fi, Bluetooth 2) are being offered,
thus facilitating the creation and/or consumption of user-
generated content (e.g., pictures, videos) on the go. There
exist many urban scenarios where such content is appealing
to a local community of users only: consider, for example,
promo videos of events happening in town (e.g., festivals,
street theaters, literary nights), music recordings of new

bands performing in the neighbourhood; media fliers about
activities organised by university clubs and societies (e.g.,
sport races, debates, parties), and so on. In metropolitan
cities like London, an estimated average of 5,000 social
events take place every day; however, only (less than)
half of these are being listed on popular websites (thus
accessible via 3G networks from users’ mobile phones). The
remainders are being advertised by word-of-mouth, posters
affixed in given areas, hand-distributed fliers, and the like.
In these cases, where the people producing content, and
those willing to receive it, tend to be living in the same
geographical area, content distribution can more effectively
happen by means of Delay Tolerant Networking (DTN)
protocols. These protocols exploit the freely available local
networking capabilities of mobile devices (e.g., Wi-Fi Direct
[1]) to opportunistically distribute content during periods of
colocation.

Research in this area has been very active, and a variety
of protocols have been proposed (e.g., [2], [3], [4], [5], [6],
[7], [8]) that aim to maximise message delivery, without
causing high overhead. To achieve this goal, most of these
approaches leverage upon the observation that human move-
ment is predictable to a certain extent, and thus message
carriers can be carefully selected so to favour routes with
high delivery probability, whilst avoiding those most likely
to fail. Reducing network load is indeed a fundamental
challenge, as DTNs are participatory networks made of
battery-constrained devices, whose lifetime is not expected
to be significantly improved in the coming years (i.e.,
Moore’s Law will apply to the miniaturisation of battery
size, rather than increasing its lifetime [9]). Recent works
have been specifically tackling energy consumption issues,
with the aim of either reducing overall network overhead
(e.g., by further limiting the number of replica messages in
the system [10], [11]), or with the aim of distributing the
load more fairly across all participating nodes (e.g., [12],
[13], [14]).

Common to all approaches proposed so far is the treatment
of messages as if they were all worth the same to end users:
the decision of what message to forward next, in the hop-by-
hop path from source to destination, is entirely driven by the
next physical encounter, in a sort of first-encountered/first-



forwarded basis. In other words, the content distribution
network puts the same effort in trying to deliver every
single message being produced. However, experience with
the Web 2.0 demonstrates that users are very keen prosumers
(producer-consumer) of media content, and the rate of
production/consumption is set to increase if users can do
so ubiquitously via their mobile phones. Physical resources
(e.g., battery) will thus not be sufficient to distribute all
content being generated. A question arises as to whether
this forwarding mechanism is indeed appropriate in such
scenarios: we expect end-users to attach different values (or
priorities) to different messages, depending on, for example,
who produced them in their social network. If resource
limitations prevent us from delivering all messages being
produced, a new challenge arises as to how to prioritise
message forwarding, so to bring maximum satisfaction to
the end users within a participatory DTN.

In this paper, we address the above challenge by means
of a new approach for priority scheduling for participatory
DTNs. After reviewing the state-of-the-art in DTN research
(Section II), we present our approach (Section III), whereby
messages are being forwarded based on a combination of
the likelihood of future encounters (physical layer) and the
value that recipients attach to such messages (application
layer). To assess the gain in end-user satisfaction that priority
scheduling brings, we have implemented it on top of a state-
of-the-art DTN routing protocol, and evaluated it across
various combinations of real human mobility traces (physical
layer) and human social networks (application layer). We
report the results of this evaluation in Section IV, before
presenting our conclusion and future directions of research
(Section V).

II. RELATED WORK

The parallel and steep growth of the prosumer figure on
one side, and market penetration of modern mobile devices
on the other, has fostered research in the area of DTN
protocols, as means to effectively (i.e., high delivery) and
efficiently (i.e., low overhead) disseminate content across
geographically-bound and spontaneously-formed human net-
works. The first generation of DTN protocols assumed
human movement to mostly follow the random waypoint
mobility model [15]; to achieve high delivery probability,
these protocols were replicating messages in the network,
and relying on incidental deliveries caused by opportunis-
tic encounters [16]. To reduce the amount of traffic they
generated (and consequent network overhead), probabilistic
routing schemes were developed, which used various forms
of controlled flooding to strike a balance between delivery
and overhead [4]. As real and large-scale traces of human
mobility started to be collected, scientists demonstrated that
human movement is actually not random, and that it can be
predicted to a large extent [17], [18]. A second generation
of DTN protocols has then been proposed, that reasons upon

human mobility patterns in a quest to better trade delivery
with efficiency [2], [19], [20], [8].

All the above protocols rely on the spontaneous par-
ticipation of users in the content dissemination network.
In order to promote participation, load must be kept low
and equally distributed, to avoid depleting the scarce en-
ergy available on mobile devices. The last generation of
DTN protocols has thus removed the assumption of infinite
available resources and unquestioned user participation: for
example, RAPID [12] treats routing as a resource-allocation
problem, in order to trade delay-related metrics (e.g., average
delay) with consumed resources; FairRoute [13] reasons on
social interaction strength between individuals to limit the
number of messages that an intermediary will accept, thus
avoiding some nodes becoming overloaded; CoHabit [14]
explicitly reasons in terms of locally available resources and
estimates of load at intermediaries, to guarantee an equal
participation from each node in the network. These protocols
acknowledge the fact that a limit must be placed on the
amount of resources (e.g., battery or storage) that nodes
are willing to share, consequently reducing the number of
messages that intermediaries can forward at any point of
time.

At present, DTN protocols treat messages equally, so
that forwarding among intermediaries is entirely driven by
physical encounters. However, end-users are not equally
interested in all messages; because of the limits imposed
by available resources, a new challenge arises as to what
messages a carrier should forward, so that the overall end-
user satisfaction is maximised. We propose an answer to this
challenge next.

III. PRIORITY SCHEDULING

In this section, we introduce our approach to prioritisation
in participatory DTNs. We first define a general model
for measuring messages’ priority in the network, based
on users’ interests (Section III-A). Based on this model,
we illustrate the challenges that DTN routing protocols
face (Section III-B), before dwelling into the details of the
solution we propose (Section III-C).

A. Model

In order to design a content-distribution protocol that
prioritises messages’ delivery based on their value to end-
users, we first need to quantify what this ‘value’ is. Two
different approaches can be followed: users may define
either whom (people-centric) or in what (content-centric)
they are interested in. The former is typical of online social
networks like Facebook or Twitter, where users explicitly
define, in what we call a ‘user profile’, whom they are
interested in receiving content from. The latter is typical
of folksonomic-based websites like del.icio.us or CiteULike,
where users define the topics they are interested in by means
of freely chosen words (often called tags), regardless of
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Figure 1: Node A’s Interest Network

whom published messages on these topics. In this work, we
are not interested in what model the applications running on
a user mobile phone will adopt. All we need is a way of
quantifying how much a user A is interested in receiving a
message produced by X .

In people-centric approaches, we would require a
weighted user social network, whereby A’s profile not only
states she wants to receive messages from X , but also
how much she wants them wA,X ∈ (0, 1]. These weights
can either be explicitly defined by users (like in Rumm-
ble.com), or implicitly derived by looking, for example, at
the frequency of interaction between users (e.g., in Twitter,
the frequency of @username directed messages). Any
message m produced by X would then be valued by A
as vA,X ≡ wA,X . Similarly, in content-centric approaches,
we would require A to state her topics of interest ti, as
well as how much she is interested in them wA,ti ∈ (0, 1],
either explicitly or implicitly (e.g., by monitoring her tags’
usage on the folksonomic website). In this case, when X
publishes a message m, the value that A attaches to it could
be computed as the average weight of those tags ti that X
attached to m and that appear in A’s profile. A more detailed
discussion of folksonomy-based content dissemination can
be found in [21]. To ease presentation, in the reminder of this
paper we focus on the people-centric scenario. An example
of a weighted social network is provided in Figure 1, with
A being equally (and maximally) interested in users X , Y ,
Z and W (w = 1), and B being more interested in P
(wB,P = 0.8) than in Q (wB,Q = 0.2).

Note that users who have many social connections and
who are equally and maximally interested in all of them
(e.g., like A in the above example), may risk driving,
either unwillingly or selfishly, the whole content distribution
network to work for them, to the expense of nodes like B,
who may have less social connections and/or of different
values. In our model, the value vA,X of a message is thus
not simply the (explicit or implicit) weight wA,X in the
social graph, but such weight divided by

∑
i wA,i (that is,

the sum of all weighted edges departing from A in the
social graph). With reference to Figure 1, messages produced
by X , Y , Z and W would thus have a value for A of
vA,X = wA,X/

∑
i wA,i = 1/(1 + 1 + 1 + 1) = 0.25,

while messages produced by P would have a value for B
of vB,P = 0.8/(0.8 + 0.2) = 0.8. This processing aims
to guarantee a fair share of network resources are used
in support of every single participants; protecting against
malicious and adversarial behaviours is outside the scope
of this work. We assume that, at the time of publication,
the publisher has enough knowledge of the geographically-
relevant social network (who is interested in whom and how
much) so to calculate these values. This is common to many
of the second and third generation DTN protocols previously
reviewed (Section II), where information about the social
network is exchanged during periods of colocation.

B. Challenges

To better appreciate the challenge we tackle, let us
consider the following scenario, grounded on the previous
model and example (Figure 1). An intermediary node C is
carrying two messages in its buffer (which we also refer to
as queue): the first m1 is a message produced by P and
destined to B, with value vB,P = 0.8; the second m2 is
a message produced by X and destined to A, with value
vA,P = 0.25. Let us also assume that C resources allocated
to the application are running out, so that it can only forward
one more message in the current time period ∆t (e.g., within
the next day). What message should C forward?

Two alternative approaches could be followed: on one
hand, we could let the physical network drive the forwarding
step entirely. For example, if A is encountered first (or
another intermediary node who is along the physical route
from X to A), then message m2 would be forwarded, at the
expense of node B (and its higher-valued message m1). In
other words, first-encountered/first-forwarded protocols may
cause messages of little value to use up the scarce resources
available, at the expense of highly-valued messages; note
that this is the approach used by state-of-the-art DTN
protocols [8], [22], [2], [14]. On the other hand, we could let
the application layer drive the forwarding step (i.e., highest-
value/first-forwarded). In this case, node C would reserve its
remaining forward allowance to m1; however, node B (or
another intermediary node who is along the physical route
from P to B) may not be encountered for another couple of
days, during which C’s resources could be reset (for instance
by re-charging the device, when the constrained resource in
focus is battery) and thus its forwarding allowance increased.
Not forwarding m2 when the opportunity raises may thus
result in unnecessarily missed deliveries.

Nodes participating in a DTN must thus be able to allocate
the scarce resources available for forwarding messages of
high value, whilst also not compromising delivery due to
missed opportunities. To do so, we present next a priority
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scheduling approach, which reasons upon nodes’ mobility
patterns (physical layer) and messages’ values (application
layer) to achieve high end-user satisfaction without cutting
back on delivery.

C. Approach

Our approach to priority scheduling in DTNs can be
summarised as follow: each node participating in the content
distribution network stores messages yet to be delivered in
a queue, which is kept sorted by decreasing message value.
The next message to be forwarded can be any belonging to
the head of the queue; such head does not simply refer to the
first quota messages, where quota represents the number of
messages that the node can forward within a given time
period ∆t, a restriction imposed by the underlying third
generation DTN protocol. Rather, it refers to all messages
within a dynamic bundle, whose size varies depending on
the probability of encountering the recipients (or next-
hop carriers) of the stored messages. In other words, the
application layer provides information (i.e., message values)
to sort messages in order of priority, thus guaranteeing faster
processing for high priority ones; the physical layer provides
information (i.e., probability of physical encounters) to dy-
namically adapt the number of messages that are currently
scheduled for forwarding, in an attempt to minimise the risk
of wasting resources because of missed opportunities. We
assume this prioritisation scheme to be deployed on top of
an existing human-based DTN routing protocol (e.g., [8],
[14], [2]), whereby past node encounters are logged and
processed to compute these probabilities. This approach
draws inspiration from the TCP flow control mechanism:
while TCP uses a sliding window to adjust the transmission
rate of packets, based on the observed drop rate, we use a
dynamic bundle to adjust the scheduling of messages, based
on the observed encounter predictability.

Before formalising the approach, we illustrate, with an
example, the behaviour of the dynamic bundle. First, let
us consider a scenario where nodes are connected at all
times; let us also assume that, in any given time period ∆t,
the maximum number of messages a node can forward is
quota = 3. In this case, because of stable network connec-
tion, the probability of delivering any message to its intended
recipient is always 1; messages can thus be scheduled to be
sent in the very same order they appear in the sorted queue,
and the dynamic bundle would exactly refer to the top 3
messages, as shown in Figure 2a (bundle size = quota). Let
us now consider the case of a human DTN, where connection
between nodes is opportunistic, yet predictable [17], [18].
In this case, setting the bundle size to equal the node’s
quota could be a waste: with reference to Figure 2b, the
node would not attempt to deliver Msg 4 before Msg 1,
even if an encounter occurred that would enable that. While
this guarantees that there will be enough spare resources
to deliver higher-valued message Msg 1 when the relevant
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(b) Human Network

Figure 2: Dynamic Bundle

encounter occurs, it may also result in an unnecessary missed
opportunity, for example, if the node’s next encounter with
the recipient of Msg 1 is unlikely to occur within this ∆t.

In our approach, we thus define the behaviour of the
dynamic bundle as follow. Whenever a node inserts a
message m in its own queue (sorted by message value), it
computes the probability of encountering the message next-
hop recipient within ∆t; this probability Probm is estimated
based on the encounter regularity as monitored by the
underlying DTN routing protocol, and used to dynamically
adjust the bundle size as:

bundle.size =

{
quota, if queue.size() ≤ quota
n otherwise

(1)

with

n =

#mi|
queue.size()∑

i=1

Probmi
≤ quota


In other words, if the queue currently stores fewer messages
than the the quota allows, all of them can be scheduled for
forwarding. Otherwise, the bundle size is set to be equal to
the maximum number of messages (n) for which the sum of
the probability of them being forwarded within ∆t does not
exceed the quota. Let us look back at Figure 2b, and assume
the encounter probabilities for the messages in the queue to
be: ProbMsg 1 = 0.2, ProbMsg 2 = 0.6, ProbMsg 3 = 0.5,
ProbMsg 4 = 0.8, ProbMsg 5 = 0.7, ProbMsg 6 = 0.9. In
this case, setting bundle.size = quota = 3 is likely to result
in missed opportunities, especially because the message at
the top of the queue has very little chance of being delivered
within this ∆t, at the expense of messages Msg 4 and
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Msg 5, whose value is lower (they are further down in
the queue) but whose delivery probability is very high. Our
approach would thus set the bundle size to include the top
n = 5 messages, whose aggregated delivery probability does
not exceed quota (i.e., 0.2+0.6+0.5+0.8+0.7 ≤ 3). This
does not mean that more messages will be forwarded than
what quota allows; rather, it means that the quota messages
to be forwarded in the current ∆t can be any of the n at the
head of the queue, with n ≥ quota.

No matter what prediction technique is used by the
underlying DTN routing protocol to estimate encounter
probability, human mobility carries an inevitable degree of
uncertainty with it. In case of high prediction error, the
sizing of the dynamic bundle defined by formula 1 could
be either too cautious (when actual encounters happen less
frequently than predicted, causing missed opportunities),
or too aggressive (when actual encounters happen sooner
than expected, causing more important messages not to
be forwarded because of resources being drained on less
important ones). To cater for this uncertainty, the size n of
the bundle could be set to increase so to include all messages
whose aggregated delivery probability is less or equal to
α ∗ quota, with α being closer to 1 when predictions are
highly accurate, α ∈ (0, 1) when the probabilities tend to
underestimate the frequency of actual encounters (so that the
forwarding bundle must be reduced), and α > 1 when the
probabilities tend to overestimate the encounter frequency
(so that the forwarding bundle must be increased to avoid
missed opportunities). A self-monitoring component could
be added to the underlying routing protocol, to dynamically
assess the accuracy of the prediction scheme, and thus adjust
α accordingly; we leave this self-monitoring/self-adaptive
behaviour open for future research, and we set α = 1 in
our evaluation section. To cater for the inevitable uncertainty
characterising human mobility, we adopt a simpler heuristics
instead, which does not require changes/additions to the un-
derlying routing protocol: each node maintains information
about what proportion of messages it has already sent in the
last ∆t with respect to the set quota: if such proportion is
below a given threshold (what we call loaded boundary),
we let the bundle size n grow as per formula 1; once the
percentage of sent messages reaches the loaded boundary
(i.e., when getting close to the quota for the current time
period), we set back the bundle size to quota, thus favouring
a more cautious behaviour over an aggressive one. In the
next section, we study the impact that different values of
the loaded boundary have on the satisfaction and delivery
achieved.

IV. EVALUATION

In order to evaluate our priority scheduling approach,
we had to implement it on top of an existing human
DTN routing protocol. Among the protocols reviewed in
Section II, we chose CoHabit [14] for the following two

reasons: first, it selects message carriers, from source to
destination, based on the observed regularity of encounters;
such regularity measure can be directly used by our approach
when dynamically setting bundle size, to easily estimate
encounter probabilities. Second, it is one of the very few
approaches to drop the assumption of infinite resources, and
to provide a load-balancing scheme that limits the number
of messages that can be forwarded within a time period, by
explicitly reasoning in terms of available resources (battery
in particular). We use this limit to set the quota parameter
that our prioritisation scheme relies on. Note that, in this
work, we are not interested in assessing the performance of
the underlying routing protocol; rather, we aim to quantify
the gains that adding priority scheduling afford. Evaluation
has been conducted by means of simulation: we thus first
describe our simulation settings in terms of metrics, datasets
and parameters (Section IV-A), before reporting the obtained
results (Section IV-B).

A. Simulation Settings

Metrics. The goal of our prioritisation scheme is to
guarantee enough resources are available to forward more
important/valued messages, without compromising overall
delivery, due to missed opportunities. In our experiments, we
have thus measured: satisfaction gain, that is, the difference
between the average value v of all messages delivered
using priority scheduling on top of CoHabit, and using
CoHabit (that is, a first-encounter/first-forwarded approach)
alone; and delivery gain, that is, the ratio of the number of
messages delivered with and without priority scheduling on
top of CoHabit. Both metrics have been computed based on
network-wide measurements.

Datasets and Parameters. In order to evaluate our work,
we required two types of datasets: one providing human
mobility traces (to simulate encounters), and one providing
users’ social networks (to determine who is interested in
receiving content from whom and to what extent). We
discuss the datasets we have selected, and how we have
overlayed them, next.

• Mobility Traces - we have experimented with two
mobility datasets of different topological properties: the
Reality Mining dataset [23], and a vehicular dataset
of cabs in San Francisco [24]. The former contains
colocation information from 96 subjects at the MIT
campus, over the course of the 2004-2005 academic
year, to whom Bluetooth-enabled Nokia 6600 phones
were given; colocation information was collected via
frequent (5 minute) Bluetooth device discoveries. In
our experiments, we extracted five months of colocation
data, from September to February; we used the first five
weeks of these traces as the training period required
by the underlying protocol to learn regularities of en-
counters; the remaining period was then the actual test
period during which nodes created and shared content.
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(a) Last.FM Social Network
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(b) Advogato Social Network
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(c) Reality Mining Social Network

Figure 3: Weight Distribution of the Selected Social Networks

The MIT dataset has been widely used to evaluate
DTN protocols [25]; while being representative of some
DTN settings (i.e., university campus), the sparsity of
its traces and their very high inter-contact time is not
representative of DTN urban settings, where nodes are
much more frequently connected (as in a MANET), but
with short contact time (as in a DTN) [26]. To assess
priority scheduling also in these scenarios, our second
mobility dataset contains GPS traces recorded by 500
cabs, logged every 10 seconds, over a period of 21
days, in the San Francisco Bay Area. We sampled a
subset of 100 users from these traces, making sure the
original topological properties of the traces, such as the
inter-contact time distribution, were preserved.

• Social Network - to model who is interested in re-
ceiving content from whom, and to what extent,
we have experimented with three distinct social net-
works, namely Last.FM, Advogato, and Reality Min-
ing. Last.fm (http://www.last.fm) is a Web 2.0
music social networking website, where users explicitly
declare who their social connections are. To sample this
dataset, we first gathered 10,000 Last.fm users with
a breadth-first search using the Audioscrobbler Web
Service (http://www.audioscrobbler.net/).
We then sampled a (connected) sub-graph of 100 users;
their in-degree distribution highlighted the long-tailed
degree distribution typical of human social networks.
Note that social links have no weight in Last.fm; to
obtain a weighted social graph, for each explicitly-
declared link between users X and Y , we computed
the weight wX,Y ∈ [0, 1] as the cosine similarity be-
tween the vectors representing these users’ top-50 most
listened artists (that is, the more similar their musical
tastes are, the higher the weight of the connection). Ad-
vogato (http://www.advogato.org/) is a com-
munity discussion board for free software developers;
social links between developers are self-reported, and
their weight can take one of the following discrete

values: observer (w = 0.2), apprentice (w = 0.4),
journeyer (w = 0.6), and master (w = 0.8). For our
experiments, we extracted a sample of 100 users, once
again making sure to preserve the degree distribution of
links amongst users. Finally, the last social network was
implicitly extracted from the Reality Mining dataset;
apart from colocation information, this dataset logged
voice calls and text messages exchanged between the
participants in the study. Similarly to [27], we have used
this information to extract an implicit social network
whereby a link from user A to user B exists if A sent
a text message or made a phone call to B; we have
then associated a weight to each such link based on the
normalised number of calls/texts user A had initiated
(e.g., if A called B five times, C twice and D three
times, then wA,B = 5/10 = 0.5, wA,C = 2/10 = 0.2,
and wA,D = 3/10 = 0.3). To highlight the different
properties of these datasets, Figure 3 plots the ordered
distribution of link weights between each users’ pair
that exists in the social graph: as shown by the span of
the x axis, Reality Mining (Figure 3c) is by far the least
connected network, with approximately 160 edges, as
opposed to around 600 for Last.fm (Figure 3a) and 900
for Advogato (Figure 3b), for networks of equal size
(≈ 100 users). The distribution of interest weights is
shown on the y axis: as expected, there exists a small
subset of highly valued connections, and a much larger
number of lesser valued ones; we expect our priority
scheme to take advantage of these differences to for-
ward the messages from the most valued connections
first, thus increasing overall network satisfaction.

For completeness, we evaluated our work across all
combinations of these social networks and mobility traces.
Overlaying between the two has been done multiple times
at random, with the exception of the Reality Mining dataset,
where there exists a direct (non random) mapping of users
between movement and social graph.
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The experiments unfold in the very same way as discussed
in CoHabit [14]: after an initial training period, during which
colocations are logged to learn movement regularity, and
information about a user’s social network is disseminated,
each node in the network starts publishing messages for its
intended recipients (i.e., connections in the social graph).
The rate of publication is set according to users’ activity in
the Digg (http://www.digg.com) content bookmark-
ing website; the value of a message is dictated by the weight
in the graph of the social network being used. quota is set
to be 50 messages over ∆t = 5 days; all other protocol-
specific parameters are set as in [14]. Each simulation has
been repeated 5 times, and average results are presented.

B. Results

We now report the results obtained, first in terms of
the satisfaction gain and then in terms of delivery gain,
when our priority scheme is deployed on top on an existing
DTN routing protocol (namely, CoHabit). More precisely,
we highlight the effectiveness of our prioritisation scheme
in bringing higher overall network satisfaction, while not
compromising network delivery.

Satisfaction Gain. Figure 4 depicts the gain in overall
network satisfaction, while varying the loaded zone bound-
ary parameter: a value of 100% means that such boundary
(and the restrictions it entails on bundle size) is not used, and
the bundle size is set to grow as per formula 1. Conversely,
a value of 0% means the boundary is always set, and the
bundle size is restricted to be equal to quota at all times; an
intermediary value of 50% means that the bundle size is set
to grow as per formula 1 up until 50% of quota messages
have been forwarded in the last ∆t; after that, a more
cautious behaviour is started, whereby the bundle size is
fixed to quota. These three values have been chosen for the
following reasons: a loaded boundary of 0 lets us observe the
impact of reasoning on message value (application layer),
whilst avoiding the susceptibility to encounter prediction
error (physical layer) and its consequences on bundle size.
We expect such setting to produce the highest satisfaction,
though risking to lower delivery due to missed opportunities.
At the opposite extreme, a loaded boundary of 100 almost
nullifies the use of priority scheduling, with encounters now
driving the order of forwarding. Finally, a boundary of 50
represents a trade-off between the two, letting us observe
the interplay between message values and network topology
of the underlying mobility traces.

Figure 4a presents results when using the Cabs mobility
traces (and the three different social networks overlayed
on top), while Figure 4b presents results for the Reality
Mining mobility traces (again with the three social networks
overlayed on top). The following three observations can be
made:

• Impact of Loaded Boundary - as expected, the lower
the value, the higher the satisfaction gain; this is
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Figure 4: Satisfaction Gain

because only quota messages can be delivered at any
∆t, and while CoHabit chooses to deliver based on a
first-encountered/first-forwarded manner, our scheduler
prioritises delivery of the bundle size = quota most
valued messages. With a boundary of 50, the gain is still
very high (e.g., approximately 20% across all social
networks for Cabs traces). However, for boundary of
100, the gain over CoHabit tends towards zero: this is
because bundle size� quota, so that encounters, and
not message values, are now driving the forwarding.

• Impact of Mobility Traces - for each value of loaded
boundary and for each social network, the satisfaction
gain is much higher for Cabs than for Reality Mining
mobility traces. This is because the former has much
more frequent encounters (lower inter-contact time):
higher encounter probability means smaller bundle
sizes and higher delivery of the most valued messages,
thus pushing network satisfaction up.

• Impact of Social Network - finally, for each loaded
boundary value and mobility traces, we observe that
satisfaction gain is highest for the Advogato social
network, followed by Last.fm and finally Reality Min-
ing. The reason for this can be best explained by
looking at Figure 3: Advogato is the most connected
social network, with approximately 25% of its social
links having maximum weight. This means the priority
scheduler can choose to first forward high valued mes-
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sages in the queue, with neat gain over CoHabit. For
Reality Mining, instead, connectivity in the social graph
is much lower, and of lower values too; this means
there is often little the scheduler can do in terms of
prioritisation, hence lower gain over CoHabit.

Satisfaction gain has been computed as average value of
delivered messages. We now turn our attention to study the
impact of priority scheduling on delivery rate.

Delivery Gain. Figure 5 depicts the gain in overall
network delivery, while varying the loaded zone boundary
parameter. In particular, Figure 5a presents results when
using the Cabs mobility traces (and the three different
social networks overlayed on top), while Figure 5b presents
results for the Reality Mining mobility traces (again with
the three social networks overlayed on top). The following
observation can be made: delivery improves across all values
of loaded boundary and social networks when deploying
the Cab traces. A gain is also observed (though smaller)
for the Advogato social network on top of Reality Mining
mobility, while no gain nor loss is observed for Last.fm.
Across all these settings, when looking at both satisfaction
and delivery, we can thus conclude that priority scheduling
brings an unquestionable benefit, with very low values of
loaded boundary being best for Cabs-like traces (small inter-
contact time), and medium values for Reality Mining-like
traces (high inter-contact time). The single setting where
priority scheduling actually causes a loss in delivery is when
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Figure 5: Delivery Gain

using Reality Mining mobility traces and the inferred social
network: a combination of high inter-contact time (i.e., few
encounters, thus few forwarding), sparse social network, and
cautious forwarding behaviour (boundary of 0) produces a
10% loss in delivery, with only a 5% gain in satisfaction
(Figure 4b). Even a more aggressive behaviour (boundary
of 100) does not really pay off, with both satisfaction and
delivery being on a par with CoHabit.

We can thus conclude that, when opportunities for de-
livery are particular scarce, and the number of high val-
ued message small, a fully opportunistic approach (first-
encountered/first-delivered) is better suited than a priority
one; on the other hand, in scenarios that give scope to prior-
isation (with more opportunities for delivery and/or higher
differentiation in message values), our approach brings neat
benefits, both in terms of satisfaction and delivery.

As one final insight into the performed experiments, we
have measured the delivery time of those messages that
both CoHabit and CoHabit with priority scheduling bring
to destination. We have then computed the average gain
(conversely, delay) in delivery time that priority scheduling
brings for high value (conversely, low value) messages. As
expected (Figure 6), high value messages (v ∈ [0.8−0.9] on
the x axis) are delivered faster (positive value on the y axis),
to the expense of low value messages (v ∈ [0.1 − 0.35] on
the x axis), which are now delivered slower (negative value
on the y axis). Note that the gain (top-left corner) and loss
(bottom-right corner) are of the same order of magnitude
(on average approximately 13 to 15 minutes).
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Figure 6: Delay Distribution

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a priority scheduling
approach for participatory DTNs, whereby messages are
being forwarded based on a combination of the likelihood
of future encounters (physical layer) and the value that
recipients attach to such messages (e.g., based on who
produced the message). We have implemented this priority
scheduling on top of an existing DTN protocol (namely,
CoHabit), and evaluated the gain it entails in both end-
user satisfaction and delivery, over a variety of real mobility
traces and message values distributions.
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There are two open directions of research we intend
to pursue: in the short-term, we aim to develop a self-
monitoring technique that assesses the predictability of the
mobility traces, thus dynamically adapting the sizing of the
bundle based on live feedback from the physical network. In
the longer-term, we intend to investigate content dissemina-
tion protocols that are robust against malicious behaviours.
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