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ABSTRACT
Consuming digital multimedia (such as videos) on move has
become evermore popular, all thanks to the widespread suc-
cess of powerful, networked handheld devices as well as
availability of 3G services in urban areas. The storage sizes
and Wi-Fi networking capabilities of such devices have made
them a good platform for opportunistic content sharing; how-
ever given the bulky nature of multimedia files, the question
arises as to how we can increase the number of successfully
serviced requests by caching content locally.

In this work we study the state of classical caching and
show that while those strategies are considered to be good
enough in their intended domain (such as web proxies); they
fail to perform effectively when applied to mobile networks
due to lower usage. Therefore, we propose an opportunistic
proactive caching strategy which exploits available access
points to proactively push contents to nodes through Wi-
Fi. We demonstrate the effectiveness of this approach, in
terms of successful cache hit rate by means of simulation
using large-scale real world traces. In addition, we show that
up to 70% of content requests can be successfully satisfied
by the proposed opportunistic proactive caching, cutting the
delivery up to half its original perceived delay.

1. INTRODUCTION
Mobile devices have undergone a major evolution.

The new generation of mobile phones (e.g., iPhone,
Android- powered devices, etc.) has seen their comput-
ing and memory capabilities grow significantly and in
line with Moores Law. A variety of functionalities have
become a commodity, including multiple network inter-
faces of increasing bandwidth (e.g., 3G, Wi-Fi), thus
enabling users to consume content on the go. Indeed it
is forecasted that by 2014, 500 million Wi-Fi Certified
handsets will be available 1. The area of Delay Tolerant
Networks [1] has been introduced to exploit availabil-
ity of such networked devices in proximity (i.e., nodes),
facilitating opportunistic downloading from collocated
participants. With the recent launch of Wi-Fi Direct2
1http://www.wi-fi.org/news-articles.php?f=media-
news&news-id=969
2http://www.wi-fi.org/news-articles.php?f=media-

such opportunistic downloading has taken yet another
major step forward. In this work, we consider an oppor-
tunistic content sharing system built over a network of
participatory mobile nodes, where users download con-
tent either opportunistically from each other (be it a
mobile node or an available access points), or directly
through 3G after a given patience time.

To illustrate the need for opportunistic downloading,
we can describe a scenario where many users with sim-
ilar interest (e.g. sports) are geographically located in
an area for a relatively considerable duration of time,
such as London 2012 Olympics. We assume all users
to have handheld devices with limited yet decent stor-
age sizes, as well as having space and time for sharing
content on move. The target content type is delay tol-
erant in nature and considered relatively sizeable, such
as multimedia content.

In such a scenario, opportunistic downloading can be
useful where some users do not have access to 3G, ei-
ther due to cost of such services (e.g., roaming charges
for tourists) or due to service limitation (e.g., overcom-
mitted networks or download limitations due to the fair
usage policy placed by operators such as Vodafone3).
However, in order for opportunistic downloading to take
place, content must be locally available at the encoun-
tered nodes. Given the limitation on storages of mobile
devices as well as bulky nature of multimedia contents,
a challenging question arises regarding the content that
should be cached in order to successfully respond to
futures’ opportunistic content requests.

During the past decade due to the development of
web-based services, caching replacement strategies for
web proxies has been an active area of research. As a
result, proxy caching is used to reduce network band-
width usage, user perceived delays and load on the ori-
gin servers [2].

However due to various factors influencing the Web,
many researches have since concluded that the proposed
caching replacement strategies are already good enough

news&news-id=909
3http://www.vodafone.com.au/personal/aboutvodafone/
legal/fairusepolicy/
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[3]. The two main factors are: firstly, the ever increasing
caching capacity of web servers, and secondly the dy-
namic nature of Web 2.0 [3] . The former puts forward
the argument that capacity growth ensures that replace-
ment strategies are not a limiting factor for caching.
However, while this argument maybe true in the do-
main of Web services, it does not fully apply to mobile
networks where storage limitations still persist on hand-
held devices.

The second factor contributing to the abandonment
of more research on caching replacement strategy is the
nature of the traffic which is to be cached. The dy-
namic and fast nature of user generated content in Web
2.0, certainly makes caching replacement strategies less
useful as the content will frequently be modified. Even
though this factor also impacts caching in mobile net-
works, it is a lesser problem where content is delay toler-
ant in nature, as established in our scenario (e.g., videos
from YouTube). This especially holds where users do
not have a direct connection to Internet through Wi-Fi
or 3G but are satisfied with a cached version of poten-
tially out-of-date content.

Therefore in this work, we investigate the impact of
applying classical caching strategies to mobile networks.
We show that while those strategies are considered to
be good enough in the web domain, they fail to have
the same impact for mobile networks where caching
is highly influenced by network topological properties.
The main contribution of this work is addressing classi-
cal caching limitations and proposing a fully distributed
opportunisticlly proactive caching which well adapts to
the needs of mobile environment. We evaluate our pro-
posed approach by means of simulation by using large
scale real mobility traces of an urban city, as well as
realistically modeling users request behaviour and con-
tent distribution according to prior research on Web
2.0. Catering for user experiences, we show that the
opportunistic proactive caching proves to be successful
in reducing user dependency to 3G network (potentially
cost beneficial both for users and network operators) as
well as reducing the encountered delay. To the best of
our knowledge, our work is the first to thoroughly anal-
yse the state of caching for mobile networks in a large
scale realistic environment.

The remainder of the paper is structured as follows:
first, we briefly describe the state-of-art of caching in
web proxy domain in Section 2. We then describe how
such caching strategies can be applied to mobile net-
works in Section 3, before moving to Section 4 where we
present the results of a comparative evaluation of some
of those popular caching replacement strategies (Section
4.2); demonstrating where they all suffer from shortages
impacting their effectivity of caching. We then pro-
pose and evaluate our proposed opportunistic proactive
caching approach in Section 4.3; and further evaluate it

under the described London Olympic scenario in Sec-
tion 4.4. We then position the proposed approach with
respect to related works in domain of mobile coopera-
tive caching in Section 5, before presenting our conclud-
ing remarks in Section 6.

2. BACKGROUND TO CACHING REPLACE-
MENT TECHNIQUES

The survey of web cache replacements [3] groups the
caching replacement strategies into three main cate-
gories: Recency based, frequency based and finally re-
cency and frequency based strategies. Common to all
categories is that when the cache is full, an already
stored object (data) is deleted from the cache space in
order to make free space for future objects. In here we
briefly describe each category, selecting a strategy from
each category for our comparative analysis:

• Recency Based: these strategies use time as the
main factor to decide which object in cache should
be discarded. The most known strategy of this
type is LRU or Least Recently Used, which re-
moves the least recently referenced object. LRU is
used in many different areas such as thread schedul-
ing , databases and so on. The idea behind recency
based approaches such as LRU is that the objects
that have been recently requested are more likely
to be requested again within short time.

We select LRU for its simplicity and adapt it to the
described mobile network settings. In such coop-
erative mobile setting, the references to a cached
object comes from both the device itself and the
requests of users in the devices’ vicinity. Hence
we expect LRU to fit well in such environment as
it can integrate and react to mobility of users: if
a user is currently in a public place encountering
many other devices, he is more likely to be asked
for the cached popular contents multiple times in
short duration of time while still in the vicinity of
devices.

• Frequency Based: these caching replacement strate-
gies use the frequency of an object request as main
factor. The most known of these strategies is LFU
or Least Frequently Used, which removes the least
frequently requested object. We select LFU algo-
rithm for our comparative analysis and adapt it to
our settings as before by considering the references
(i.e., requests) to an object to come from both the
device itself and the neighbouring nodes.

• Recency/Frequency Based: strategies in this cate-
gory take both time and popularity in to account.
LRU* [4] is one of these cache replacement strate-
gies which we will describe in Section 3.3.
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We may also consider Function-based strategies. These
strategies take into account properties such as size and
cost to calculate the value of cached objects as a basis
for replacing the least valued object. Defining the cost
of each object is non-trivial and highly tied to the appli-
cation domain (e.g., cost of a request remaining unsatis-
fied). For this reason we will focus in the context of this
paper on time and frequency based approaches, though
propose potential ways of defining such function-based
strategies using social network reasoning as a basis for
future work, as discussed in Section 6.

3. SYSTEM DESCRIPTION
In this section, we detail the process of requesting and

obtaining content in the network in order to provide a
background to the concept of opportunistic download-
ing. We then model the described network in terms
of content population and user behaviour and further
describe how we apply the selected classical caching
strategies to the mobile network as a basis for the com-
parative evaluation in Section 4.

3.1 Opportunistic Download
When a user requests content (e.g., a video), the local

cache of the user is first searched to determine whether
or not the content may be already available. If not a
patience time is assigned to the request: this time indi-
cates an initial limit that the user is willing to tolerate
before obtaining the content via the standard network
(e.g., 3G). Should the user encounter other neighbour-
ing nodes (i.e., other user devices) during this time, the
request will be passed on in the hope that they may have
a cached copy of the content available. This would con-
stitute an opportunity for an opportunistic download to
take place, via Wi-Fi.

We refer to measurements in [5] and assume that
the download rate using Wi-Fi between any pair de-
vice in range is 6 Mbps. However should the oppor-
tunistic download not take place during the patience
time (i.e., due to the lack of encounters or cache miss
on other devices), then the content is eventually down-
loaded through 3G with downloading rate of 600Kbps
as measured in [6].

3.2 Content Distribution
In order to realistically model users’ downloading be-

haviour and desire for content, we refer to the analysis
of content popularity and properties conducted for the
online video provider YouTube. In [7], authors stud-
ied the size distribution of the YouTube videos, demon-
strating that this follows a long tail distribution with
many smaller files and fewer larger ones; correspond-
ing to previously observed file size distribution of Inter-
net traffic. Their measurements present that more than
40% of videos were within four minutes in duration and

within 5 MB, reflecting that YouTube is primarily a site
for very short videos (the study was done when there
was a maximum 10 mins video length enforcement by
Google).

Given that in our scenario we also consider users re-
questing content in the form of videos, we will hence
follow the same size distribution as YouTube for mod-
eling content population. That is, 40% of content will
be of size 5 MB, 30% will be 10 MB, 20% 15MB, and
finally the bulky 25 MB content will correspond only to
10% of the population.

Alongside content size distribution, we are also re-
quired to model users request behaviour (i.e., preferred
user content). We do so by modeling the correlation
between user requests and content popularity, following
prior research on YouTube. In [8], the authors inves-
tigated the popularity of YouTube content on a large
scale and have shown that the video requests are highly
skewed towards popular files, following the Pareto Dis-
tribution [9], with 20% of the files satisfying 80% of
the requests. We hence adopt the same mapping be-
tween requests and popularity of files (formal model is
provided in Section 4.3.3). In doing so we assume no
correlation between content size and popularity. Fur-
thermore, in this work we assume the existence of a
static non-aging content distribution model in terms of
the popularity measure, and the effect of content evo-
lution remains as part of our future work.

3.3 Adapting Caching Strategies to Mobile Net-
works

Common to all the chosen cache replacement strate-
gies is that they are triggered locally when the total size
of cached objects exceeds a predefined upper threshold,
H. Once triggered, the caching replacement strategy
discards as many objects as indicated, in order for the
total size to fall below a predefined low threshold, L
(with L < H). For simplicity and efficiency reasons, we
assume H to be equal to the storage capacity and L to
be a content element (i.e., single video) less than stor-
age capacity. Indeed, this design decision addresses the
rarer cache insertion events in mobile networks in com-
parison to web proxies and operating systems, hence
allowing us to maximise the number of cached elements
at each node.

As previously described, in order to adapt the caching
strategies to mobile networks, we assume the references
(i.e., requests) to cached content are made both locally
(user’s own requests) and globally (from nodes in vicin-
ity). The actions of any caching strategies can be bro-
ken into refreshing and replacement procedures. Re-
freshment procedure is triggered when a request is is-
sued. If the request is a hit (the requested content exists
in the cache), the following actions happens for each dif-
ferent caching replacement strategies:
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• LRU: the content is moved to the head of the list,
reflecting that it has been recently accessed.

• LFU: the content’s counter is incremented.

• LRU*: the content’s counter is incremented and it
is moved to the head of the LRU list.

However if the request is a miss (i.e., the requested
content did not exist in the cache), caching strategies
would traditionally indicate that content should be fetched.
However in adapting those strategies to mobile net-
works, we assume that no action is taken upon a miss:
the content will eventually get downloaded either op-
portunistically or through 3G after the established pa-
tience time.

If the miss request was from a node in vicinity, then
there is no incentive for the receiver of the request to
allocate its power and other possible costs downloading
the content through 3G for someone else. Hence we as-
sume the requester will eventually download and place
the content in its cache even though this event may not
happen immediately.

The second procedure which distinguishes different
caching strategies is replacement. Replacement is trig-
gered when new content is downloaded and the cache
size is bigger than H watermark (i.e., in our case when
the cache is full). The following strategies define which
piece of content would be nominated for replacement:

• LRU: delete from the end of the list and place the
newly downloaded element in the head.

• LFU: delete the content with the least value for
the counter, set the frequency of the newly down-
loaded content to 1 and insert to the storage.

• LRU*: iterate from end of the LRU list:

If the contents frequency counter is zero then delete;

otherwise decrement its frequency counter and place
at the head of the list.

Finally insert newly downloaded content in head
of the list, setting its frequency counter to 1.

4. EVALUATION
In this section we present our insights to caching in

cooperative mobile network. We first describe our sim-
ulation settings in Section 4.1. We provide a compara-
tive evaluation of the selected classical caching strate-
gies and investigate the issue of is classical caching good
enough for mobile networks in Section 4.2. From the ob-
tained results, we claim that in such networks caching
is highly influenced by users’s requesting behaviour and
encounter rate; hence we propose a more suited caching
strategy for mobile networks, by modeling caching proac-
tively (Section 4.3).
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Figure 1: Patience time (in seconds) for requests issued
by 100 nodes in the network

4.1 Simulation Settings
All the evaluations have been conducted by means of

simulation, and averaged across multiple runs. We used
the previously described content model (Section 3.2),
and assumed a fix population size of 10000 pieces of
content available to the users. In terms of mobility, we
required traces to be reflective of a real urban scenario,
therefore we have chosen the only available large scale
mobility traces, the San Francisco Cab traces [10].

The traces recorded the GPS coordinates of 500 cabs,
logged every 10 seconds, over a period of 20 days, in the
San Francisco Bay Area. We model each cab as a mo-
bile node in the network. In order to infer colocation
information from GPS coordinates, we have assumed
that two cabs are colocated if their physical distance is
less than 100 meters (i.e., within Wi-Fi range). Fur-
thermore, the dataset contains information about cabs
occupancy (i.e., the time a cab becomes occupied and
the time it becomes vacant). Even-though in our sim-
ulations we model the cabs as nodes (users carrying
one unique device), we use the occupancy information
for modeling content requests. We simulate the con-
tent requests for every user by assuming that a request
is issued every-time a passenger enters a cab, and the
patience time is set to the duration of the cab being oc-
cupied, as previously modeled in [11]. Figure 1 presents
the patience time distribution for requests issued by
subset of 100 nodes during the course of 20 days. As
it can be seen 80% of the requests have patience time
of less than 15 mins (i.e., 1000 seconds in the graph),
with the average patience time being around 650 sec-
onds (i.e., 10 min).

4.2 Is Classical Caching good enough for Mo-
bile Networks?

In order to answer this question, we break our eval-
uations into two parts: we first analyse the classic ap-
proaches under various caching capacities, we show that
only for a range of scenarios caching has an impact.
We then compare those strategies under different net-
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Figure 2: Caching performance in mobile network: (a) The hit rate of classical caching strategies (b) The cumulative
hit rate over time for LFU

work sizes and show that a frequency-based strategy
can have potentially a higher impact when more users
participate.

4.2.1 Effect of caching on a mobile network
We evaluate the adaptation of classic caching ap-

proaches described in Section 3.3 for a network of 100
randomly selected users from the Cabs traces.

Figures 2a and 2b present hit rate and time-based cu-
mulative hit rate for various strategies, respectively. In
Figure 2a, the x-axis presents the ratio of nodes caching
capacity to the total content population size, whilst Y-
values present efficiency of caching (hit rate) in percent-
age. As it can be observed, for smaller caching capacity
ratio (i.e., where node can only store small percentage
of overall available content), the hit rate of all the clas-
sical approaches is negligible (less than 1%). However
as the caching capacity ratio increases and nodes ac-
cumulate more contents locally, the hit rate increases
getting up to 6%. However this incline in hit rate only
applies to the caching capacity ratio of less than 10%,
and all the protocols start to flatten out afterwards. In
order to understand this insight better we have plotted
the hit rate percentage for the LFU caching strategy on
timely basis throughout the course of 20 days. Figure
2b presents this result for capacity ratio of 0.1%, 5%
and 20%. As expected, the hit rate is low at the be-
ginning of the simulation (i.e., day 1), reflecting users
empty caches which in turn cause missed requests. As
time increases and nodes fill up their cache by request-
ing content, we observe that the cache hit rate stabi-
lizes for case of smaller cache capacity (0.1% and 5%).
The opposite is observed for bigger caching capacity in
which the hit rate grows according to time, reflecting
potential space in the nodes’ cache. Indeed our analy-
sis of Cab traces shows on average 15 requests per day
for the same subset of nodes, requiring on average 7 GB
storage each for period of 20 days.

4.2.2 Recency Vs Frequency Based strategies
In order to highlight the differences between the pre-

sented classic caching strategies, we compared them un-
der different network topologies. For this evaluation, we
stayed with the caching capacity ratio of 5% as it was
proven to be big enough to have an impact on hit rate
while being small enough to get full during a period of
20 days, under our system model.

We compare the frequency based strategy (LFU) ver-
sus recency based strategy (LRU), omitting LRU* as it
has a high processing cost associated to it, due to con-
tinuously rearranging the queue on each miss.

Figure 3 presents the hit rate for various network
sizes. As it can be observed LFU’s performance gap to
LRU widens as population increases with the hit rate
performance, converging and stabilizing for both proto-
cols.

For the network of 300 nodes, LFU reaches peak per-
formance having obtained enough popularity knowledge
from neighbouring nodes, and effectively caches only the
most popular contents. However after that point as the
population increases to include more nodes, not only
the caching quality does not improve further, the hit
rate also slightly declines. Indeed as network popula-
tion increases more nodes become collocated (on aver-
age) causing the number of requests received per node
to increase. This in turn increases the number of missed
requests when the caching capacity is not big enough to
include all available content.

4.2.3 Conclusion
To sum up our observations, we claim that classical

caching has negligible impact when the caching capac-
ity is small in ratio with the overall available content
population. This means either small storage sizes or
enormous available content population (or both). In
terms of the former one, research has shown that storage
size for mobile devices has grown according to Moors
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Figure 3: Comparison between frequency and recency
caching strategy for increasing network size

Law, allowing many of mobile phones in todays’ market
to have more than couple of Giga Bytes storage (with
iPhone and Android phones having up to 30 GB stor-
age). While it is perhaps argumentative to blame the
low capacity ratio on the storage size of todays devices,
it is very likely that the latter reason (the enormous
content population) plays a major role. Let us assume
devices each with 10 GB storage size, in order for the
caching capacity ratio to be less than 1%, users must
request from 1 TB content pool at a relatively short
period of time (couple of weeks). We claim that for
the described scenario and by considering humans lo-
cality of movement, it is unlikely that users belonging
to a local community request 1 TB different content in
a short period of time (weeks). While in this work we
do not model dynamic properties of contents (such as
aging and popularity evolution), it can nevertheless be
assumed that at each point of time only a subset of a
bigger universal pool of content is of interest amongst
users [12, 8].

We further showed that LFU can be a better caching
strategy due to catering for the popularity of contents.
However, for largely populated networks, there is per-
haps little difference between the performance offered
by LRU and LFU as they both saturate by number of
received requests (references to cached contents). How-
ever both protocols under ideal network size and caching
capacity ratio still suffer from low hit rate. We showed
that this is due to the low usage pattern (i.e., requests
issued from users on the go) together with no miss re-
placement action. Therefore, for caching to work ef-
fectively, a mechanism to proactively cache contents at
nodes regardless of their usage pattern is needed.

4.3 Opportunistic Proactive Caching Strategy
In this section we discuss how the classic frequency

based strategy can be adopted to mobile networks where
the performance is extremely dependent on the network
topology (in terms of number of nodes, user request

patterns and mobility). We built our approach upon the
LFU protocol as it brings a popularity dimension which
can be used by available access points in the network.

We previously showed that the main cause of a poor
cache hit rate was the low number of requests issued by
users together with the absence of any immediate ac-
tion to replace the missing content. As described ear-
lier, a node has two options upon a cache miss event
from a non-local request (i.e. from another neighbour-
ing node), both of which we feel are not appropriate
courses of action. The node can either download the
missing content via 3G, which would be unreasonable
due to potential cost and absence of direct incentive,
as the requesting node would download it via 3G even-
tually. Alternatively the recipient of the request can
try and download it opportunistically, but in this case
little gain is expected as both nodes are likely to be
in the same range as any neighbours holding the cache
content.

In order to facilitate an effective caching strategy that
is independent from the requesting patterns of users,
and to compensate for the lack of cached content, we
introduce a proactive caching approach which aims to
exploit storage availability on devices: this strategy
will proactively (i.e., without nodes requesting for the
content) push content to nodes for caching purposes.
We also rely for this purpose on the availability of ac-
cess points (i.e., APs) common in today’s urban cities,
possible by Broadband Sharing schemes [13, 14] and as-
sume that they are available to all users in the network.

We model here access points as fixed nodes, moni-
toring network requests and downloading missing con-
tent directly from their gateways to Internet (assuming
downloading is immediate with no communication de-
lay). In our evaluation, we assume that access points
have enough storage to hold a history of requests and
apply the same frequency based strategy to identify the
popularity of different pieces of content from their lo-
cal community. The access points then proactively push
popular content to users in their Wi-Fi range, assuming
that such transmission can be done transparently and
without the user’s need to accept the content. Relying
on the described architecture, we detail our proposed
proactive caching approach next.

4.3.1 Proactive Caching Strategy
The access points’ behaviours can be distinguished

as follows: Reactive and Proactive. An access point be-
haves reactively when it receives a content request by
a node in its range. The requested content is oppor-
tunistically transfered to the node for the duration of
the colocation. Once there is no more requests from the
user, the access point proactively pushes a selected set
of contents into the node’s cache. This selection is pri-
marily based on content popularity. The static nature
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of access points allows them to encounter more nodes
in comparison with mobile users on average [15, 16],
which in turn allows them to obtain a better estimate
of a communities’ interest.

This means that for all the content that is proactively
pushed into a node’s cache by access points, it is likely
that they have a relatively higher frequency counter in
comparison with reactively downloaded ones; causing
them to be favored by frequency-based caching strategy
and be replaced later in time.

The impact of the proposed proactive caching strat-
egy depends mainly on two factors: the availability of
the access points, and the selection process of what con-
tent is to be proactively cached by nodes. While the
availability of access points can be a variable in our
evaluation, the selection process needs to be predefined
by the protocol. We define content selection to be pri-
marily based on popularity and secondarily based on
size. In this work, we concentrate on two basic selec-
tion approaches, defined as follows:

• Bulky selection: access points proactively push the
bigger popular files to adjacent nodes. This is to
maximise the amount of data received opportunis-
tically through Wi-Fi.

• Random selection: in which any popular content
can be pushed by access points and proactively
cached by adjacent nodes.

We focus here on a purely participatory network (i.e.,
where nodes all proactively cache for each other) , but
the potential for refinement is evidently great: we dis-
cuss in future work potential selection approaches based
on social networking analysis (i.e., who should proac-
tively cache and for whom). We aim however here to
first demonstrate the potential performance boosts that
opportunistic proactive caching can bring.

4.3.2 Deployment of Access Points
We deployed access points for our simulation settings

using randomly selected points in the San Francisco Bay
area. We have done so by randomly selecting 500 points
each corresponding to the GPS coordinates of at least
one node at some point during the Cab traces. We then
repeated the process 20 times and measured the number
of encounters between nodes and access points for each
set (presentation of this result is omitted due to space
constraints). We finally selected a set closest to the
average encounters to present 500 access point locations
in San Francisco Bay. Therefore all our evaluations are
based on the average case in terms of impact of access
points on caching. Nonetheless the observations hold
for various other ways of deploying access points, as all
our evaluations are based on comparisons within the
same topological configuration,

4.3.3 Results
As stated earlier, the proactive caching strategy heav-

ily relies on two factors: the availability of access points,
and proactive content selection by access points. Ac-
cordingly, we arrange our evaluations in two parts; we
first measure the impact of access point availability in
the network and thoroughly analyse the performance of
proactive caching against benchmarks presenting upper
bound limits (which we will define later); secondly we
do a cross comparison between the two selection strate-
gies and show their impact on the user experience and
their offered incentives.
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Figure 4: Effect of proactive caching for increasing num-
ber of deployed access points

Impact of APs
We first experimented by varying the number of de-

ployed APs in ratio with the network population. Fig-
ure 4 presents these results for caching capacity of 10
GB per node.

While it can be observed for all network sizes that
the more deployed access points the better the cache
hit rate, the incline is reduced when passed the 40%
mark. This means, for instance for a network of 200
users, adding 80 access points is adequate and adding
more would not dramatically change the caching perfor-
mance. Such insight can help network operators quan-
tify the required number of access points based on pop-
ulation and hence estimate a minimum cost associated
for the proposed scheme.

Benchmark comparison:
In order to get an insight of how good the presented

hit rates are in reality, we have conducted experiments
with 200 nodes and 80 access points, and measured
the performance of proactive caching against two up-
per bound benchmarks defined as follows:

The best case theoretical caching: we define this the-
oretical approach as the maximum hit rate that can be
achieved if the hit rate was independent of the physical
network and the environment. This means no factor
other than limit on capacity affects the caching. We
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mathematically defining this best case as follows:
Let us assume a set P containing contents c1,c2,. . . ,cn

and presenting all the universal available contents; de-
noted by |P | is the size of the population. Similarly
a set of popular contents D (the dominate contents),
where D ⊂ P. Let the set C present the cache on each
node (with |C| being the caching capacity), and X be
a random variable for requesting popular content, we
can define the probability of a node asking for a popu-
lar content (i.e., Rate of dominative or Rated) following
the Paerto distribution as:

Rated = Pr(X > x) =
{xm
x

α
for x ≥ xm

Where xm is minimum possible value for x and can
be defined as probability of choosing a popular content
out of all the available contents and formulated as |D||P | ;
and α is the Paerto index. It follows from the above
formula that the cumulative distribution function is:

Fx(x) =
{

1− (
xm
x

)α for x ≥ xm

As previously described, prior research [8] has shown
that content request on domain of Web correlates to
content popularity following the 80-20 rule. Hence,
choosing α value suitably, the above formula results in
request rate for popular content to be:

Rated = Pr(X > 0.2) = 0.8

Based on this model, the cache theoretical hit rate is
then calculated as follows:


If |C| > |D| then

Ratehit = Rated + ( |C|−|D||P−D| ∗ (1−Rated))
Otherwise Ratehit = ( |D|−|C||D| ∗Rated).

Following the above formula, for a cache capacity ra-
tio of 50% (in our data model |C|=50), the hit rate
would be calculated as 80% + ( 50−20

100−20 ∗ 20%), which is
87.5% hit rate.

Upper Bound limit : While the theoretical caching
puts a far from reachable upper bound on our expecta-
tions, it fails to take network properties such as node
mobility, request rate, bandwidth and etc. into account.
Hence, in order to get a fair expectation for perfor-
mance of any applied caching strategy, we require a
benchmark which takes all the factors concerning mo-
bile network into account while still presenting the best
case caching. Intuitively this corresponds to nodes hav-
ing unlimited caching capacity. This means that once
they receive contents, they store them indefinitely with-
out any need for replacement (i.e., hence independently
from any caching strategy). In such a case, the only fac-
tors affecting the hit rate performance are bandwidth,

user mobility and distribution of requests. Bearing in
mind that such an upper bound would be also unachiev-
able for any caching strategy applied to devices with
limited storage, we present our results.

Figure 5 presents the theoretical boundary for vari-
able caching capacities. The hit rate for this theoreti-
cal boundary is as expected very high. The figure also
presents our proactive caching approach under two dif-
ferent states, stabilized and dynamic. The stabilized
approach corresponds to a situation where the cold start
period (empty cache) was omitted by initializing all
caches with randomly chosen content at time zero. The
dynamic proactive approach on the other hand presents
a system starting with empty caches, therefore the hit
rate suffers from a cold start period. It is interesting
to observe that for the smaller cache sizes, the dynamic
case performs similarly to the stabilized case, as caches
are small and hence they fill up faster, this also validates
our previous observation from the time analysis of Fig-
ure 2b. However as the storage capacity increases the
stabilized proactive curve converges towards the theo-
retical case: this is due to the fact that most of the
available content is initialized in the beginning in the
caches of all nodes, hence converging to a 100% hit rate.

We next evaluate our approach against the second
benchmark; the upper bound in which nodes have un-
limited caching capacity but are still affected by net-
work properties in Figure 6. The figure also presents
the gap performance for both proactive and reactive
only (where access points only respond to reactive re-
quests and do not push contents proactively to node
caching strategies). As expected the reactive only strat-
egy performs poorly in comparison to a proactive strat-
egy; this is because contents are only inserted to the
nodes’ caches upon a download request, limiting the
performance to users’ usage patterns. Hence the hit rate
stays flat even for bigger caching capacities. Whereas
for the proactive caching strategy, the bigger the capac-
ity, the more proactively content is pushed from access
points to nodes, therefore increasing the hit rate. It is
interesting to observe that even for a caching capacity
of 20 GB, a proactive caching strategy manages to effec-
tively satisfy requests with up to 60% hit rate in ratio
to the upper bound.

Pushing Strategies
We next evaluate the effect of different pushing strate-

gies for the same network (i.e., 200 nodes and 80 de-
ployed access points), while varying the caching capac-
ity ratio. Figure 7a and 7b present the hit rate and byte
hit rate respectively, for the described pushing strate-
gies. As expected the Bulky proactive pushing performs
worse in terms of hit rate as it allocates the caching ca-
pacity to bigger chunks of data and therefore smaller
number of hits per requests. Adversely we expect the
Bulky strategy to have an advantage in terms of byte
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Figure 7: Effect of different pushing strategies on: (a) Hit rate (b) Byte hit rate, both in ratio to the upper bound
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hit rate. Figure 7b proves this expectation by present-
ing byte hit rate percentage for the same value of x-axis.
We observe that for the larger caching capacity ratio,
while the hit rate gap between Bulky and Random ap-
proach remains wide, the Random approach manages
to deliver the same amount of bytes hit as the Bulky

approach. This observation is well reflective of the size
distributions of content in the network, with only 30%
of available content being greater than 10 MB.
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Figure 8: Average delay for caching strategies Vs. the
original average patience time

To conclude, we would like to point out the incen-
tives that such caching strategies can offer users as well
as network operators. We have thus evaluated the im-
pact of the caching on the delay experienced by users.
In doing so we have measured the delivery time from
the time that first bytes of the requested contents were
received by users. In absence of caching or opportunis-
tic downloading, the delay corresponds to the patience
time a node has to wait before downloading the content
from 3G network. Figure 8 presents the average delay
in seconds for the original network’s patience time in
comparison with the measured delay for both proactive
and reactive only caching. From this figure we can see
that the bigger the caching capacity the shorter delay
using proactive caching strategy. The delay is cut up
to half original patience time for bigger capacities, re-
ducing the users waiting time to on average 5 mins. It
is interesting to note that as before where the content
is not proactively pushed by to nodes (the reactive only
case) the delay remains constant for an increasing ca-
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Figure 9: Average delay per node for proactive caching (black) in comparison with original patience time (white)
for various caching capacities

pacity ratio (due to its dependency to request rate by
users). Finally, Figure 9 presents each individual user
experience (i.e., delay analysis per node), where the big-
ger contrast reflects the faster delivery of the content to
the users (in comparison to the original patience time).

So far we have presented the impact of proactive
caching strategy on users in terms of their perceived de-
lay. We now discuss another potential benefit brought
to users as well as network operators. As we observed
earlier from Figure 7b, for a modern handset like iPhone
or Android phones with an average storage capacity
of 20 GB, the opportunistic proactive caching strategy
can offer up to 700 GBs of data downloaded through
Wi-Fi. This value corresponds to 35 GB of data on
average per day for a network with only 80 deployed
access points.This amount of opportunistically down-
loaded data can benefit users who may not have access
to 3G network due to either cost or availability of the
services, as well as benefiting network operators by of-
floading traffic from 3G. We next describe and evaluate
suitability of our work for such scenarios.

4.4 Reality Check
In this section we evaluate our work for scenarios

where dense urban community of users exist, but 3G
services are not always available to all the users in the
network. For instance events such as the London Olympics
where many fans attending the event are geographically
collocated, with fans belonging to the local community
as well as a percentage of tourists who may prefer to
avoid 3G services due to the roaming costs.

To cater for the described scenario, we have exper-
imented on a real large scale network population of
500 nodes based on complete Cab traces; and intro-
duced heterogeneity to this population by designating
3G services to only a percentage of the nodes. While
the heterogeneity applies to networking capabilities, we
still assume the storage sizes for all devices are uniform
and 10 GB caching capacity per device. We further as-
sume that users without 3G services, or as we refer to

them tourists, are willing to tolerate more delays and
we model their behaviour by extending their requests’
patience times (we refer to this extended patience time
as enforced patience time). While in our evaluation we
experiment by varying the enforced patience time, we
assume that it is nonetheless constant throughout sim-
ulation time and across all requests issued by tourists.

In order to quantify the impact of caching on non 3G
portion of the network, we introduce a satisfaction met-
ric, which presents the number of successfully received
contents in ratio to all the issued requests by tourists.
It is worth noting that this metric is only applied to
tourists as 3G capable nodes always have a complete
satisfaction, due to the capability of downloading their
requested content from 3G by the end of their patience
time (if not opportunistically earlier).

Figure 10a presents the satisfaction results for the
network of 500 nodes with an enforced patience time
of 10 minutes (i.e., average user patience time as pre-
sented in Figure 1), for various numbers of deployed
access points. In this figure the x-axis presents ratio of
tourists to the population and y-values present average
satisfaction for tourists.

From 10a we observe that for the smaller number of
deployed access points, the satisfaction drops sharper
as ratio of tourists increases. This is because in the ab-
sence of access points in range, the satisfaction would
mainly depend on the caches of the local users who
download contents from 3G. The adverse is observed
for cases with more deployed access points, the satis-
faction stays the same no matter the ratio of tourists
in the network, making the satisfaction of tourists in-
dependent from number of 3G users.

The second observation is the high satisfaction ob-
tained even when the enforced patience time is not highly
extended and is same as the average original patience
time. To address this result, we have experimented with
a network where half population are tourist (0.5 ratio),
and have fixed the number of deployed access points
in the network to 100 (assuming that number of de-

10



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio of non 3G devices

0

20

40

60

80

100

Sa
tis

fa
ct

io
n 

%

20 AP deployed
80 AP deployed
160 AP deployed

10 mins  30 mins   60 mins   90 mins  
Enforced average patience time

0

10

20

30

40

50

60

70

80

90

100

Sa
tis

fa
ct

io
n 

%

Proactive Caching with 80 AP deployed

Reactive Caching with No AP deployed

(a) (b)

Figure 10: Achieved satisfaction: (a) for increasing ratio of tourists to network population, (b) for increasing tourists’
delay tolerance.

ployed access points are in 0.4 ratio with the local users
only). Figure 10b, presents the satisfaction for various
enforced patience time. The result shows that when
tourists are willing to tolerate more delay, the oppor-
tunistic proactive caching can offer up to 70% perceived
satisfaction.

5. RELATED WORK
Cache management techniques for mobile devices and

mobile networks have recently become the focus of the
research community. In [17], authors propose a greedy
caching strategy for scenarios where devices can poten-
tially become detached from the network due to fac-
tors such as over committed network bandwidth or ge-
ographical areas with no base station coverage. While
[17] provides a valuable insight for greedy cache man-
agement for mobile devices, it fails to address coopera-
tive caching where caching amongst devices is used in
order to maximise a global metric such as number of
references served without contacting the base station.

Cooperative caching for mobile networks has been
studied in [18, 19, 20]. [20] follows the quest of optimis-
ing caching policies to minimise delay by proposing a
distributed replication mechanism that yields to an op-
timal replication ratio for a homogenous network where
mobile users meet each other with the same rate.

[19] builds upon [20] by proposing a cooperative caching
strategy for heterogeneous networks. It applies a dis-
tributed caching replacement approach based on users
computed policy in the absence of a central authority
and uses a voting mechanism for nodes to decide which
content should be replaced. Unlike [20], authors model
a heterogeneous network where users have different stor-
age capacity and access the infrastructure at a different
rate. Furthermore authors theoretically show that the
proposed voting based caching policy is optimal. While
[19] formally demonstrates maximisation of social wel-

fare, it is solely based on theoretical proofs and no eval-
uation of their proposed approach is presented. It would
be of interest to see the quantified result when the proto-
col is used in large scale network as well as the overhead
associated to the voting scheme. Our work differs from
[20, 19] in modeling users behaviour and network topol-
ogy corresponding to real scenarios. We introduce an
additional step by providing extensive evaluation of the
proposed proactive caching as well as various classical
caching approaches, under different network topologies,
and quantify the impact that caching can have on users
experience (both in terms of cost and delay).

Cooperative caching techniques have also been fo-
cused for different mobile environments such as wire-
less home networks. In [18], Ghandeharizadeh et. al.
present a novel cooperative caching approach based on
asymmetric bandwidth of wireless connections between
a handful devices on a home network. We believe their
approach is highly efficient for small networks such as
the intended home networks, but is not applicable to
large scale, disconnected networks such as the urban
environment that we addressed in this work.

6. CONCLUSION AND FUTURE WORK
In this work, we studied the effect of caching on mo-

bile networks, where the requested content is delay tol-
erant in nature. Our contributions were as follows:
first, we identified the limitation of classical caching ap-
proaches in mobile environments. In doing so, we per-
formed a comparative evaluation of different approaches
with the objective of maximising the cache hit rate. We
claim frequency based caching strategies are a better fit
to mobile networks, due to taking into account the pop-
ularity of content as well as for their simplicity. Our sec-
ond contribution was introducing a more suitable adap-
tation of the frequency based caching strategy to mo-
bile environment by addressing its limitations. We pre-
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sented a quantified analysis of the proposed proactive
caching, proving such approach can be highly effective
under the modeled real settings. The final contribution
of this work is addressing and quantifying the benefits
brought to users in terms of user experience by refer-
ring to a London Olympic scenario where many tourists
will be collocated with local users for a relatively long
period of time. For such scenario we showed that users
who are not on 3G can still benefit from the network
if they tolerate longer delays. Indeed we showed that
up to 70% of their requests can be serviced successfully
in absence of 3G networks using the proposed proactive
caching strategy.

Finally our work is the first of its kind to bring to-
gether researches from various fields (such as users’ re-
questing behaviour and content distribution research
from Web 2.0 domain, as well as infrastructure avail-
ability from research on broadband sharing), to build a
realistic model for applying caching strategies.

Our future directions include, extending this work to
include dynamic content evolution, where popularity of
a content is a function based on its age rather than the
binary model used in this work. While in this work we
assumed a fully participatory network, in reality partic-
ipation of the nodes cannot be taken for granted spe-
cially given the battery consumption related to proac-
tive caching. Therefore we are interested in applying so-
cial networking reasoning to proactive caching, allowing
nodes to decide for whom to allocate their storage and
proactively cache for (i.e., for whom to participate).
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