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Abstract 
 
 
This note presents a chronological review of the literature on ensemble learning which has 
accumulated over the past twenty years.  The idea of ensemble learning is to employ 
multiple learners and combine their predictions.  If we have a committee of M models with 
uncorrelated errors, simply by averaging them the average error of a model can be reduced 
by a factor of M.  Unfortunately, the key assumption that the errors due to the individual 
models are uncorrelated is unrealistic; in practice, the errors are typically highly correlated, 
so the reduction in overall error is generally small.  However, by making use of Cauchy’s 
inequality, it can be shown that the expected committee error will not exceed the expected 
error of the constituent models.  In this article the literature in general is reviewed, with, 
where possible, an emphasis on both theory and practical advice, then a taxonomy is 
provided, and finally four ensemble methods are covered in greater detail: bagging, boosting 
(including AdaBoost), stacked generalization and the random subspace method. 
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1 Introduction

The idea of ensemble learning is to employ multiple learners and combine their predictions. If we have a committee
of M models with uncorrelated errors, simply by averaging them the average error of a model can be reduced by
a factor of M . Unfortunately, the key assumption that the errors due to the individual models are uncorrelated is
unrealistic; in practice, the errors are typically highly correlated, so the reduction in overall error is generally small.
However, by making use of Cauchy’s inequality, it can be shown that the expected committee error will not exceed
the expected error of the constituent models. The concept of a committee arises naturally in a Bayesian framework.
For a Bayesian—someone who is willing to put a probability on a hypothesis—the task of ensemble learning is, in
principle, straightforward: one should use Bayesian model averaging (BMA). This involves taking an average over
all models, with each model’s prediction weighted by its posterior probability. In BMA it is assumed that a single
model generated the whole data set, and the probability distribution over our candidate models simply reflects our
uncertainty as to which model that is. By contrast, when we combine multiple models, we are assuming that different
data points within the data set can potentially be generated from different models.

2 Literature Review

Wittner and Denker (1988) discussed strategies for teaching layered neural networks classification tasks.

Schapire (1990) introduced boosting (the method is explained in Section 5 (page 6)). A theoretical paper by Kleinberg
(1990) introduced a general method for separating points in multidimensional spaces through the use of stochastic
processes called stochastic discrimination (SD). The method basically takes poor solutions as an input and creates
good solutions. Stochastic discrimination looks promising, and later led to the random subspace method (Ho, 1998).
Hansen and Salamon (1990) showed the benefits of invoking ensembles of similar neural networks.

Wolpert (1992) introduced stacked generalization, a scheme for minimizing the generalization error rate of one or
more generalizers (explained in Section 6 (page 8)). Xu et al. (1992) considered methods of combining multiple
classifiers and their applications to handwriting recognition. They claim that according to the levels of output infor-
mation by various classifiers, the problems of combining multiclassifiers can be divided into three types. They go on
to compare three approaches from the first type: voting, Bayesian formalism and Dempster-Shafer formalism. They
found that the performance of individual classifiers could be improved significantly and, if forced to pick one, they’d
recommend the Dempster-Shafer formalism since it can obtain high recognition and reliability rates simultaneously
and robustly.

Perrone and Cooper (1993) presented a general theoretical framework for ensemble methods of constructing signifi-
cantly improved regression estimates. Jordan and Jacobs (1993) presented a hierarchical mixtures of experts model.

Ho et al. (1994) suggest a multiple classifier system based on rankings. In the field of handwritten digit recognition,
Battiti and Colla (1994) found that the use of a small number of neural nets (two to three) with a sufficiently small
correlation in their mistakes reaches a combined performance that is significantly higher than the best obtainable
from the individual nets.

In 1995, Yoav Freund and Robert E. Schapire introduced AdaBoost (Freund and Schapire, 1997) (covered in Sec-
tion 5.1 (page 8)). Cho and Kim (1995) combined the results from multiple neural networks using fuzzy logic which
resulted in more accurate classification. Freund (1995) developed a more efficient version of boosting. Lam and Suen
(1995) studied the performance of four combination methods: the majority vote, two Bayesian formulations and a
weighted majority vote (with weights obtained through a genetic algorithm). They conclude: ‘in the absence of a
truly representative training set, simple majority vote remains the easiest and most reliable solution among the ones
studied here.’ Bishop (1995) covers the theoretical aspects of committees of neural networks in general terms, as
covered in the Introduction. Krogh and Vedelsby (1995) showed that there is a lot to be gained from using unlabeled
data when training ensembles.

Tumer and Ghosh (1996) showed that combining neural networks linearly in output space reduces the variance of
the actual decision region boundaries around the optimum boundary. Of great practical importance, Sollich and
Krogh (1996) found that in large ensembles, it is advantageous to use under-regularized students, which actually
over-fit the training data. This allows one to maximize the benefits of the variance-reducing effects of ensemble
learning. Freund and Schapire (1996) performed experiments using AdaBoost. Their main conclusion was that
boosting performs significantly and uniformly better than bagging when the weak learning algorithm generates fairly
simple classifiers. When combined with C4.5, boosting still seemed to outperform bagging slightly, but the results
were less compelling. Breiman (1996) introduced bagging (Section 4 (page 6)).

Raftery et al. (1997) consider the problem of accounting for model uncertainty in linear regression models and offer
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two extensions to BMA: Occam’s window and Markov chain Monte Carlo. Woods et al. (1997) presented a method
for combining classifiers that uses estimates of each individual classifier’s local accuracy in small regions of feature
space surrounding an unknown test sample. An empirical evaluation showed that their local accuracy approach was
more effective than the classifier rank algorithm, the modified classifier rank algorithm and the behaviour-knowledge
space (BKS) algorithm (which performed worst). In fact, on average, the classifier rank algorithm and the BKS
algorithm both failed to outperform the single best classifier. The authors believe that the combining of classifiers
works best with large data sets with data distributions that are too complex for most individual classifiers. Larkey and
Croft (1997) found that combining classifiers in text categorization improved performance. Lam and Suen (1997)
analysed the application of majority voting to pattern recognition.

Kittler (1998) developed a theoretical framework for combining classifiers in the two main fusion scenarios: fusion
of opinions based on identical and on distinct representations. For the shared representation they showed that here
the aim of fusion was to obtain a better estimation of the appropriate a posteriori class probabilities. For distinct
representations they pointed out that the techniques based on the benevolent sum-rule fusion are more resilient to
errors than those derived from the severe product rule. In both cases (distinct and shared representations), the expert
fusion involves the computation of a linear or non-linear function of the a posteriori class probabilities estimated by
the individual experts. Kittler et al. (1998) developed a common theoretical framework for classifier combination.
An experimental comparison between the product rule, sum rule, min rule, max rule, median rule and majority voting
found that the sum rule outperformed other classifier combinations schemes, and sensitivity analysis showed that the
sum rule is most resilient to estimation errors (which may be a plausible explanation for its superior performance).
Ho (1998) introduced the random subspace method for constructing decision forests (briefly explained in Section 7
(page 8)). The method worked well in practice and was shown to perform best when the dataset has a large number of
features and not too few samples. Schapire et al. (1998) offer an explanation for the effectiveness of voting methods.
They show that this phenomenon is related to the distribution of margins of the training examples with respect to the
generated voting classification rule, where the margin of an example is simply the difference between the number of
correct votes and the maximum number of votes received by any incorrect label.

Schapire (1999) gave an introduction to AdaBoost, and explained the underlying theory of boosting. Opitz and
Maclin (1999) compared bagging and two boosting methods: AdaBoost and arching. They found that in a low noise
regime, boosting outperforms bagging, which outperforms a single classifier, whilst as a general technique bagging
is the most appropriate. Opitz (1999) considered feature selection for ensembles. Miller and Yan (1999) developed a
critic-driven ensemble for classification. Hoeting et al. (1999) wrote a tutorial on BMA. Liu and Yao (1999) presented
negative correlation learning for neural network ensembles.

Jain et al. (2000) include a section on classifier combination. They list reasons for combining multiple classifiers: one
may have different feature sets, different training sets, different classification methods or different training sessions,
all resulting in a set of classifiers whose results may be combined with the hope of improved overall classification
accuracy. They provide a taxonomy, which I have reproduced in Table 1 (page 7). In terms of experimental work,
they train twelve classifiers on six feature sets from a digit dataset and use four methods of classifier combination—
median, product, nearest mean and 1-NN—across both the different feature sets and the different classifiers. Mea-
suring performance against the best single result, my own conclusions from their results are that 1) there is no benefit
in just combining different classifiers across the same feature set and 2) there is substantial benefit in combining the
results of one classifier across different feature sets (1-NN worked best, but voting failed). However, when the classi-
fiers are first combined on one feature set at a time, and then these results are combined, then using the nearest mean
method for both stages of model combination gave the best overall result. This was also the best result of the entire
experiment. Kleinberg (2000) bridged the gap between the theoretical promise shown by stochastic discrimination
and a practical solution by providing the algorithmic implementation. He also showed that stochastic discrimination
outperformed both boosting and bagging in the majority of benchmark problems that it was tested on. Kuncheva
et al. (2000) considered whether independence is good for combining classifiers. Their results support the intuition
that negatively related classifiers are better than independent classifiers, and they also show that this relationship is
ambivalent. Dietterich (2000) compared the effectiveness of randomization, bagging and boosting for improving
the performance of the decision-tree algorithm C4.5. Their experiments showed that in situations with little or no
classification noise, randomization is competitive with (and perhaps slightly superior to) bagging but not as accurate
as boosting. In situations with substantial classification noise, bagging is much better than boosting, and sometimes
better than randomization. Kuncheva and Jain (2000) designed two classifier fusion systems using genetic algorithms
and found that selection of classifiers and (possibly overlapping) feature subsets worked well, but selection of disjoint
feature subsets did not. Tax et al. (2000) sought to answer the question of whether to combine multiple classifiers by
averaging or multiplying. They concluded that averaging-estimated posterior probabilities is to be preferred in the
case when posterior probabilities are not well estimated. Only in the case of problems involving multiple classes with
good estimates of posterior class probabilities did the product combination rule outperform the mean combination
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rule. Liu et al. (2000) presented evolutionary ensembles with negative correlation learning (EENCL). Allwein et al.
(2000) proved a general empirical multiclass loss bound given the empirical loss of the individual binary learning
algorithms.

In a PhD thesis, Skurichina (2001) tackled the problem of stabilizing weak classifiers and compares bagging, boosting
and the random subspace method. Bagging is useful for weak and unstable classifiers with a non-decreasing learning
curve and critical training sample sizes. Boosting is beneficial only for weak, simple classifiers, with a non-decreasing
learning curve, constructed on large training sample sizes. The random subspace method is advantageous for weak
and unstable classifiers that have a decreasing learning curve and are constructed on small and critical training sample
sizes.

Kuncheva (2002a) gave formulas for the classification error for the following fusion methods: average, mini-
mum, maximum, median, majority vote and oracle. For a uniformly distributed posterior probability, the mini-
mum/maximum method performed the best; whilst for normally distributed errors, the fusion methods all gave a
very similar performance. Kuncheva (2002b) presented a combination of classifier selection and fusion by using
statistical inference to switch between the two. In their experiments, there was no clear preference of one combina-
tion approach over the rest, the only consistent pattern being that the improvement over the best individual classifier
was negligible. Shipp and Kuncheva (2002) studied the relationships between different methods of classifier com-
bination and measures of diversity in combining classifiers. The only positive correlation was that the ‘double-fault
measure’ of diversity and the measure of difficulty both showed reasonable correlation with majority vote and naive
Bayes combinations (a not unexpected result). The ambiguous relationship between diversity and accuracy discour-
ages optimising the diversity. Skurichina and Duin (2002) applied and compared bagging, boosting and the random
subspace method to linear discriminant analysis. They discovered that boosting is useful for large training sample
sizes, whilst bagging and the random subspace method are useful for critical training sample sizes. In a very good
paper, Valentini and Masulli (2002) present an overview of ensemble methods. Fumera and Roli (2002) report a
theoretical and experimental comparison between two widely used combination rules for classifier fusion: simple
average and weighted average of classifiers outputs. They showed that weighted averaging was superior, especially
for imbalanced classifiers. Dietterich (2002) published a review of ensemble learning.

Kittler and Alkoot (2003) investigated the ‘sum’ versus ‘majority vote’ in multiple classifier systems. They showed
that for Gaussian estimation error distributions, sum always outperforms vote; whilst for heavy tail distributions,
vote may outperform sum. This is of especial interest to the financial domain with the presence of leptokurtosis in
market returns. Kuncheva et al. (2003) derived upper and lower limits on the majority vote accuracy for individ-
ual classifiers. They deduce that negative pairwise dependence between classifiers is best, and ideally all pairs of
classifiers in the pool should have the same negative dependence. They also deduce that diversity is not always bene-
ficial. Kuncheva and Whitaker (2003) considered measures of diversity in classifier ensembles and their relationship
with the ensemble accuracy. Their results raise some doubts about the usefulness of diversity measures in building
classifier ensembles in real-life pattern recognition problems. Topchy et al. (2003) investigate clustering ensembles.

Džeroski and Ženko (2004) considered the construction of ensembles of heterogeneous classifiers using stacking and
showed that they perform (at best) comparably to selecting the best classifier from the ensemble by cross-validation.
They also proposed two new methods for stacking by extending the method with probability distributions and multire-
sponse linear regression. They showed that the latter extension performs better than existing stacking approaches and
better than selecting the best classifier by cross-validation. Chawla et al. (2004) proposed a framework for building
hundreds or thousands of classifiers on small subsets of data in a distributed environment. Their experiments showed
that their approach is fast, accurate and scalable. In an interesting paper, Evgeniou et al. (2004) studied the leave-
one-out and generalization errors of ensembles of kernel machines such as SVMs. They found that the best SVM and
the best ensembles had about the same test performance: ‘with appropriate tuning of the parameters of the machines,
combining SVMs does not lead to performance improvement compared to a single SVM.’ However, ensembles of
kernel machines are more stable learning algorithms than the equivalent single kernel machine, i.e. bagging increases
the stability of unstable learning machines. Topchy et al. (2004) proposed a solution to the problem of clustering
combination by offering a probabilistic model of consensus using a finite mixture of multinomial distributions in a
space of clusterings. A combined partition is found as a solution to the corresponding maximum likelihood prob-
lem using the expectation-maximization (EM) algorithm. Valentini and Dietterich (2004) analysed bias-variance in
SVMs for the development of SVM-based ensemble methods. They suggest two promising approaches for designing
ensembles of SVMs. One approach is to employ low-bias SVMs as base learners in a bagged ensemble, whilst the
other approach is to apply bias-variance analysis to construct a heterogeneous, diverse set of accurate and low-bias
classifiers.

In March 2005 the journal Information Fusion ran a special issue on ‘Diversity in multiple classifier systems’; Lud-
mila I. Kuncheva gave a guest editorial (Kuncheva, 2005). Melville and Mooney (2005) presented a new method
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for generating ensembles, DECORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Train-
ing Examples), that directly constructs diverse hypotheses using additional artificially-constructed training examples.
Their approach consistently outperformed the base classifier, bagging and random forests; and outperformed Ad-
aBoost on small training sets and achieved comparable performance on larger training sets. Ruta and Gabrys (2005)
provide a revision of the classifier selection methodology and evaluate the practical applicability of diversity mea-
sures in the context of combining classifiers by majority voting. Fumera and Roli (2005) presented a theoretical and
experimental analysis of linear combiners for classifier fusion. Their theoretical analysis shows how the performance
of linear combiners depends on the performance of individual classifiers, and on the correlation between their outputs.
In particular, they considered the improvements gained from using a weighted average over the simple average com-
bining rule. Garcı́a-Pedrajas et al. (2005) present a cooperative coevolutive approach for designing neural network
ensembles.

Chandra and Yao (2006) used an evolutionary framework to evolve hybrid ensembles. The framework treats diversity
and accuracy as evolutionary pressures which are exerted at multiple levels of abstraction. Their method was shown
to be effective. Reyzin and Schapire (2006) show that boosting the margin can also boost classifier complexity. They
conclude that maximizing the margins is desirable, but not necessarily at the expense of other factors, especially
base-classifier complexity. Hadjitodorov et al. (2006) found that ensembles which exhibited a moderate level of
diversity produced better cluster ensembles. Kuncheva and Vetrov (2006) evaluated the stability of k-means cluster
ensembles with respect to random initialization. They found that ensembles are generally more stable, and that the
relationship between stability and accuracy with respect to the number of clusters strongly depends on the data set.
They also created a new combined stability index, the sum of the pairwise individual and ensemble stabilities, which
was effective.

Canuto et al. (2007) investigated how the choice of component classifiers can affect the performance of several
combination methods (selection-based and fusion-based methods). One key result was that the highest accuracies
were almost always reached by using hybrid structures. Kuncheva and Rodrı́guez (2007) proposed a combined
fusion-selection approach to classifier ensemble design, which they called the ‘random linear oracle’. Each classifier
in the ensemble is replaced by a miniensemble of a pair of subclassifiers with a random linear oracle (in the form
of a hyperplane) to choose between the two. Experiments showed that all ensemble methods benefited from their
approach. Hansen (2007) considered the problem of selection of weights for averaging across least squares estimates
obtained from a set of models and proposes selecting the weights by minimizing a Mallows criterion. Bühlmann and
Hothorn (2007) present a statistical perspective on boosting. They give an overview on theoretical concepts of
boosting as an algorithm for fitting statistical models, and also look at the methodology from a practical point of
view.

Zhang and Zhang (2008) propose a local boosting algorithm, based on the boosting-by-resampling version of Ad-
aBoost, for dealing with classification. Their experimental results found the algorithm to be more accurate and
robust than AdaBoost. Mease and Wyner (2008) argue experimentally that the statistical view of boosting does
not account for its success. They make the counter-intuitive recommendation that if stumps are causing overfitting,
be willing to try larger trees. In other words, if boosting a low-complexity base learner leads to overfitting, try a
higher-complexity base learner; boosting it might not lead to overfitting. They present empirical evidence to back
up their claim. Claeskens and Hjort (2008) publish Model Selection and Model Averaging. The book explains, dis-
cusses and compares model choice criteria, including the AIC, BIC, DIC and FIC. Leap et al. (2008) investigated
the effects of correlation and autocorrelation on classifier fusion and optimal classifier ensembles. Results included
the finding that fusion methods employing neural networks outperformed those methods that fuse based on Boolean
rules. Friedman and Popescu (2008) developed ‘rule ensembles’. General regression and classification models are
constructed as linear combinations of simple rules derived from the data, and each rule consists of a conjunction of
a small number of simple statements concerning the values of individual input variables. These rule ensembles were
shown to produce predictive accuracy comparable to the best methods. However, their principal advantage is that
they simplify the interpretability of tree ensembles by selecting just a few nodes across all trees. Read et al. (2008)
introduced a new method for multi-label classification which uses a pruning procedure to focus on core relationships
within multi-label sets. The procedure reduces the complexity and potential for error associated with dealing with
a large number of infrequent sets. By combining pruned sets in an ensemble scheme, new label sets can be formed
to adapt to irregular or complex data. The method achieved better performance and trained much faster than other
multi-label methods.

Domeniconi and Al-Razgan (2009) applied ensembles to clustering, and address the problem of combining multi-
ple weighted clusters that belong to different subspaces of the input space. They leverage the diversity of the input
clusterings in order to generate a consensus partition that is superior to the participating ones. Their solutions were
as good as or better than the best individual clustering, provided that the input clusterings were diverse. Chen and
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Ren (2009) successfully applied bagging to Gaussian process regression models. Ulaş et al. (2009) discuss two
approaches to incrementally constructing an ensemble. In an ensemble of classifiers, they choose a subset from a
larger set of base classifiers. In an ensemble of discriminants, they choose a subset of base discriminants, where
a discriminant output of a base classifier by itself is assessed for inclusion in the ensemble. They found that an
incremental ensemble has higher accuracy than bagging and the random subspace method; and it has a comparable
accuracy to AdaBoost, but fewer classifiers. Leistner et al. (2009) proposed a novel boosting algorithm, On-line Gra-
dientBoost, which outperformed On-line AdaBoost on standard machine learning problems and common computer
vision applications. Hido et al. (2009) proposed an ensemble algorithm ‘Roughly Balanced (RB) Bagging’ using a
novel sampling technique to improve the original bagging algorithm for data sets with skewed class distributions. In
experiments using benchmark and real-world data sets they compared RB Bagging with the Exactly Balanced Model
and other well-known algorithms such as AdaBoost and RIPPER for imbalanced data, and found that RB Bagging
generally outperformed them.

Magnus et al. (2010) contrasts BMA with a new method called weighted-average least squares (WALS) with an ap-
plication to growth empirics. The authors claims that WALS has two major advantages over BMA: its computational
burden is trivial and it is based on a transparent definition of prior ignorance. Bühlmann and Hothorn (2010) propose
Twin Boosting, which involves a first round of classical boosting followed by a second round of boosting which is
forced to resemble the one from the first round. The method has much better feature selection behaviour than boost-
ing, particularly with respect to reducing the number of false positives (falsely selected features). Shalev-Shwartz and
Singer (2010) prove that weak learnability is equivalent to linear separability with `1 margin. This perspective sheds
new light on known soft-margin boosting algorithms and enables them to derive several new relaxations of the notion
of linear separability. They describe and analyze an efficient boosting framework that can be used for minimizing
the loss functions derived from their family of relaxations. In particular, they obtain efficient boosting algorithms for
maximizing hard and soft versions of the `1 margin. Shen and Li (2010) show that the Lagrange dual problems of
AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems.
They theoretically and empirically demonstrate that the success of AdaBoost relies on maintaining a better margin
distribution. Based on the dual formulation, a general column generation based optimization framework is proposed,
which exhibits significantly faster convergence speed than conventional AdaBoost.

3 Taxonomy

There is no definitive taxonomy of ensemble learning. Jain et al. (2000) list eighteen classifier combination schemes;
Witten and Frank (2005) detail four methods of combining multiple models: bagging, boosting, stacking and error-
correcting output codes; Bishop (2006) covers BMA, committees, boosting, tree-based models and conditional mix-
ture models; Marsland (2009) covers boosting (AdaBoost and stumping), bagging (including subagging) and the
mixture of experts method; whilst Alpaydin (2010) covers seven methods of combining multiple learners: voting,
error-correcting output codes, bagging, boosting, mixtures of experts, stacked generalization and cascading. The
taxonomy in Jain et al. (2000) is repeated in Table 1 (page 7).

4 Bagging

Bagging (Breiman, 1996), a name derived from bootstrap aggregation, was the first effective method of ensemble
learning and is one of the simplest methods of arching1. The meta-algorithm, which is a special case of model
averaging, was originally designed for classification and is usually applied to decision tree models, but it can be used
with any type of model for classification or regression. The method uses multiple versions of a training set by using
the bootstrap, i.e. sampling with replacement. Each of these data sets is used to train a different model. The outputs
of the models are combined by averaging (in the case of regression) or voting (in the case of classification) to create
a single output. Bagging is only effective when using unstable (i.e. a small change in the training set can cause a
significant change in the model) non-linear models.

5 Boosting

Boosting (Schapire, 1990) is a meta-algorithm which can be viewed as a model averaging method. It is the most
widely used ensemble method and one of the most powerful learning ideas introduced in the last twenty years.
Originally designed for classification, it can also be profitably extended to regression. One first creates a ‘weak’
classifier, that is, it suffices that its accuracy on the training set is only slightly better than random guessing. A
succession of models are built iteratively, each one being trained on a data set in which points misclassified (or,
with regression, those poorly predicted) by the previous model are given more weight. Finally, all of the successive

1Arching (adaptive reweighting and combining) is a generic term that refers to reusing or selecting data in order to improve classification.
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Scheme Architecture Trainable Adaptive Info-level Comments

Voting Parallel No No Abstract Assumes independent classi-
fiers

Sum, mean, median Parallel No No Confidence Robust; assumes independent
confidence estimators

Product, min, max Parallel No No Confidence Assumes independent features
Generalized ensem-
ble

Parallel Yes No Confidence Considers error correlation

Adaptive weighting Parallel Yes Yes Confidence Explores local expertise
Stacking Parallel Yes No Confidence Good utilization of training

data
Borda count Parallel Yes No Rank Converts ranks into confi-

dences
Logistic regression Parallel Yes No Rank confidence Converts ranks into confi-

dences
Class set reduction Parallel cascad-

ing
Yes/No No Rank confidence Efficient

Dempster-Shafer Parallel Yes No Rank confidence Fuses non-probabilistic confi-
dences

Fuzzy integrals Parallel Yes No Confidence Fuses non-probabilistic confi-
dences

Mixture of local ex-
perts (MLE)

Gated parallel Yes Yes Confidence Explores local expertise; joint
optimization

Hierarchical MLE Gated parallel
hierarchical

Yes Yes Confidence Same as MLE; hierarchical

Associative switch Parallel Yes Yes Abstract Same as MLE, but no joint op-
timization

Bagging Parallel Yes No Confidence Needs many comparable classi-
fiers

Boosting Parallel hierar-
chical

Yes No Abstract Improves margins; unlikely to
overtrain, sensitive to misla-
bels; needs many comparable
classifiers

Random subspace Parallel Yes No Confidence Needs many comparable classi-
fiers

Neural trees Hierarchical Yes No Confidence Handles large numbers of
classes

Table 1: Ensemble methods (Jain et al., 2000)
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models are weighted according to their success and then the outputs are combined using voting (for classification) or
averaging (for regression), thus creating a final model. The original boosting algorithm combined three weak learners
to generate a strong learner.

5.1 AdaBoost

AdaBoost (Freund and Schapire, 1997), short for ‘adaptive boosting’, is the most popular boosting algorithm. It uses
the same training set over and over again (thus it need not be large) and can also combine an arbitrary number of
base-learners.

6 Stacked Generalization

Stacked generalization (or stacking) (Wolpert, 1992) is a distinct way of combining multiple models, that introduces
the concept of a meta learner. Although an attractive idea, it is less widely used than bagging and boosting. Unlike
bagging and boosting, stacking may be (and normally is) used to combine models of different types. The procedure
is as follows:

1. Split the training set into two disjoint sets.

2. Train several base learners on the first part.

3. Test the base learners on the second part.

4. Using the predictions from 3) as the inputs, and the correct responses as the outputs, train a higher level learner.

Note that steps 1) to 3) are the same as cross-validation, but instead of using a winner-takes-all approach, the base
learners are combined, possibly non-linearly.

7 Random Subspace Method

The random subspace method (RSM) (Ho, 1998) is a relatively recent method of combining models. Learning
machines are trained on randomly chosen subspaces of the original input space (i.e. the training set is sampled in the
feature space). The outputs of the models are then combined, usually by a simple majority vote.

8 Conclusion

If you are in a position to put a posterior probability on each of a committee of models, use Bayesian model averaging.
Otherwise, the success of ensemble learning relies on the assumption that the errors of the individual models are
uncorrelated. In a low noise regime, boosting is to be preferred to bagging, whilst in a high noise regime, bagging is
to be preferred to boosting.

References

Allwein, E. L., Schapire, R. E. and Singer, Y. (2000), Reducing multiclass to binary: A unifying approach for margin
classifiers, Journal of Machine Learning Research 1, 113–141.

Alpaydin, E. (2010), Introduction to Machine Learning, Adaptive Computation and Machine Learning, second edi-
tion, The MIT Press, Cambridge, MA.

Battiti, R. and Colla, A. M. (1994), Democracy in neural nets: Voting schemes for classification, Neural Networks
7(4), 691–707.

Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Oxford University Press, Oxford.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New
York.

Breiman, L. (1996), Bagging predictors, Machine Learning 24(2), 123–140.
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