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The cost of optimisation can be reduced by evaluating candidate designs on only a fraction
of all possible use cases. We show how genetic programming (GP) can avoid overfitting and
evolve general solutions from fitness test suites as small as just one dynamic training case.
Search effort can be greatly reduced.

Keywords

genetic algorithms, genetic programming, search, heuristic methods, artificial intelligence,
software engineering, theory, over fitting, evolutionary learning, deceptive fitness landscapes,
population convergence, correlations, GPU, GPGPU, 11-Mux, 20-mux, 37-multiplexor, bloat

Department of Computer Science
University College London
Gower Street
London WC1E 6BT, UK



Minimising Testing in Genetic Programming W. B. Langdon

1 Introduction

In many fields, particularly Software Engineering, it is often impossible to test all possible cases. So
there is considerable interest in quantifying how much testing has been done and what level of confidence
can be placed in the inferred quality of the item under test. In engineering many software metrics have
been promoted to serve as proxies or estimates of the usefulness of test suites. In artificial intelligence,
particularly Machine Learning, there are mathematically based, albeit weak, bounds on how far we can
extrapolate from the results of tests [Sontag, 1998]. In machine learning, such as genetic programming [Poli
et al., 2008], the lack of generalisation is known as over fitting. With continuous symbolic regression [Koza,
1992] problems overfitting is characterised by excessively complex expressions which approximate the
fixed training data well but may oscillate widely between them. This gives little confidence that the evolved
expression captures the underlying pattern in the data. With symbolic regression benchmarks [Koza, 1992]
the behaviour of the evolved model can usually be plotted but this is not necessarily the case with real
problems [Bongard and Lipson, 2007].

Boolean problems are discrete and may have a large number of dimensions making visualisation tricky and
often the only solution is to tabulate the whole function, yet as the number of dimensions increases this also
rapidly becomes infeasible. Previously we evolved 37 dimensional solutions to the Boolean multiplexor
problem [Langdon, 2010]. In [Langdon, 2010] we discussed the GP implementation but not how and why
the evolved solutions work. A summary of our results can be found in [Langdon, 2011]. CUDA C code is
available via FTP site cs.ucl.ac.uk directory genetic/gp-code/gp32cuda.tar.gz

The next section considers existing work on reducing the computational code of GP. Sections 3 and 4
describe the GP Multiplexor benchmarks whilst Section 5 gives our results. Section 6 tries to explain why
GP continues to work when the information given to evolution is reduced. In Section 6.1 we consider how
reducing the size of the training set changes who wins selection tournaments. Section 6.2 looks at when
GP fails and is trapped at deceptive local optima. Section 6.3 looks at GP convergence and shows, except
for extreme cases, convergence fitness case sub-sampling is similar to convergence with exhaustive testing.
Section 7 considers practical aspects, e.g. when to stop a GP run.

2 Faster Optimisation by using Approximate Models

Models have long been an essential ingredient of the design process. Nowadays many of these models are
computer based and there is considerable interest in using them to optimise designs. However full models
can be computationally costly and optimisation processes (such as evolutionary algorithms) may require
the model to be run many times with different parameters. This leads to pressure for less costly models or
ways to approximate their answers.

In genetic programming (GP) the principle cost is usually the fitness function and often that scales directly
with the number of fitness cases. So there is an incentive to reduce GP run time by using fewer fitness
cases to make GP faster but still hopefully provide useful solutions. For example, [Banzhaf et al., 1998,
Sect. 10.1.5] advocates small different samples from the real world. Gathercole proposed a more controlled
dynamic training subset selection (DSS) [Gathercole and Ross, 1994] in which ad hoc rules are used to
select and change the test suite. DSS is used commercially [Foster, 2001] [Poli et al., 2008, page 84]. Due
to its simplicity, scaling and constant selection pressure, tournament selection is widely used in GP [Poli
et al., 2008]. We had earlier noted that it is not always necessary to run all fitness tests in order to tell who
will win a tournament [Langdon, 1998]. [Teller and Andre, 1997] used statistical arguments to dynamically
set the number of fitness cases in their RAT system. Although Ross [Ross, 2000a; Ross, 2000b] does not
concentrate upon fitness sampling he also used a statistical approach (χ2), Unlike RAT this is not used to
control test suite sampling. (Fixed re-sampling rates are used.) [Ross, 2000a] reports mixed results with
test suites of 50 and 1000 samples perhaps due to GP evolution prematurely converging due to a small
population. [Giacobini et al., 2002] is the first systematic study of training set size and learning.
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Table 1: GP Parameters to Solve the 11-Multiplexor with less Fitness Testing
Terminals: Boolean inputs A0 A1 A2, D0 D1 D2 D3 D4 D5 D6 D7
Functions: AND, OR, NAND, NOR
Fitness: Pseudo random samples of from 0 to 2048 fitness cases.
Fit 20-Mux: Samples of 32 of 1 048 576 fitness cases.
Selection: Generational, with 4 members tournaments. Tournaments run on same random sample.

1) Fixed sample, 2) new samples for each generation and 3) new samples for each tourna-
ment.

Population: 16 384 (20-Mux: 262 144)
Initial pop: Ramped half-and-half 4:5
Parameters: 50% subtree crossover, 5% subtree 45% point mutation. Max depth 15, max size 511.
Termination: first solution or 2 000 gens [extended runs 50 000 gens or pop is only leafs]

Coevolution [Hillis, 1992] can take a different approach. Instead of seeking to choose fitness tests in an
unbiased way, it may deliberately seek tests that will drive evolution to defeat the current opposition. Thus
it may overlook the need for tests to discriminate. One hope is that since the other populations are also
evolving, the various biases will ultimately lead to better solutions.

3 GP Benchmarks

The 6 and 11 Boolean input Multiplexor problems have been extensively used in genetic programming
research [Koza, 1992]. The 11-Mux is particularly suitable for our experiments since its complete test suite
is large, however (particularly with GPU hardware speed up and the parallelisation tricks given in [Poli and
Langdon, 1999]) it is not so large as to prevent exhaustive testing. Thus we can evolve our GP populations
with a sample of the test suite but where necessary for our research we are still able to calculate the whole
fitness. I.e. calculate performance on the whole test suite.

4 Non-Exhaustive Fitness Testing

There are 211, i.e. 2048, test patterns for the 11-Mux problem, Usually [Koza, 1992] the GP fitness function
uses all 2048. As we shall see, this is unnecessary. In the next section we run a comprehensive series
of experiments which show evolution is potentially able to extrapolate from the environment in which
individuals are tested to solve the complete problem. Section 6 analyses these experiments.

The details of our GP are given in Table 1. There are no branches, so every test executes all the code
(i.e. 100% test coverage). Notice the functions and terminals form a complete set which is not tailored to
the 11-Mux benchmark. The members of each fitness test suite are chosen randomly from the full 2048 set.
We run three sets of experiments: 1) test suite is fixed through out the run. 2) test suite is reselected every
generation. 3) the test suite is reselected by every tournament.

5 Results

Table 2 shows sampling test cases rather than running them all can be highly effective. Even the simplest
scheme, in which the test suite is kept constant throughout evolution, can reduce testing by a factor of eight
and still reliably find solutions albeit at the cost of doubling the number of generations needed. With a limit
of 2000 generations, both schemes where the test suite is randomly regenerated during the run can reliably
solve the complete problem with as few as 8 test cases. Emboldened by this we re-ran all the runs with
≤4 dynamic tests with a limit of 50 000 generations (Table 2 top section). This showed the per tournament
selection scheme can reliably solve the problem with a single test. However at the cost of increasing the
number of generations about two hundred fold. (Figure 1 summarises these data.)
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Table 2: Generation at which GP solved the 11-Mux given different numbers of randomly selected tests.
First vertical group of 5 columns: same tests used for up to 2000 generations. 2nd new random sample every
generation (≤50 000). 3rd same sample used for tournaments of 4 individuals (≤50 000 gens). Numbers
are: 1st quartile, median, and 3rd quartile, number of runs finding a solution and total number of runs
Typically we ran ten independent runs for each parameter setting. (“na” indicates no solution found).

Tests Start of run Every generation Every tournament
Generation ok/runs Generation ok/runs Generation ok/runs

0 na na na 0/ 1 na na na 0/ 1 na na na 0/ 1
1 na na na 0/10 na na na 0/10 14000 16000 19000 10/10
2 na na na 0/10 na na na 2/10 2900 4100 5700 10/10
3 na na na 0/10 1400 2800 4100 8/10 1400 1900 2700 10/10
4 na na na 0/10 1000 1600 2000 10/10 1200 1500 2200 10/10
8 na na na 0/10 549 704 941 10/10 633 795 1047 10/10

16 na na na 0/10 378 541 766 10/10 389 449 588 10/10
32 na na na 0/10 186 342 369 10/10 271 296 401 10/10
64 na na na 0/10 145 189 246 10/10 221 326 352 10/10

128 na na na 2/10 145 164 254 10/10 161 181 215 10/10
256 123 177 368 10/10 99 106 138 10/10 161 184 200 10/10
512 79 81 88 10/10 98 107 171 10/10 141 167 181 10/10

1024 78 85 92 10/10 69 86 107 10/10 117 131 144 10/10
1536 79 82 89 10/10 75 89 117 10/10 105 117 150 10/10
1792 81 85 87 10/10 72 87 102 10/10 111 115 139 10/10
1920 75 83 95 10/10 72 80 83 10/10 115 122 137 10/10
1984 75 87 91 10/10 79 81 91 10/10 113 122 138 10/10
2016 72 79 84 10/10 68 74 77 10/10 100 108 121 10/10
2032 73 76 83 10/10 70 79 92 10/10 123 129 169 10/10
2040 74 88 103 10/10 77 78 88 10/10 105 132 147 10/10
2044 72 83 96 10/10 66 80 83 10/10 109 118 124 10/10
2045 77 86 92 10/10 70 72 76 10/10 117 134 181 10/10
2046 74 79 93 10/10 82 85 88 10/10 110 115 119 10/10
2047 74 80 97 10/10 65 74 80 10/10 112 120 147 10/10
2048 78 82 86 10/10 78 82 86 10/10 102 122 126 10/10
20-Mux 32 tests 1083 1179 1516 10/10

The last line of Table 2 shows GP, albeit with a larger population, was able to solve the much bigger
20-multiplexor problem using only 32 of 1 048 576 tests (changed every generation).

As Figure 2 shows true fitness can increase when tests are randomly sampled like it does in a conventional
GP (with 100% of the fitness cases being used) but needing more generations. Whilst the best observed
fitness is not representative, of the population, the population’s average observed fitness increases like its
average true fitness.

All runs in Figure 2 bloat. With only 8 tests, increase in tree size (like increase in fitness) is slower than
with all 2048 tests. However for the last 1016 generations trees are so bloated that their average size is
more than 90% of the maximum permitted size. See also Figures 9 and 10.

With both true and observed fitness, the worst in population is essentially the opposite of the best in popula-
tion, see Figure 3. A simple example shows how this might happen. Suppose the best parent in the previous
generation scored x% and had OR as its root node and this was mutated into a NOR. The child’s answer
is exactly the opposite and so scores 100-x%. This is likely to be the worst score in the new generation,
whereas the best is likely to be x%.

Koza’s “Effort” [Koza, 1992] is given in Table 3. It suggests in these 11-Mux runs using as few as 4 tests
out of 2048 can reduced fitness testing needed to be 99% sure of finding a solution from about 1.5 million
fitness evaluations to the equivalent of about 80 000 (full) fitness evaluations. A nineteen fold saving. The
estimates are noisy (note the magnitude of the error estimates, shown in brackets) and biased [Christensen
and Oppacher, 2002]. Nevertheless, given the high proportion of successful runs, they give some idea of the
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Figure 3: 11-Mux score of worst in population likely to be the opposite of the best. Last population of 722
runs. (1% noise added to spread data).

savings which can be achieved by using only a fraction of the test suite. This assumes the costs of genetic
operations and generating the samples of the test suite are negligible. In large serious GP applications, these
are indeed likely to be only a small component of the overall cost, which will remain dominated by fitness
evaluation. The improvement ratio will be problem dependent and, as we previously showed [Langdon,
2010] it is likely to be even larger for larger problems. Indeed the 20-Mux and 37-Mux problems have only
been solved by GP using test case sub-sampling.

6 Analysis

6.1 Changing Who Has Children

Figure 4 shows the impact of test suite size etc. on parent selection tournaments. As expected when fewer
tests are used more individuals are chosen to be parents who would not have been selected using their true
(rather than apparent) fitness. Figure 4 plots not only where the individuals differ but also that they had
different (true) fitnesses.

The rest of this section relates wrong choice of parents to fitness convergence. In Figures 5, 6, 7, 8 and 13
we measure convergence by counting how many trees in the population lie in the same 1% bin as the most
popular fitness value. The initial population is created at random and its fitness has a binomial distribution.
Thus many trees score half marks. In the next generation (see Figure 5) crossover and mutation spread
the population and phenotypic convergence falls from an average of 5950 in generation 0. Typically after
generation 2, selection acts to reduce diversity and the fitness values are less spread out. With a large
fixed test set eventually about a third of the population will have the same (true) fitness. This is also
approximately the case for most runs where the test set is changed every generation (see Figure 6) and
where each tournament has a different test set (see Figure 8, 64 tests, conv). We will discuss the interesting
“all leafs” example in the next section. (See also Figure 7.) Moreover with tiny but rapidly changed test
suits (Figure 8, 1 test) selection cannot cause the population to converge and instead towards the end of the
run only 5% of the population have the most popular true fitness value. Note: true general solutions are
evolved from these very diverse populations.
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Table 3: “Effort” to solve the 11-Mux. First vertical group of 4 columns: same tests used for up to
2000 generations, 2nd new random sample every generation (≤50 000), 3rd new sample every tournament
(≤50 000 gens). Effort 1st column in each group. Numbers in brackets are estimated error. 3rd column
in each group is Effort rescaled by (tests used)/(total tests). “na” indicates no run found a solution. The
biggest improvement comes when using only 4, 8 or 16 of 2048 tests.

Tests Start of run ×1000 Every generation ×1000 Every tournament ×1000
×tests/2048 ×tests/2048 ×tests/2048

0 na na na na na na
1 na na na na 530000 (3800) 260 (1)
2 na na 1400000 (1700000) 1400 (1700) 180000 (28000) 170 (27)
3 na na 210000 (87000) 310 (130) 130000 (31000) 190 (45)
4 na na 40000 (1400) 78 (2) 50000 (5300) 98 (10)
8 na na 26000 (1300) 100 (5) 30000 (3600) 120 (14)

16 na na 23000 (2900) 180 (22) 13000 (1500) 100 (12)
32 na na 13000 (3800) 200 (60) 10000 (300) 160 (4)
64 na na 8700 (4300) 270 (130) 7400 (490) 230 (15)

128 390000 (450000) 24000 (28000) 7700 (650) 480 (40) 7400 (2000) 460 (120)
256 12000 (2500) 1500 (310) 3000 (260) 380 (33) 7100 (2000) 890 (250)
512 2300 (360) 590 (90) 4700 (560) 1200 (140) 3500 (200) 870 (51)

1024 1600 (41) 810 (20) 2300 (74) 1100 (37) 3200 (400) 1600 (200)
1536 1800 (66) 1400 (49) 2700 (280) 2000 (210) 3600 (150) 2700 (110)
1792 1600 (33) 1400 (29) 2200 (82) 1900 (72) 4200 (670) 3700 (590)
1920 1800 (74) 1700 (69) 1500 (49) 1400 (46) 3000 (66) 2800 (61)
1984 1800 (98) 1700 (95) 3000 (970) 3000 (940) 4700 (890) 4500 (870)
2016 1600 (74) 1500 (73) 1500 (82) 1500 (81) 2500 (220) 2400 (220)
2032 1500 (57) 1500 (57) 4100 (550) 4100 (540) 6200 (1500) 6200 (1500)
2040 3200 (670) 3200 (670) 1700 (110) 1700 (110) 3100 (41) 3100 (41)
2044 4800 (2700) 4800 (2700) 1600 (0) 1600 (0) 2400 (25) 2400 (25)
2045 3700 (880) 3700 (880) 1800 (120) 1800 (120) 6800 (1500) 6800 (1500)
2046 4700 (1200) 4700 (1200) 1700 (98) 1700 (98) 2500 (180) 2500 (180)
2047 1700 (49) 1700 (49) 1500 (49) 1500 (49) 7300 (1900) 7300 (1900)
2048 1500 (25) 1500 (25) 1500 (25) 1500 (25) 2400 (160) 2400 (160)
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 16384

 14336

 12288

 10240

 8192

 4096

 2048

 0

2000727721010

N
um

be
r 

to
ur

na
m

en
ts

 w
hi

ch
 s

el
ec

t p
ar

en
t w

ith
 w

or
se

 tr
ue

 fi
tn

es
s

G
P

 p
op

 c
on

ve
rg

en
ce

 (
m

ax
 n

um
be

r 
tr

ee
s 

w
ith

 s
am

e 
tr

ue
 fi

tn
es

s)

Generations

2048 convergenceconv 

256 wrong choices 

256 convergence

256 wrong choices

64 wrong choices 
 64 convergence

 64 wrong choices

64 tests (mean 20 gens)
256 tests (mean 20 gens)

2048 tests (mean 20 gens)
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Figure 6: Selection errors (top) and convergence in the first run with 8 tests changed every generation.
Notice GP is successful even though the fraction of tournaments choosing worse fitness parents is just
below 3/4. (75% is the worst possible.) Typically about a quarter of the population converge on the most
popular true fitness value (lower plot).

As expected, with a large number of tests most tournaments pick correctly a parent with the highest (true)
fitness. As we substantially reduce the test suite more tournaments choose wrongly. For example, when
using the same 1/8th of the complete test suite, approximately half of tournaments choose wrongly. (Note
Figure 5 plot 256 tests.) At first it seems surprising that GP can still work. Indeed if the number of tests
is further reduced to 64 no run was successful. However there are four members in each tournament, with
256 tests, the best one is still being chosen half the time. The other 50% may choose the second best, which
could be better than the remaining two trees in the tournament.

Assume the population remains reasonably diverse, so that the members of each tournament have different
fitness values. Then the winner of each tournament has better fitness than the second best in the tournament.
The fraction of tournaments where this is not true gives an indication of the noise in the observed fitness.
If the noise is large and unbiased, the second best has a 50% chance of winning the tournament. (50%
corresponds 8192 on Figure 4.) If the noise is even bigger, each of the four members of the tournament
are equally likely to win. I.e., the maximum chance of choosing a wrong fitness value is 75%. In the cases
where tests are changed during the run the average fraction of tournaments does indeed rise to about half
when the test suite is reduced to 8. (Actually 45% and 58% on average.) When the tests used are fixed
throughout the run then the half point is reached more quickly and with less than 256 fixed tests between
about 1/2 and 3/4 of tournaments choose wrongly. Referring back to Table 2 we see test suites of 256 fixed
tests are the smallest which reliably find solutions. Note, both dynamic schemes continue to find solutions
as the number of tests is reduced (Figures 6, 7 and 8). However with only 1, 2 or 3 tests chosen each
generation, it appears solutions might be possible except that selection is not strong enough to overcome
the anti-bloat bias in subtree mutation to create smaller children or it may be deceived by leafs of above
average fitness (next section, page 10). All the failing runs converged on populations with programs made
only of leafs.

With four individuals in a tournament, (on average) at most 3 out of 4 can be wrongly chosen. 3/4 corre-
sponds to 12 288 on Figure 4. When the test suite is very reduced two effects conspire to push the fraction
of wrong selections to this maximum: 1) with fewer tests, the estimate of true fitness is noisier. 2) fewer
tests means there are fewer fitness levels and necessarily the population has less fitness diversity. Figure 4
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Figure 9: Mean tree size in 11-Mux populations. Medians of up to ten successful runs. Note non-linear
scales.

shows all three test suite schemes approach 12 288. By the end of runs with eight fixed tests the population
has converged so that almost all programs have the same observed fitness (8). Empirically 84% of tourna-
ments are decided only by chance. With dynamically chosen tests suites it is smaller. E.g. for just one test
it is 65%.
6.2 Size of Children
Figures 9 and 10 shows the evolution of the mean size of 11-Mux programs. In 700 of 723 runs the average
tree size more than doubles. (Increase in solution size without consequent increase in fitness is known as
bloat [Langdon et al., 1999].) However some failing runs do not bloat but instead converge disastrously.
At the end of 20 runs with tiny test suits (≤3 tests) changed every generation the population collapses so
that all 16 384 trees each consist only of a single leaf. This included all three runs where no tests where
run, all of the runs where one test was randomly chosen every generation and nine of the 16 runs which
failed where the 2 or 3 tests were selected every generation.

Without any fitness selection (tests=0), the populations do not bloat [Langdon and Poli, 1997] and also
collapse to a single leaf. The nature of the 11-Mux problem dictates the address leafs A0–2 have fitness of
1024 and the remaining 8 data leafs D0–7 score 1152. The collapsed populations contain approximately
equal numbers of each leaf. Since there is no (observed) fitness the first member of the each randomly
chosen tournament will be chosen. The chance of A0–2 being selected as the first member of a tournament
is 3/11. However for A0, A1 or A2 to be correctly chosen the tournament must contain only A0–2. If any
of the three other members of the tournament are D0–7, then they should have won the tournament, but do
not. I.e. the chance that a tournament chooses wrongly is 3/11 ×

(
1− (3/11)3

)
= 27%. (Corresponding

to 4378 in Figure 4.) The actual values, averaged over the last twenty generations are 4364 (once or every
generation) and 3806 (every tournament).

When the population is composed only of leafs there are just two fitness values in the population. Random
fluctuations cause the proportion to change. When the population is dominated by either, tournaments are
more likely to chose correctly. I.e., the chance of selecting wrongly falls as the fraction of individuals with
the highest fitness rises (i.e. with increasing population convergence). This gives the near straight line in
Figure 7 with slope -0.462. Although the relationship looks linear, it is actually a small segment of a curved
relationship.
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Figure 10: Mean tree size in 11-Mux populations. Medians of up to ten runs which terminated at 2000
generations without finding a solution. Note non-linear scales.

Notice that parts of the 11-Mux fitness landscape are deceptive. For example, whilst data leafs do not score
highly, they do score 6% better than average and so can attract the population. Once GP has converged
on such programs, neither crossover nor mutation can find higher fitness programs and the population is
trapped on a false local peak in the fitness landscape.

6.3 Convergence of Fitness and Phenotypes with Small Test Suites

Although Figure 2 shows evolution with small dynamic test suites is similar to normal GP, it is more
evolutionary. For example, on average, there are 70% more intermediate solutions with improving true
fitness in the ten runs with one dynamic test. Of course this means the size of each step is reduced. E.g.,
their median improvement is only 8 compared to 14 in the runs which use all 2048 tests.

As expected, in most cases there is a very strong correlation between the fitness measured on the test suite
and the true fitness (measured on all 2048 tests, see Figure 11). Only when the test suite is very small does
the correlation fall towards zero. In runs with 4 or 8 fixed tests (which failed of course) the correlation
actually becomes negative (suggesting over fitting, note points marked with + or × in Figure 11). With
more than 32 tests, the runs with fixed and variable test suites show little difference in correlation (even
though their chances of finding solutions are different). In the absence of over fitting and genetic operations
being trapped by tiny programs, GP can (given long enough) reliably evolve solutions with a correlation as
low as 0.19.

The size of the breeding population, i.e. the number of individuals chosen to be parents of the next gen-
eration, is plotted in Figure 12. As expected in almost all runs it is close to the value predicted by Mo-
toki [Motoki, 2002, p403] for tournaments of size four. Unsuccessful runs with a small fixed test set
start with breeding populations near T4=44% but increase the size of their breeding populations as more
members of the population have the same fitness. In the limit of random selection 63% of the population
contribute to the next generation. Figure 12 shows the narrow change (max 44%) in the size of the breeding
population between successful and unsuccessful runs. Whilst extreme convergence to a small number of
fitness values does reduce selection and increase the breeding population, the change is modest and so will
only make a modest change to the rate with which selection removes diversity from the population.
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Table 4: Fraction (as grey scale) of all 2048 tests passed by 11-Mux pops. Black 0%, grey 50%, white
100% of tests passed on average by members of the population. Top row of each graphic: initial pop,
generation 1, 2, .. 10, 20, .. 90, 100, 200, .. 1900 and last row first population where a solution was found.
The 2048 tests are plotted horizontally. (Sorted so easiest tests are on the left. Same ordering in each plot.)
Whilst time is plotted vertically (non linear scale, generation 0 at top of each plot).
Tests Start of run Every generation Every tournament

0

1

2

4

8

16

32

64

128

256

512

1024

1536

1792

1920

1984

2016

2032

2040

2044

2046

2047

2048

Table 4 shows convergence of phenotypes for the first run of each group of ten. Without any fitness
selection (0 tests) the population remains uniform for hundreds of generations (uniform grey) but eventually
the population converges to tiny programs which pass particular patterns of tests, meaning some tests are
passed much more often than others. As the population converges, this gives rise to vertical black and
white stripes.

With more tests, evolution is more complex but we still see many tests being failed by large fractions of the
population for many generations. This may be due to “hitch hiking” (as seen in the Royal Road problems
[Forrest and Mitchell, 1993; Smith et al., 1993; van Nimwegen et al., 1999]) in which a new better solution
propagates through the population spreading both the new tests it passes and also its pattern of tests that
it fails. (However, see page 14, only in a few cases does “hitch hiking” cause a population to unlearn a
correct answer that has become entrenched in the population.)

Notice that runs converge with most of the population solving a large number (but not all) of the same tests.
When a solution is found there are typically still about 46% of the tests which less than a 1/16th of the pop-
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ulation pass. However typically a parent of the solution will be amongst them. Suggesting whilst evolution
is gradual, it proceeds by a series of exceptional individuals. That is, whilst the evolutionary trends in
fitness and size show some waggles (see Figures 2, 9 and 10, ) the trend is continuous gradual change.
However fitness improvement does not come from the bulk population but from exceptional individuals.

Typically at the end of runs about 45% of tests are passed by at least 15/16th of the population. Thus by the
final generation most tests are either passed by a small fraction of the population or almost all of it. Hence
the last row of the images in Table 4 are mostly black or white, with little grey. In contrast to the first row,
which is all grey.

7 Discussion

We have shown in some cases a single randomly chosen test, if it is changed sufficiently often, can be suf-
ficient to reliably drive evolution to solutions. However typically we seek not only to evolve the population
but to identify solutions. One test can not identify solutions. So we would be obliged to test part of the
population more fully (perhaps every 100 generations). It is not clear when is the best time to check for
solutions. If we test too early, there will be no solutions but we can abort tests earlier. Later in the run, the
population may contain many solutions, so fully testing only a few individuals which pass the current test
suite may be likely to find a solution. However if we decided to fully test everyone who passes the current
test suite, this could be expensive. For example, in the run shown in Figure 2 in 39% of the generations
more than a quarter of the population could be solutions as far as the 8 tests used in that generation are
concerned. Thus for pragmatic reasons we might want to use more than eight tests, even so, particularly
for larger problems, the fitness cases used could still be a tiny fraction of the whole.

Having a test suite for each tournament was introduced by [Langdon, 2010] to exploit random number
generation on the GPU. When the test suite is different for every tournament, tournaments are deliber-
ately restricted to choosing between individuals which are tested on the same test suite. Obviously the
maximum number of fitness levels in a tournament is still four but since tournament members are chosen
with reselection there is a likelihood of reselecting individuals and so on average tournaments have ≈2.5
(rather than 4) fitness levels to choose between. This reduced selection pressure (for ≥ 256 tests) may be
the reason why per tournament runs need more generations (see dashed line in Figure 1). When there are
8 or fewer tests, tournament selection across the whole population also has fewer fitness levels to choose
between. In fact, in both dynamic schemes, tournaments contain on average less than two fitness levels.
This may be why (excluding the larger test suite and trapping by tiny programs) both schemes then have
similar performance.

With fixed testing, correlation between true and observed fitness is only a partial indicator of success. (But
negative correlation suggests a problem.) For example, with 64 tests the correlation between true and
observed fitness is much the same regardless of which of the three sampling schemes is used (Figure 11).
However all the runs with a static choice of test suite of size 64 fail. At the end of these runs almost the
whole population passes all of the 64 tests but the populations are seriously overfitting and typical true
scores are near 70%. Whereas at the end of runs where 64 tests are repeatedly changed, observed fitness
is mostly less than 2% bigger than true fitness (Figure 13), indicating changing the test suite leads to less
bias.

Data in Table 4 support the view that GP populations collect building blocks. To be specific, only in 74
cases (on average) does a population forget a test once it has learnt it. I.e. in an average run there are
about 74 tests where >7/8th of the population pass it at some point but later the fraction falls below 1/8th.
Perhaps because evolution is slower, in 29 of the 40 extended runs with≤4 tests no test was forgotten once
a population had learnt it. Whereas on average in the last generation of successful runs 1026 tests are passed
by more than 7/8th of the population. Figure 2 shows a logarithmic rise in performance. This might be
because GP population solve problems by randomly assembling building blocks (like a coupon collector).
The classic coupon collector which takes O(n log(n)). The number of generations required approximately
follows the dotted line in Figure 1. This suggests the number of coupons n scales as the ratio of the total
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Figure 13: At end of first run with 64 tests changed every tournament more than half the population are
measured to be within 1% of the solution and slightly less than half have a true fitness of ≈98%

number of tests divided by the number used. The similarity with the coupon collector suggests perhaps GP
assembles solutions from building blocks which are equally difficult to find.

8 Conclusions

Previous ad-hoc work has shown that in many cases genetic programming can evolve general solutions
using a fraction of the test suite [Poli et al., 2008]. In the 37-multiplexor, less than a millionth of the whole
test suite was needed [Langdon, 2010].

We have investigated GP’s ability to generalise. With modest fixed subsets, general solutions can be
evolved. However if the subset is further reduced, even a randomly chosen fixed subset can lead to GP
overfitting and failing to evolve general solutions.

When the test subset is randomly changed every generation, due to random re-sampling, some tests may
be selected several times before all the others have been selected once. With T tests in each generation on
average it will take about 16 800/T generations [Feller, 1957] for the whole GP system to be exposed to
the whole of the 11-Mux test suite. Yet, as Table 2 shows for ≤ 64 tests per generation, GP can evolve
general solutions when not only has no individual seen the whole test suite, but none of its ancestors has.
Nor, indeed have all of its ancestors combined, been exposed to the entire test suite. (With 32 tests per
generation, it would take on average 473 000 generations to sample the complete 20-Mux test suite, yet on
average GP evolved solutions in only 1179 generations.)

Random re-sampling may permit GP to evolve general solutions, even in deceptive problems, from far
fewer fitness tests potentially leading to large speed ups.
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K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, page 889, New York, 9-13 July 2002.

[Hillis, 1992] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors,
Artificial Life II, volume X of Sante Fe Institute Studies in the Sciences of Complexity. Addison-Wesley,
1992.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers by Natural Selec-
tion. MIT press, 1992.

[Langdon and Poli, 1997] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry, R. Roy, and
R. K. Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 13–22. Springer-
Verlag London, 23-27 June 1997.

[Langdon et al., 1999] William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster. The evolu-
tion of size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline,
editors, Advances in Genetic Programming 3, chapter 8, pages 163–190. MIT Press, 1999.

[Langdon, 1998] William B. Langdon. Genetic Programming and Data Structures. Kluwer, Boston, 1998.

RN/11/10 Page 16

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/banzhaf_1997_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bongard_2007_PNAS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/christensen_2002_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/foster_2001_discipulus.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ga94aGathercole.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/giacobini_2002_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_1997_bloatWSC2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_aigp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html


Minimising Testing in Genetic Programming W. B. Langdon

[Langdon, 2010] W. B. Langdon. A many threaded CUDA interpreter for genetic programming. In
Anna Isabel Esparcia-Alcazar, Aniko Ekart, Sara Silva, Stephen Dignum, and A. Sima Uyar, editors,
Proceedings of the 13th European Conference on Genetic Programming, EuroGP 2010, volume 6021
of LNCS, pages 146–158, Istanbul, 7-9 April 2010. Springer.

[Langdon, 2011] W. B. Langdon. Generalisation in genetic programming. In GECCO 2011. ACM, 2011.

[Motoki, 2002] Tatsuya Motoki. Calculating the expected loss of diversity of selection schemes. Evolu-
tionary Computation, 10(4):397–422, 2002.

[Poli and Langdon, 1999] Riccardo Poli and William B. Langdon. Sub-machine-code genetic program-
ming. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances
in Genetic Programming 3, chapter 13, pages 301–323. MIT Press, 1999.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[Ross, 2000a] Brian J. Ross. The effects of randomly sampled training data on program evolution. In
Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer,
editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages
443–450, Las Vegas, Nevada, USA, 10-12 July 2000.

[Ross, 2000b] Brian J. Ross. Probabilistic pattern matching and the evolution of stochastic regular expres-
sions. Applied Intelligence, 13:285–300, 2000.

[Smith et al., 1993] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. Searching for diverse,
cooperative populations with genetic algorithms. Evolutionary Computation, 1(2):127–149, 1993.

[Sontag, 1998] Eduardo D. Sontag. VC dimension of neural networks. In Neural Networks and Machine
Learning, pages 69–95. Springer, 1998.

[Teller and Andre, 1997] Astro Teller and David Andre. Automatically choosing the number of fitness
cases: The rational allocation of trials. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 321–328, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

[van Nimwegen et al., 1999] Erik van Nimwegen, James P. Crutchfield, and Melanie Mitchell. Statistical
dynamics of the royal road genetic algorithm. Theoretical Computer Science, 229(1-2):41–102, 1999.

RN/11/10 Page 17

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://dx.doi.org/10.1162/106365602760972776
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/BRoss_2000_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ross_2000_AI.html
http://www.math.rutgers.edu/~sontag/FTP_DIR/vc-expo.ps.gz
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Teller_1997_acnfc.html
http://dx.doi.org/10.1016/S0304-3975(99)00119-X

	Introduction
	Faster Optimisation by using Approximate Models
	GP Benchmarks
	Non-Exhaustive Fitness Testing
	Results
	Analysis
	Changing Who Has Children
	Size of Children
	Convergence of Fitness and Phenotypes with Small Test Suites

	Discussion
	Conclusions

