
UCL DEPARTMENT OF COMPUTER SCIENCE

Research Note
RN/17/03

No Good Reason to Remove Features:
Expert Users Value Useful Apps over Secure Ones

February 13, 2017

Steve Dodier-Lazaro, Ingolf Becker, Jens Krinke, Angela Sasse

Abstract
Application sandboxes are an essential security mechanism to contain malware. Yet, they are seldom used on Desktops. We
hypothesise this is because sandboxes are incompatible with plugins, and with APIs used to implement a wide variety of
Desktop features. To verify this, we interviewed 13 expert users about their app appropriation decisions, and illustrate how they
recruit values like usefulness, productivity or reliability in their decisions. We found that (a) security is an unimportant factor
for appropriation; (b) plugins considerably support productivity needs and (c) users may abandon apps that remove a feature,
especially for feature removals justified by security. Productivity-oriented expert Desktop users place more value in a stable user
experience and in having flexible apps than in security benefits. Sandboxing thus conflicts with their values. We conclude that for
sandboxed apps to be systematically adoptable by expert users, sandboxes must no longer require the sacrifice of plugins and
features found in Desktop apps.

No Good Reason to Remove Features S. Dodier-Lazaro et al.

INTRODUCTION
Sandboxes are security mechanisms that execute processes in
an entirely controlled and isolated environment [14]. They are
typically used to isolate apps from one another on operating
systems (OSs). They protect users both against malicious apps
and against exploits targeting vulnerabilities in legitimate apps.
Sandboxes have become an essential building block of modern
OSs [2, 3, 15, 23]. However, they prevent the implementation
of a large number of features in apps, because the methods
used to implement those features are also useful for malware
writing. This results in sandboxed apps being more secure, but
less featureful, than unsandboxed ones.

The security benefits of sandboxes are tangible. On Mobile
OSs, all apps are sandboxed, which prevents malware-ridden
and malicious apps from affecting other apps on the system.
On Desktop OSs, however, sandboxes are only partially de-
ployed. Desktop developers struggle to make their apps com-
patible with sandboxing without sacrificing important features
and plugins. Many ultimately opt out from supporting this se-
curity feature [16, 9, 18, 24, 34]. Plugin infrastructures (which
allow third-party developers to augment an app with additional
features or user experience improvements) and features such
as emulating keyboard input, screen sharing, audio recording,
inter-process communication and bulk file processing are for-
bidden in sandboxes to prevent malicious behaviours, but they
are sometimes too critical for apps to abandon [26, 39]. These
incompatibilities are not, per se, technological constraints
that cannot be overcome. They are design decisions made by
sandbox designers. Instead, designers could have chosen to
complicate sandboxed apps’ security policies to support those
potentially dangerous features.

On Windows, many popular apps like Dropbox, Steam, iTunes,
Google Drive, VLC, Office, Photoshop, etc. are not sandboxed,
or only in rudimentary versions with missing features [17, 29].
Tech reporters argued that sandboxed apps are rarely down-
loaded and used on Windows, as they lack critical features and
degrade productivity [6]. After five years, the adoption of sand-
boxing stagnates on Windows, and even dwindles on OS X
where developers have publicly announced abandoning the
Mac App Store [24, 39, 34]. On Linux Desktops, sandboxed
app stores exist [10, 12, 8], but to the best of our knowledge,
none have a substantial user base.

Consequently, Desktop users are not currently taking advan-
tage of the security benefits of sandboxes, despite being ex-
posed to phishing attacks, malware, ransomware, etc. Still,
many productive activities such as software development, com-
plex information work, data science, film or music making,
etc. require the use of Desktop OSs.

Moreover, assuming sandboxing meets usability requirements,
users still need to either abandon their current apps in favour
of new, sandboxed apps, or accept updates to their current apps
that introduce sandboxing. In other words, sandboxed apps
must not only be usable, but also appropriated, which involves
adoption, adaptation and retainment decisions – there might
be unknown challenges to appropriation, since such decisions
were not examined in past research [28, 32].

We hypothesise that developers refuse to support sandboxing
because it would degrade what makes their apps valuable to
their users. Our analysis of developer discussions on sandbox-
ing revealed two main issues: certain types of features cannot
be implemented in sandboxed apps, and sandboxed apps can-
not have plugins. We also investigated other potential tensions
between security and the users’ desires and preferences. If the
consequences of sandboxing upset users or make apps useless,
it would explain why developers are reluctant to support it.

To answer these questions, we performed interviews with 13
expert users to explore the values they seek to fulfil when
they make choices about apps. We aim to unveil the de facto
requirements that sandboxed apps must meet in order to entice
user adoption, support users’ needs of app adaptation, and
prevent app abandonment. Besides, we analysed how our
participants react to feature loss, in order to help sandbox
designers recognise the extent of the gulf between sandbox
capabilities and user demands.

Contributions
We show that our users struggle with explaining and accepting
feature loss, and may choose to abandon apps that remove fea-
tures – especially for security reasons. We show that plugins
are useful and valuable to expert users, and are a crucial way
to improve their productivity. We also show our participants
do not consider security as a prime factor in their decisions
related to app appropriation.

We also make the following minor contributions: we perform a
value-sensitive analysis of app adoption, adaptation via plugins
and abandonment. We find that different values underpin each
of these processes, and that the values recruited to think about
content consumption and production apps differ. We iden-
tify shortcomings in past usable security research: temporal
aspects of appropriation (e.g. use of plugins, which address is-
sues that were experienced in use and reflected upon by users)
can only be studied in-the-wild; and participants’ appreciation
of security must not be distorted by priming.

Outline
We first present relevant research. Next, we explain our study
design and research questions. Then, we present our value
analysis of three aspects of app appropriation. We continue
with a detailed analysis of participants’ reactions to feature
loss. We finish with a list of limitations, and conclude with a
summary of our findings and open problems.

BACKGROUND & RELATED WORK
Usability evaluations of security mechanisms are mostly re-
strained to their user interfaces. We argue there is more to
technology adoption than usable interfaces. If a tool does not
perform a function that is useful to users, or if this function
conflicts with other valued artefacts, the tool may be ignored.
This is why Smetters and Grinter [35] have called for usable
security to ensure that designed systems are useful.

Mathiasen and Bødker [21] examine usable security from
the lens of experience-driven design [22]. They “concern
[themselves] with how, on the one hand, the use experience is
determining the security technology, while on the other hand,

RN/17/03 1

No Good Reason to Remove Features S. Dodier-Lazaro et al.

the security technology resists, constrains and directs the use
experience”. This approach calls for security technologies
that build upon users’ past experiences and that fit with the
use experiences they confront themselves to. By framing
sandboxing as an appropriation problem, we can focus on the
compositional and spatio-temporal aspects of user experience,
which are usually ignored in usable security research.

The Usability of Sandboxes
Research on sandboxing focuses on technical aspects like what
policies can be enforced [19], or how efficiently [11]. Only
two usability studies of sandboxes exist [28, 32]. Both had
participants perform scripted scenarios in a lab, emulating
basic app interactions. These studies are not representative
of the complexity of apps in the wild. Expert users may rely
on features that are more demanding on security policies, or
sometimes not possible to formulate safely with current app
sandbox models. These differences in technological needs are
masked by seemingly successful usability studies.

On Windows and OS X, sandboxing is only offered to ap-
plications that are distributed via the official app store, and
which must respond to other criteria in terms of content, UI
and libraries used. This makes it impossible to infer knowl-
edge about the impact of sandboxing specifically from usage
statistics of store apps on these platforms.

Value-Sensitive Design
We did not want to just document our participants’ prefer-
ences, but understand why they held such preferences. Value-
Sensitive Design (VSD) [13] is a methodology that reveals
values involved in user behaviours and the frictions between
them. It combines three forms of analysis. Conceptual analysis
is used to identify stakeholders, their goals and potential value
tensions between them. Empirical analysis reveals tensions in
studied environments where technologies are deployed. Tech-
nical analysis probes how artefact designs position themselves
with regards to values and value conflicts. We used a VSD
conceptual analysis to design the interview we report on, and
an empirical study to model the values involved in app appro-
priation and relate them to security.

Research on App Updates
Vaniea et al. [42] examined how novice Windows 7 users
decide to update their apps. They found novice users avoid
updates by fear of losing functionality or having to adapt to
UI changes. We study expert users rather than novice users,
and our investigation pushes beyond app updates to include
other facets of appropriation. However, we observed similar
behaviours between our cohort and the authors’. Neither group
actively considered security when thinking about apps that do
not interact with the Internet. However, our participants were
less reluctant to modify their productivity apps, which we
attribute to the higher complexity of their needs. They also
preferred and used automatic updates, which we credit to the
app store they used distinguishing security updates from major
functionality updates which are more disruptive.

Rejecting updates exposes users to accrued security risks. The
interplay between (non-security-related) technology ecosys-
tems and user activities hence directly mediates users’ ability

to engage in secure experiences, without them realising. Secu-
rity hygiene has been shown to emerge from holistic experi-
ences that were designed to support security, rather than solely
from the design of standalone security artefacts [21, 27].

Vaniea and Rashidi [41] also collected records of positive and
negative experiences of app updates. They found that user
are concerned about four types of externalities with updates:
features being removed, and reliability issues being introduced
including apps becoming slower, buggier, or requiring more
system resources. We found our participants had similar rea-
sons for disliking and abandoning apps after an update.

STUDY DESIGN
We aim to identify how sandboxes clash with the needs
of expert, productivity-oriented users. We performed semi-
structured interviews with 13 users about the apps they use.

Research Questions
Feature loss and plugin loss are externalities of sandboxing
that developers expect and dislike, and thus focus most of our
investigation on these aspects. However, other tensions might
yet have to be uncovered. We hence explore the relationship
between users and their apps more thoroughly, including sit-
uations like app adoption and abandonment which are have
been ignored in past studies. We treat plugin usage as acts of
app adaptation, and thus include their use in our value analy-
sis. If the presence of features emerges as an important value
for users, and if plugins play a distinct and important rules
in users’ practices, it would corroborate developers’ worries
about these two aspects of apps that conflict with sandboxing.

We first investigate what users value and prefer in their apps,
and the relation between these values and security. Our re-
search questions are:

RQ1: Which values drive app appropriation behaviours? Is
security one such value?

RQ2: How much do expert users rely on plugins? What value
do plugins provide to expert users?

After that, we turn to how users relate to and react to feature
removal in their apps. We discuss their own experiences and
beliefs, and then explore how they make sense of feature
removals motivated by security reasons.

RQ3: Is feature loss acceptable? How does it impact users’
choices of apps and practices?

RQ4: How does security-motivated feature loss differ from
other types of loss with regard to acceptance and reaction?

Data collection and coding
We performed semi-structured interviews centred around par-
ticipants’ usage of apps, how they manage and value their
apps, and about their information management and security
strategies. The interviews lasted 40 minutes to 1:50 hour (me-
dian 1:14 hour), and we collected 81 to 227 statements per
participant (median 140). The interviews concluded a period
of five weeks where we observed our participants’ practices,
and during which they completed a diary of their activities.
We used the diary data in the interviews to help participants

RN/17/03 2

No Good Reason to Remove Features S. Dodier-Lazaro et al.

recall choices about specific apps and to choose which apps to
talk about when querying participants about feature loss.

We coded our data separately for the value analysis and ques-
tions about feature loss. In the next section on value analysis,
we allocated all participant’s statements for each topic to char-
acteristics of the apps that they relate to (we call those app
traits in this paper), e.g. : apps being slow or costly, or the
fact that an app offers new features. We regularly re-coded
previous answers and refined app traits as we went along, until
all participants answered could be unambiguously classified.
We then mapped these app traits to the value they support,
to enable a value-sensitive empirical analysis of participants’
behaviours. In the section on feature loss, we used Grounded
Theory’s open coding [40] to identify themes in participants’
answers, e.g. how they made sense of feature loss statements
or the expected compensations for feature loss.

Self-reported data suffer from accuracy issues. To eliminate
potential demand traits biases [25], we only retained strong
statements – which participants justified or supported with
prior experiences. We eliminated 18 hypothetical, vague or
contradictory statements, and used 201 in our findings.

Recruitment and Demographics
We advertised our study on a Reddit community dedicated
to Linux. We used Linux users because participants were re-
cruited as part of a larger field study, parts of which include
deploying software components that cannot be written for
closed-source OSs. Linux is for this reason the de facto stan-
dard OS for systems research. We paid participants £20 for
participating to the interview this paper is based on, out of a
total of £100 for participating to the whole project.

We recruited 13 Xubuntu users from 7 EU countries and from
the USA, aged between 18 and 54, representative of Desktop
Linux users for age, occupation, gender and degree of Linux
proficiency. Most describe themselves as expert users, except
P6 and P12 (beginners), and P3 and P10 (IT professionals).
P10 and P13 are security experts, and P12 attends security
classes. Our participants include a Web developer, two (adult)
high school students, two tech support representatives, a mu-
sician, a consumer retail employee, a student teacher, a sales
engineer and four computer science students. 8 of them write
code, 7 perform information work, and 7 produce media con-
tent (e.g. graphics, audio, video, scores, photos).

Use of deception
We told participants the study focused on their multitasking
habits, to avoid non-respondent bias from participants with
limited motivation to engage with security, and social desir-
ability biases and demand trait biases during the study. We
chose multitasking to attract participants who have a need for
productivity, as opposed to leisure users of computers. We
revealed the deception to participants near the end of the inter-
view. Unless mentioned otherwise, all the data we use in this
paper was obtained before we revealed the deception.

Our institution’s Research Ethics Committee approved this
study.

VALUE-SENSITIVE ANALYSIS OF APP APPROPRIATION
Sandboxes can make an impact in terms of everyday security
only if they are used, rather than merely usable. To this end,
we aim to determine how sandboxing interplays with three
aspects of app appropriation: adoption, adaptation and retain-
ment. Sandboxes may conflict with users’ ability to obtain
features and may incur a performance penalty. If users’ adop-
tion and abandonment behaviours are driven by the presence or
absence of features and by performance considerations, then
sandboxing will conflict with users’ main decision factors.
This could lead to sandboxed apps being adopted less often, or
apps being abandoned after they become sandbox-compatible.

Besides, sandboxes prevent apps from providing plugins. Plu-
gins are an integral part of how apps can be adapted to better
suit workflows. Users of plugins must compare the benefits
afforded by plugins with the sandbox’s benefits and decide
whether to adopt or circumvent the sandbox, a process de-
scribed by the ‘compliance budget’ model [5]. We aim to find
out where plugins are used, and what value they provide.

Method
We classified participants’ statements on how they appropriate
apps and on the plugins they use, based on the app traits they
relate to (e.g. “Ad-blocking” or “Access to content” for plugins;
“Unresponsive UI” or “Privacy Issues” for app abandonment).
For plugins, we paid attention to their reported purpose, e.g.
P11 uses a VPN service to access foreign media rather than
for security. When participants added or replaced components
of their Desktop Environment (DE), we recorded those events
as DE plugins.

Next, we categorised traits into values: usefulness, security
& privacy, usability, productivity, credibility, affordability,
mobility, stability and flexibility.

We chose values to highlight known tensions in the usable se-
curity literature (security vs. usability [1], usefulness [35] and
productivity [4]). We also captured the concern of involved
stakeholders (e.g. the risk of feature removals affecting credi-
bility for developers and usefulness for users). To have a more
fine-grained view of value tensions, we defined UI usability
as learnability, memorability and subjective satisfaction. We
included absence of errors in reliability, and UI efficiency in
productivity. We did not categorise the ‘ad blocking’ trait
because participants did not always tell us why they used ad
blockers (e.g. for privacy, performance, or subjective satisfac-
tion). In most figures in this section, we use colours to help
readers identify which traits relate to which values.

We classified apps into categories: browsers, communication
apps (email and messaging), file sharing apps (cloud storage
and torrent), media consumption apps (e.g. music and video
players, news aggregators, etc.), media and document editors
(e.g. Office, audio, video, image editors), code editors, DEs
and security apps. When a statement refers to an app’s feature
or to a past experience with an app, we assign it to the category
that fits the app.

We first discuss app adoption and app abandonment, and then
summarise our findings on plugins. We continue with values

RN/17/03 3

No Good Reason to Remove Features S. Dodier-Lazaro et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

UI looks unappealing

Privacy concerns

Security reputation

App is too hard to install

Excessive resource usage

Bugginess reputation

UI looks unusable

Bad reputation online

App is proprietary

App is too expensive

Lack of required features

Participants Losing Interest in an App Because of...

Usefulness (6)

Reliability (2)

Affordability (3)

Credibility (4)

Security & privacy (2)

Usability (3)

App Traits

Values

Figure 1. Participants decided not to install potential new apps primarily
because they lacked a required feature. Other reasons revolve around
Credibility and alleged Usability and Reliability.

that transcend the whole of appropriation, and we finish by
comparing productivity and media consumption apps.

App Adoption and Abandonment
We look at the values governing app adoption and app aban-
donment, in order to discover potential challenges during the
transition to sandboxed apps. When developers port their apps
to a sandbox, externalities can include features being incom-
patible, loss of plugins or performance degradation. They
must decide if those changes will put users off from adopting
or continuing to use their app. Hence, we asked participants
what would convince them not to try a new app, and what
would convince them to abandon an app they are using.

We classified participants’ answers by matching their justifi-
cations to app traits (e.g. uninstalling an app that is “buggy”).
When participants weave multiple reasons together (e.g. P5
ignoring an app that is neither “pretty” nor “ergonomic”), we
counted half an answer for each corresponding trait. When
they report multiple examples of past decisions for the same
app trait, we count multiple answers. When they repeat the
same example, we count a single answer.

Losing Interest in Potential Apps
We recorded 20 statements of interest loss. P4 gave no answer,
and P2’s answers were too weak to be included.

As Figure 1 shows, half of our 12 respondents stopped con-
sidering an app because it lacked a feature. Feature loss is
a possibility when porting an app to a sandbox, either be-
cause the feature relied on privileged operations (e.g. bulk file
processing, access to hardware, IPC) or on libraries that are
themselves not compatible with the sandbox. Thus, if an app
developer removes a key feature because of sandboxing, fewer
users will adopt their app in the future.

P10 mentioned avoiding apps that have a reputation for “break-
ing other programs somehow” or “security stuff”. He also
avoids apps that are hard to install. Apps with such a reputa-
tion might benefit from being sandboxed owing to the benefits
of app stores. Ultimately however, sandboxes appear more
detrimental than beneficial to adoption for our cohort.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

App becomes proprietary

UI too hard to learn

Inefficient UI

Security issues

Slow, unresponsive app

Buggy app

Excessive resource usage

Low frequency of use

Replaced by another app

Loss of required features

Participants Abandoning an App Because of...

Reliability (7)

Values

Usefulness (6)

Security & privacy (1)

Productivity (1)

Usability (1)

Credibility (1)

App Traits

Figure 2. Participants stopped using applications primarily because of
Reliability issues: bloated apps, unresponsive or buggy UIs. Apps also
fell out of use, or lost required features after an update.

Abandoning a Current App
We also analysed what reasons participants have to stop using
their current applications, to identify the impact of sandbox
introduction for the current users of an app. 11 participants
provided 21 statements on app abandonment. P2’s data was
again removed.

Figure 2 shows that Reliability is the primary factor for app
abandonment: participants stopped using apps because they
became too slow, buggy, or used too much RAM.

Usefulness follows in users’ reasons for app abandonment.
It is by changes in apps or in user needs. Two participants
no longer needed an app, and two had a better replacement
available. Five abandoned an app because it was missing a
feature (in four cases, it was lost to an update; in one case, it
was only partially implemented).

Security was mentioned only once spontaneously as a good rea-
son to abandon an app. Two other participants stated security
was a good reason after we accidentally primed them.

Using Plugins to Customise Apps
Expert users commonly install plugins on their apps to improve
them. Plugins are routinely found on browsers, but also code
editors, media editors, information work apps, communication
apps, media players, etc. They are written by third-party
developers, and they complicate the tasks of code verification
and code signing for OS distributors who provide app stores.
They are banned from the Windows App Store and on Mobile
platforms, and partially banned on the OS X App Store [33].
Browsers, to retain the ability to provide third-party plugins,
run unsandboxed both on Windows and OS X.

Our participants reported using 73 plugins (2 to 9, average 5),
for all categories of apps except media consumption apps (see
Figure 4). When asked, seven participants mentioned 11 addi-
tional plugins they would like to have. Participants plausibly
had more plugins installed than they recalled, as many Linux
productivity apps and media players are distributed with some
plugins enabled by default. If all Linux apps were sandboxed,
our participants would miss out on a significant part of their
user experience due to the unavailability of plugins. In this

RN/17/03 4

No Good Reason to Remove Features S. Dodier-Lazaro et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Replacing a buggy feature

Data backup feature

Access to content

Enabling Social Interactions

UI improvements

Security

Format compatibility

Cross-device computing

New features

Privacy

Work organisation

Integrating external features

Improving task efficiency

Ad blocking

Number of Participants Reporting a Plugin per App Trait

Ad blocking (13)

Productivity (12)

Mobility (5)

Security & privacy (7)

Usability (4)

Usefulness (9)

Reliability (2)

Values

App Traits

Figure 3. The plugins installed and wanted by our participants primar-
ily support Ad-blocking, Productivity (task efficiency, external features,
work organisation) and Usefulness (new features, format compatibility,
access to content, social interactions).

section, we document what plugins are used for to understand
how users would be affected if they chose to adopt sandboxed
apps. This informs us on the values that security mechanisms
compete against when they compromise the ability to have
plugins.

Desired Plugins and Features
We asked participants to imagine an additional feature or plu-
gin they would like to have, to check if specific types of fea-
tures are in demand, or if plugins are wanted for specific app
categories. We found that the 73 installed plugins and 11 de-
sired plugins and features were similar in terms of the values
they support. Consequently and for space reasons, we discuss
‘installed plugins’ and ‘desired plugins’ together in this paper.

Two differences stand out. Firstly, all participants already had
ad-blocking plugins, so none asked for additional ad-blocking
features. Excluding ad-blocking, the values embodied in in-
stalled and desired plugins overlap by 79.9%.

Secondly, plugins were slightly less in demand for browsers
and code editors, and more for DEs, as shown by Figure 4.
Our participants wanted plugins for all sorts of apps, not just
browsers. Thus, a regime of exception for browsers (e.g. allow-
ing unsandboxed browsers with plugins on app stores where
all other apps are sandboxed) will not suffice to satisfy user
demands for plugins.

The Role of Plugins
Plugins were predominantly used for browsers, but also for
content production apps such as code or image editors and for
communication apps. The features provided by plugins sup-
ported a variety of app traits, e.g. making an app compatible
with a new format. Our classification aims to show what ex-
actly participants would lose if plugins were removed. Some
types of users or some apps’ userbases may be more affected
than others. We highlight the app traits for which sandboxes

App Categories Mentioned for…

Browsers

Communication apps

Code editors

Document/Media editors

Desktop Environment

Security Apps
5

2

1

3

Desired Plugins

46

3

14

3
4 2

Installed Plugins

Figure 4. Browsers and code editors dominate installed plugins and de-
sired plugins. Demand was high for DE plugins, too. Participants did
not use or want plugins for media consumption or file sharing apps.

may be able to replace plugins with other techniques. We
counted how many participants mentioned each trait and as-
signed traits to values, as shows Figure 3. The Ad-blocking
trait was mentioned by all participants and not classified into
a value due to its unique nature.

Plugins mostly support the productivity value, with three traits
relating to it. Firstly, plugins help participants perform small
tasks faster, e.g. code snippets or tools to accelerate browsing
through Web pages. Secondly, they integrate features normally
found in other apps to make them faster to access, e.g. image
processing features in browsers or source version control in
code editors. Thirdly, plugins help participants organise their
work sessions in browsers, DEs and code editors, e.g. tools to
manage tabs or improve window placement.

Plugins also support Usefulness, with traits such as the com-
patibility with new document formats, enabling new social
interactions, granting access to copyrighted content, and with
the introduction of new features. Security plugins consisted of
script and Flash blockers, HTTPS Everywhere, and a password
manager. Privacy plugins comprised end-to-end encryption
for instant messaging and email apps and of plugins to prevent
user tracking on the Web and on Facebook. Sandboxes can
partially emulate some features of network security plugins,
albeit without proper integration into apps’ UIs. They cannot
compensate for the loss of plugins in the Usefulness category.

Only the second type of productivity plugins could be replaced
with methods like Inter-App Communication or UI embed-
ding [30] by OS designers to allow apps to share and reuse
features. The other types of productivity plugins, and the
usefulness plugins, cannot be replaced. Most of the value
provided by plugins would be lost if they were removed.

Accounting for Productivity Apps
Our participants used plugins for code editors and document
and media editors, as well as DEs and browsers. We call both
editor categories ‘production apps’ – apps to produce value
in productivity contexts. Browsers, DEs and communication
apps are hybrid, relevant to all sorts of use contexts. Media
consumption apps (music and media players, online social
networks, news aggregators, etc.) are, themselves, rarely ever
useful in productivity contexts. Even though plugins are avail-
able for most of the media consumption apps mentioned by
our participants, none of them used plugins for this category.
Thus, plugins are particularly in demand for production apps.

RN/17/03 5

No Good Reason to Remove Features S. Dodier-Lazaro et al.

Moreover, some types of practices rely on plugins more than
others. 2/7 information workers used plugins for document
and media editors, while 6/8 coders used code editor plug-
ins. Code editors were the second most popular recipient of
plugins, with over twice as many plugins as DEs, the next
app category. The Productivity value dominates especially
in code editor plugins (7/15 mentions for this category) and
DE modifications (5/7). Therefore, users of code editors are
particularly dependent on plugins to boost their productivity.
They would be more affected than others by plugin loss.

Other app categories use plugins, for other reasons. Partic-
ipants mentioned security and privacy plugins, but only for
browsers and communication apps. As Vaniea et al. [42] ar-
gue, users express security needs only for apps that visibly
interact with the Internet. They may refuse to degrade their
user experience in production apps in exchange for security,
as they have no perceived security need for such apps.

Values Driving Appropriation over Time
We recorded other value statements made by participants that
are not specific to adoption, abandonment or plugins. Two
values were frequently mentioned: stability and flexibility.

6 participants expressed, in 8 statements, discontent when
their user experience is disrupted by changes in apps, therefore
preferring stable experiences. P7 and P5 expressed disbelief
about feature removal. P5 said: “If there is a need and there
something covering this need, if you remove it it’s really hard
to explain to your users that it’s just not there any more”. Three
participants were attached particularly to a specific feature (e.g.
the ability to browse books or albums by their cover for P5, or
the reopening of documents at the page they were last closed
for P10) while we discussed their work habits. Finally, P13
expressed not wanting to change the apps he was habituated
to, and disliking when those apps’ UI changed after an update.

4 participants also praised, in 6 statements, software that is
flexible and can be adjusted to their needs. P4 and P12 told us
how they take advantage of settings and plugins to speed up
keyboard-driven workflows. P4, P5, P12 and P13 mentioned
customising applications like their document editors or DE.
P5, for instance, says “I have been able to basically make my
own toolbars with everything that I use. That’s really flexible.
[...] And it’s pretty much the same idea in all applications”.

Summary of Findings
RQ1: Which values drive app appropriation behaviours? Is
security one such value? We found apps are:

adopted if they are useful, appear usable and affordable, and
have a reputation of reliability, security and credibility

adapted with plugins to boost productivity and usefulness and
sometimes to provide security and ad blocking capabilities

abandoned when they lose their usefulness or reliability

Users also valued a stable user experience, and flexible apps
that can be adjusted to their needs.

RQ2: How much do expert users rely on plugins? What value
do plugins provide to expert users? All our participants used
plugins – for browsers, DEs and all types of editors, but not for

media consumption apps. Plugins mainly provide usefulness
and productivity. They also provide ad-blocking in browsers,
and security for Internet-facing apps. Few of the benefits
provided by plugins could be replaced by other mechanisms,
if plugins were to become unavailable.

Productivity plugins were more prevalent for productivity apps
and DEs, and our participants were in demand for more pro-
ductivity plugins than they already had. Thus, people who use
computers for productive work, and specifically users of some
types of apps, would see their productivity decrease if they no
longer had access to plugins.

Implications for Sandboxing
Sandboxing threatens usefulness by preventing the implemen-
tation of some features, reliability by degrading performance
and resource usage, and stability by causing developers to
transform or drop some features. Sandboxes thus conflict with
the values recruited by participants when they decide to adopt
and abandon apps. Owing to their effects on plugins, sand-
boxes further threaten productivity and usefulness, the main
values supported by the use of plugins. Developers who chose
to drop features and plugins to support sandboxing will be
confronted to loss of users and potential new users, according
to our value-sensitive analysis.

Our participants’ liking of stability suggests sandbox designers
shouldn’t expect user experience sacrifices as a prerequisite
to sandbox adoption. Mobile OSs never had plugin infrastruc-
tures, and so their users have adopted what was available. An-
droid and iOS are dominated by media consumption apps [37,
38], and since there is no plugin demand for consumption
apps, plugins are not as crucial for Mobile OSs as they are for
Desktops. Users might refuse to switch to sandboxed versions
of Desktop apps if this means losing plugins they have already
integrated into their work practices.

Plugin loss will particularly affect users with productivity
goals, and some demographics e.g. users who write code (and
expectedly, over demographics that were not represented in
our cohort). When productivity is put in competition with
security, users respond by implementing “shadow security”
practices, which involve disengagement from sanctioned, veri-
fied security mechanisms, even if they do value security [20].
It is advisable that plugins be supported by sandboxes, espe-
cially since there is no technical barrier to distributing plugins
on the Windows and Mac App Stores, just like standalone
apps.

Moreover, sandboxes are known to impact app performance,
e.g. disk throughput, RAM and CPU usage [19, 28, 36, 43].
Systematic sandboxing could be unacceptable for users who
rely on e.g. high-performance computing, data science or
video processing. Sandbox designers could choose to make
different arbitrations between security and performance for
CPU- or RAM-intensive apps, in exchange for e.g. a more
stringent developer authentication process for said apps.

FEATURE LOSS
We’ve identified the importance of usefulness in appropriation
decisions, and we know that sandboxes conflict with useful-

RN/17/03 6

No Good Reason to Remove Features S. Dodier-Lazaro et al.

ness by forbidding some features. We now explore the value
arbitrations made by participants when they are confronted
with feature loss. We’re interested in learning what character-
istics of an app they consider to be more, or less justifiably
important than the presence of a feature. We also query partic-
ipants’ reactions to feature loss in an app they use, when the
cause of the loss is not explicited, and when “security reasons”
motivate the loss. This informs us both on the values that users
oppose to usefulness when rationalising feature loss, and on
how they accept loss of usefulness.

Method
We asked participants, if a feature was removed from an appli-
cation, what they would do and how it would affect them. We
also asked them what good and bad reasons a developer could
give to justify this change. We paid attention not to ask for
a singular reason, and let participants express multiple ones.
When possible, we asked participants about features they men-
tioned during the interview. Otherwise, we would ask about
“a feature” or “the ability to have plugins” for an app they
mentioned in their study diary. Most participants responded
with hypothetical scenarios based on apps they used. We ex-
cluded previous answers to app abandonment questions as
this would have constituted priming towards app abandonment
with regard to reactions to feature loss.

We formulated the security question as such: we asked partici-
pants what they would think if a developer were to remove a
feature or plugin (using the same criteria as above) “for secu-
rity reasons”. P12 spontaneously mentioned security as a valid
reason for removing a feature, obviating the security question.
P5 and P9 were mistakenly asked about justifications to feature
removal after we had revealed the security deception.

We refer to answers based on participants’ features as “own
experiences”, and answers to the security question as “security
reasons”. As the interviews were semi-structured, we missed
some answers from participants, especially P3 and P11.

We verified afterwards if the features discussed in interviews
were compatible with sandboxing: 4 concerned apps that are
not sandboxable; 11 were compatible; 5 were partially incom-
patible; and 18 were incompatible. None of our participants
demonstrated extensive knowledge of how sandboxes affect
apps, later on in the interviews when we discussed security
with them. None mentioned knowledge of design decisions or
actual technical constraints that restrict features in sandboxes.
Therefore, we do not believe that the compability of features
discussed in the interviews could have influenced participants’
attitudes and reactions.

Justifying Feature Removal
We wanted to know what determined whether users would
accept the disappearance of a feature. If a specific reason
makes sense to users, they will be less incredulous and sus-
picious when a feature is removed for that reason. Inversely,
if users are told a feature is removed for a reason they do not
understand, they might deplore the developer’s decision and
be more prone to switch apps.

Acceptable Feature Removal Reasons (number of participants)

Reducing resource usage

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Low frequency of use

Replaced by another feature

Legal reasons

Maintainability

It depends

There is no good reason

Security
two of which
were primed

Reasons

None (4)

Any, I trust the developer

Reliability (4)

Usefulness (2)

Values

Credibility (3)

Security & privacy (1–3)

Figure 5. Number of participants citing a reason as acceptable to justify
feature removal. Three participants could not come up with a way to
justify feature removal. Security justifications include one non-primed
and two primed answers. P4 mentioned maintainability twice.

We collected 18 reasons which participants (except P3 and
P11) thought were acceptable (see Figure 5) and 8 unaccept-
able (Figure 6) to justify feature removals. 5 participants
recalled actual experiences of feature loss, showing it is a
commonplace experience, though overall participants did not
find it easy to answer those questions.

Maintainability was seen as the most valid reason to remove
features, by 3 participants, with 2 mentions from P4. This
included removing code that was too difficult to maintain or
not stable enough, or making plugins temporarily unavailable
after an update. However, one of the “feature loss” app aban-
donment reasons we discussed in the previous section was
justified with maintainability: P4 abandoned the GNOME DE
because its plugins would often stop working after an update.
So the reason is not unanimously accepted.

Security was mentioned thrice, albeit two times by participants
whom we accidentally primed to think about security before-
hand, as we forgot to ask the question about feature removal
until right after revealing the security topic of the study and
before discussing security practices.

Legal reasons were mentioned both as a good and as a bad
justification. So was reliability, with participants claiming
that excessive CPU or RAM usage were valid reasons, but
excessive disk usage would not warrant removing a feature.
Likewise for usefulness: P6 mentioned not caring about a
feature he did not use, whereas P12 strongly opined that de-
velopers should not remove a feature used only by a fraction
of their user base that he has a use for.

Participants can conceptualise why feature are removed (main-
tainability, legal issues, reliability, and security), but none of
the enumerated reasons seem to be always justified. Besides,
three participants thought feature removal to be inexcusable,
no matter the reason. Therefore, there is no blanket ratio-
nale that developers can invoke to explain away a decision
to remove a feature. They will invariably need to convince
a majority of their expert users why a feature removal was
warranted.

RN/17/03 7

No Good Reason to Remove Features S. Dodier-Lazaro et al.

Unacceptable Feature Removal Reasons (number of participants)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Legal reasons

Low frequency of use

Excessive disk space usage

I don’t know

Change for the sake of it

Reasons

None (4)

Reliability (2)

Values

Usefulness (1)

Credibility (1)

Figure 6. Number of participants citing a reason as not acceptable to
justify feature removal. Participants disliked when developers were un-
clear about the reasons for a change and it appeared as being “for the
sake of it”.

Security reasons
We asked eleven participants (except P3 and P11) what they
would think of a scenario where a feature is removed for
“security reasons”.

Are security reasons really accepted?
Eight participants considered security to be a good reason to
remove a feature, once we asked them. The three others did
not answer the question, but described how they would analyse
the feature loss instead. None found it explicitly unacceptable.
Yet, only P12 mentioned security spontaneously – as well as
P5 and P9 right after we primed them. Security might be a
positive value to our participants, but it is not something they
think about when features are affected by updates.

As we will see in the next section, participants are even less
likely to go through with a feature-removing update that is
motivated by security than with a generic one. This contradicts
participants’ apparent acceptance of security. If they truly
thought security to be a valid reason, more of them would
have mentioned it spontaneously, and their intended actions
would match their stated belief.

Making sense of “security reasons”
Even though participants agreed security was an acceptable
justification, they sounded noticeably negative about it. We
had expected them to state that they would no longer use the
insecure software. Instead, they showed us they would attempt
to understand the announcement and to decide for themselves
if they should be concerned and adjust their practice.

Participants were mostly defiant because of how they made
sense of “security reasons”. They understood security as inci-
dent response, rather than the anticipation of risks that have
not yet materialised, or compliance with external constrains.
Yet, sandbox feature constraints derive from risk management
considerations rather than security vulnerabilities.

Three participants clearly expressed the idea that the security
risk had resulted in exploitation, using words such as “mal-
ware”, “breach” or “security exploit”. Three more talked of a
“vulnerability” or “security hole” and wondered if their data
could be compromised as a result. Only P8 pondered that the
feature itself might have represented a danger, without men-
tioning the existence of a fault attributable to the developer.

Reactions to a Feature Loss

Accept loss

Attempt workarounds first

Keep old version

Switch to other app

It depends

Security reasons Own experiences

3
8

3
2

4
7.5

2
2

0

0.5

Figure 7. Participants are more likely to accept an update that in-
duces feature loss for reasons other than security. Some will deploy
workarounds to emulate or replace the lost feature, before seeking a re-
placement app. Over a third of participants would abandon an app that
lost a feature and seek another one with an equivalent feature either way.

Deciding What to do About Feature Removals
How many users would abandon an app if its developers de-
cided to remove an important feature from it? The answer
to this question is relevant to developers who must decide
whether to adopt feature-degrading sandboxes or not. We thus
asked our participants how they would react to the loss of a
feature they had previously mentioned to us, or to the loss of
plugins. We sometimes asked participants about more than
one feature. Figure 7 presents the 20 reactions we collected
from 11 participants for feature loss in general (some partic-
ipants answered for several features, P9 gave weak answers,
P11 was not asked). It also shows the 11 reactions collected
for security-induced feature loss from 9 participants (P1 gave
two answers, and P3, P9, P11 and P13 gave none).

For updates motivated by security reasons, participants de-
cided to stay on the old, insecure version of the app in 2/10
cases. In 4/10 cases, they preferred switching to another app.
2/10 said their reaction would depend on the feature or the
developer’s attitude. This leaves only 3/10 cases where par-
ticipants would accept the update. This reaction contradicts
our finding that nearly all participants agreed security is a
valid reason to remove features. We hypothesise this discrep-
ancy is due to usefulness taking precedence over security in
driving participants’ choices. Another possible conjecture is
that our expert users have become prejudiced against security
announcements, owing to dissonance between alleged and
perceived security benefits in past security experiences.

The cost of feature loss was viewed as higher than the secu-
rity benefits in our security question. In contrast, when we
asked about feature removal in a generic update, participants
valued the imagined benefits of the update more often than
the feature to be removed: they would use the new version in
11/21(52%) cases – including 3/21(11%) cases where they
would attempt to emulate the lost feature with the new version,
but would switch back to the old one or to a new app if their
coping mechanism fails to satisfy them. Security is, after all,
a secondary goal [31, 44], so it is valued less than features
which support a primary goal. Our value analysis corroborates
this: factors like usefulness, productivity or reliability trump
security in participants’ decisions. P10 would either switch
to another app or stay on the old version. In 7.5/21(36%)

RN/17/03 8

No Good Reason to Remove Features S. Dodier-Lazaro et al.

cases in total, participants would switch to another app. In
2/21(10%) cases, participants said it depends on the feature.

Getting Something out of the Loss
In both conditions, three distinct participants expected lost
features to be re-introduced after some time. When a disrup-
tion is temporary, participants might tolerate it as a necessary
evil. P1, P10 and P13 also expected the app to be improved in
some way (e.g. reducing RAM usage, speeding up the UI, or
integrating popular plugins directly into the app) in the general
case. This desire for compensation was not seen in the security
condition, as a security benefit was already communicated.

P5, P10 and P13 expected developers to explain what the vul-
nerability was that had been fixed. Other participants sought
to convince themselves of the well-foundedness of the security
reason. P7 stated he expected to be told “how much time has
there been a security breach, why have they not warned me
beforehand, and what happens now”. P12 said “they’d have
to justify it pretty well”. P2, P8 and P10 said they would
look into the issue to decide if they should feel concerned
or not. Those participants would not trust developers’ words
and would confirm the existence of a security benefit before
choosing what to do about the feature loss.

Summary of Findings
RQ3: Is feature loss acceptable? How does it impact users’
choices of apps and practices? Feature removal has a substan-
tial impact on users: over a third may abandon an app when
a feature they used disappears. Half won’t consider updating
an app with a missing feature, and they may also abandon
an app that loses a feature. A forth of participants expected
feature loss to be temporary, and a forth also expected it to be
compensated with improvements.

There is no consensus among participants over what consti-
tutes good reasons to remove a feature. Maintainability, relia-
bility and legal issues were mentioned, although sometimes
as bad reasons too. Security was mentioned spontaneously
by one participant, and after security priming by two more
participants. Given the prevalence of stability in user values,
we find feature loss hard to justify to users overall.

RQ4: How does security-motivated feature loss differ from
other types of loss with regard to acceptance and reaction?
When asked, our participants claim security is a valid reason to
remove features. Yet, they are four times more likely to ignore
a feature-removing security update than a feature-removing
update with non-security motivations. Participants are two
times less likely to accept a security-motivated feature loss.
This illustrates well how security is a secondary goal to users.

Participants view security-motivated feature removals as inci-
dent response rather than a preventative measure. They expect
developers to explain why a security risk existed and the conse-
quences if it. Thus, developers’ credibility may paradoxically
suffer when they announce security improvements.

Implications for Sandboxing
Sandboxes restrain the ability to implement some features as
a form of risk management, rather than because these features

introduce systematic vulnerabilities. As our participants un-
derstand security as incident response, they are unlikely to
attribute a sandbox-related feature loss to a fault on behalf
of app developers. Besides, we’ve seen that there is no blan-
ket rationale that developers can invoke to explain away a
decision to remove a feature, since participants don’t have a
consistent mental model of valid justifications to feature loss.
Therefore, the task of explaining a sandbox-motivated feature
loss to users seems particularly strenuous and hazardous for
developers.

Manifestly, feature removal can lead to significant user base
attrition. As we’ve seen, this is more so the case when feature
loss is justified by security. In competitive app ecosystems
where many apps provide similar features, having to remove
features from one’s app might act as a strong deterrent for
developers to consider sandboxing. We argue that the current
restrictions on features and plugins place an unfair burden on
app developers, and that sandbox designers must review those
decisions rather than wait out for developers to finally ‘get it’
and adopt sandboxing. Presently, there are valid incentives in
place for app developers to stay away from sandboxing.

LIMITATIONS

Cohort size
The field study we are running involves sustained interactions
with participants, forcing us to keep a small cohort. We thus
have too few participants to provide statistical significance for
our results. We provide quantitative data as much as possible
to allow for our results to be aggregated to future studies on
this topic. Besides, we view the presentation of our method
as a contribution in itself, relevant to security designers who
need to study barriers to the adoption of security technologies
in their app ecosystems.

Deception
We ensured the validity of our data via the use of deception.
However, this means less data was available as we could not
incite our participants to detail their mental models of security
without drawing their attention to our actual topic of interest.

Method of report
App appropriation events are rare, and participants sometimes
struggled to recall details of their past experiences. We helped
them recall past events by using diary data to discuss the apps
which we knew they used, and we eliminated statements where
participants sounded hesitant or were inaccurate.

Linux users
We recruited Linux users. They are reflective about technology
and have experience with multiple systems [7]. This is not
a threat to validity, but reduces the scope of our findings to
experienced and reflective practitioners. Many Windows and
OS X users are experts, too – including developers, digital
artists, researchers, etc. Linux users prefer software that is
open-source. Thus, our data likely overstates the importance
of the app traits related to proprietary licenses.

RN/17/03 9

No Good Reason to Remove Features S. Dodier-Lazaro et al.

Reliability of analysis
Both our coding process and Value-Sensitive Design rely on
researcher interpretation. Our choice of values reflects how
we deconstructed usability into distinct actionable values (reli-
ability, productivity, usability, flexibility). Other researchers
may have used a different degree of granularity.

IMPLICATIONS FOR USABLE SECURITY RESEARCH
Some of our findings would not have been possible to make if
we had stuck to the methods used in previous sandbox usability
research [28, 32]. We derive methodological implications for
future usability evaluations of security mediators.

Productive security is achieved over time, not in the lab
Beautement et al. [5] argue that the cost of security might be
accepted during initial interactions, but rejected over time as
users wear out their “compliance budget” – their ability to
comply with security when the cost of it exceeds its benefits.
When newly introduced security artefacts disrupt stability (e.g.
with feature loss) or flexibility (e.g. by removing plugins),
these artefacts cannot be declared usable solely on the basis of
one-off interactions in a lab setting. Those values are fulfilled
over time, and so the impact that changes in users’ practices
have on them must be studied over time too.

Previous usability studies of sandboxing [28, 32] failed to
study how participants ultimately react to the cumulative frus-
trations caused by a degraded user experience, or how they
can improve their productivity once sandboxes hinder apps’
flexibility. Ergo, sandboxes must be introduced in-the-wild
and their impact on practice monitored until they are com-
pletely appropriated or rejected by participants. Otherwise,
researchers may falsely conclude that sandboxes are usable,
when participants’ compliance budget is exhausted in superfi-
cial interactions settings and their interaction would not have
been sustained in-the-wild.

Deception is necessary to discover actual behaviour
drivers
Participants overwhelmingly agreed that security is an ac-
ceptable reason to remove a feature, when we asked them.
Yet, they would be less likely to continue using an app that
lost a feature for security, rather than for other types of im-
provements. We conclude from that that querying participants
directly about their attitude to security can mislead researchers
into thinking that security is sufficiently valued to influence
user behaviour. We’ve shown that explicit attitudes towards
one value are not the proper measure for drivers of behaviour.
Instead, researchers should focus on building value hierarchies
and identifying the main values that users recruit in making
decisions that impact security. This means that study designs
must include deception to avoid non-respondant and social
desirability biases, and to produce valid value hierarchies.

CONCLUSION
Sandboxes do not provide support for several types of features,
and for plugins, resulting in second-class apps. Sandboxes
also decrease app performance slightly. Sandbox adoption
is low on Desktop OSs, and some developers even forsake
sandboxed versions of their apps. We investigated how expert

Desktop users arbitrate different values in apps, and how they
cope with feature loss, to understand how they arbitrate be-
tween usefulness, productivity and security, and how likely
they are to adopt or retain apps that sacrifice features for se-
curity improvements. If users are likely to abandon newly
sandboxed apps, it would explain developers’ reluctance to
support sandboxing.

We built a model of values involved in three Desktop app ap-
propriation processes: adoption, adaptation, and abandonment.
We found that lack of features was the primary reason for
users to reject a potential app, and one of two reasons (along
with reliability) for users to abandon an app they’re using. We
also found that users like to adapt and customise their apps,
primarily to meet productivity goals, especially for browsers
and productivity apps like code editors. Besides, feature loss
is a seldom understood phenomena that is poorly accepted
by users. A non-negligible portion of our participants would
abandon an app that removes a feature they use, especially if
justified by security improvements.

Sandbox designers must identify the features threatened by
the changes sandboxing brings about, and they must improve
support for the relevant APIs so that these features survive
sandboxing. They could support plugins by distributing them
on app stores and subjecting them to the same security checks
as apps. These corrections are essential to avoid putting secu-
rity in competition with usefulness and security. Indeed, our
value analysis clearly shows that security will not be privileged
by expert users, and thus, that sandboxed apps are less likely
to be adopted than their insecure counterparts.

In future work, we will continue to investigate how app sand-
boxing and our participants’ digital lives fit together. We
will assess the fitness of app sandboxing for the information
management strategies of our participants using qualitative
and quantitative data we collected, and we will investigate
how many of the apps they used contain features typically
threatened by sandboxing.

REFERENCES
1. Adams, A., and Sasse, M. A. Users are not the enemy.

Commun. ACM 42, 12 (Dec. 1999), 40–46.

2. Apple Inc. App Sandboxing. Sept. 2016.

3. Apple Inc. iOS Security – iOS 9.3 or later. May 2016.

4. Beautement, A., Becker, I., Parkin, S., Krol, K., and
Sasse, A. Productive Security: A Scalable Methodology
for Analysing Employee Security Behaviours. In Twelfth
Symposium on Usable Privacy and Security (SOUPS
2016), USENIX Association (Denver, CO, June 2016),
253–270.

5. Beautement, A., Sasse, M. A., and Wonham, M. The
compliance budget: managing security behaviour in
organisations. In Proceedings of the 2008 workshop on
New security paradigms, NSPW ’08, ACM (New York,
NY, USA, 2008), 47–58.

6. Brad Chacos. And the study says: Windows 8 users rarely
touch Metro apps. May 2013.

RN/17/03 10

No Good Reason to Remove Features S. Dodier-Lazaro et al.

7. Canonical. Ubuntu User Surveys 2012 - Part 3. 2012.

8. Canonical. Ubuntu Core Documentation – Security and
Sandboxing, 2016.

9. Dan Counsell. Not on the Mac App Store. Nov. 2015.

10. Docker Inc. Overview of Docker Hub, 2016.

11. Drewry, W. Dynamic seccomp policies (using BPF
filters), Jan. 2012.

12. Flatpak. Flatpak – the future of application distribution,
2016.

13. Friedman, B. Value-sensitive Design. interactions 3, 6
(Dec. 1996), 16–23.

14. Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A.
A Secure Environment for Untrusted Helper Applications
Confining the Wily Hacker. In Proceedings of the 6th
Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6, SSYM’96,
USENIX Association (Berkeley, CA, USA, 1996), 1–1.

15. Google. android: Application security. Sept. 2016.

16. Hoffman, C. Why the Mac App Store Doesn’t Have the
Applications You Want. Mar. 2015.

17. Hoffman, C. Why Desktop Apps Aren’t Available in the
Windows Store (Yet). Mar. 2016.

18. Ian Paul. The 10 most glaring Windows Store no-shows.
Apr. 2013.

19. Kim, T., and Zeldovich, N. Practical and Effective
Sandboxing for Non-root Users. In Proceedings of the
2013 USENIX Conference on Annual Technical
Conference, USENIX ATC’13, USENIX Association
(Berkeley, CA, USA, 2013), 139–144.

20. Kirlappos, I., Parkin, S., and Sasse, M. Learning from
“Shadow Security”: Why understanding non-compliance
provides the basis for effective security. In Workshop on
Usable Security (San Diego, California, Feb. 2014).

21. Mathiasen, N. R., and Bødker, S. Threats or Threads:
From Usable Security to Secure Experience? In
Proceedings of the 5th Nordic Conference on
Human-computer Interaction: Building Bridges,
NordiCHI ’08, ACM (New York, NY, USA, 2008),
283–289.

22. McCarthy, J. C., and Wright, P. Technology as experience.
MIT Press, 2004.

23. Microsoft. Windows 8 Security Overview. June 2013.

24. Milen Dzhumerov. Mac App Store: The Subtle Exodus.
Oct. 2014.

25. Nichols, A. L., and Maner, J. K. The Good-Subject Effect:
Investigating Participant Demand Characteristics. The
Journal of General Psychology 135, 2 (2008), 151–166.

26. Peter Cohen. The Mac App Store and the trouble with
sandboxing. Apr. 2014.

27. Pfleeger, S. L., Sasse, A., and Furnham, A. From Weakest
Link to Security Hero: Transforming Staff Security
Behavior. Journal of Homeland Security and Emergency
Management 11, 4 (2014), 489–510.

28. Potter, S., and Nieh, J. Apiary: Easy-to-use Desktop
Application Fault Containment on Commodity Operating
Systems. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference,
USENIXATC’10, USENIX Association (Berkeley, CA,
USA, 2010), 8–8.

29. Riley J. Dennis. Desktop vs. Windows Store Apps: Which
Should You Download? June 2016.

30. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang,
H. J., and Cowan, C. User-Driven Access Control:
Rethinking Permission Granting in Modern Operating
Systems. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, IEEE Computer Society
(Washington, DC, USA, 2012), 224–238.

31. Sasse, M. A., Brostoff, S., and Weirich, D. Transforming
the ’Weakest Link’ — a Human/Computer Interaction
Approach to Usable and Effective Security. BT
Technology Journal 19, 3 (July 2001), 122–131.

32. Schreuders, Z. C., McGill, T., and Payne, C. Empowering
End Users to Confine Their Own Applications: The
Results of a Usability Study Comparing SELinux,
AppArmor, and FBAC-LSM. ACM Trans. Inf. Syst. Secur.
14, 2 (Sept. 2011), 19:1–19:28.

33. Security StackOverflow. Mac App Store and Plugins.
Mar. 2011.

34. Sketch. Leaving the Mac App Store. Dec. 2015.

35. Smetters, D. K., and Grinter, R. E. Moving from the
design of usable security technologies to the design of
useful secure applications. In Proceedings of the 2002
workshop on New security paradigms, NSPW ’02, ACM
(New York, NY, USA, 2002), 82–89.

36. Spencer, R., Smalley, S., Loscocco, P., Hibler, M.,
Andersen, D., and Lepreau, J. The Flask Security
Architecture: System Support for Diverse Security
Policies. In Proceedings of the 8th Conference on
USENIX Security Symposium - Volume 8, SSYM’99,
USENIX Association (Berkeley, CA, USA, 1999), 11–11.

37. Statista. Most popular Google Play app categories in
February 2014, by device installs. Feb. 2014.

38. Statista. Most popular Apple App Store categories in June
2016, by share of available apps. June 2016.

39. Steve Streeting. Between a rock and a hard place – our
decision to abandon the Mac App Store. Feb. 2012.

40. Strauss, A., and Corbin, J. Basics of qualitative research:
Techniques and procedures for developing grounded
theory . Sage Publications, Inc, 1998.

41. Vaniea, K., and Rashidi, Y. Tales of Software Updates:
The Process of Updating Software. In Proceedings of the
2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, ACM (New York, NY, USA, 2016),
3215–3226.

RN/17/03 11

No Good Reason to Remove Features S. Dodier-Lazaro et al.

42. Vaniea, K. E., Rader, E., and Wash, R. Betrayed by
Updates: How Negative Experiences Affect Future
Security. In Proceedings of the 32Nd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’14, ACM (New York, NY, USA, 2014), 2671–2674.

43. Vasudevan, A., Parno, B., Qu, N., Gligor, V. D., and
Perrig, A. Lockdown: Towards a Safe and Practical

Architecture for Security Applications on Commodity
Platforms. In Proceedings of the 5th International
Conference on Trust and Trustworthy Computing,
TRUST’12, Springer-Verlag (Berlin, Heidelberg, 2012),
34–54.

44. Yee, K.-P. Aligning security and usability. Security
Privacy, IEEE 2, 5 (Oct. 2004), 48 –55.

RN/17/03 12

UCL DEPARTMENT OF COMPUTER SCIENCE

Research Note
RN/17/03

ADDITIONAL MATERIALS
February 13, 2017

Steve Dodier-Lazaro, Ingolf Becker, Jens Krinke, Angela Sasse

Abstract
Application sandboxes are an essential security mechanism to contain malware. Yet, they are seldom used on Desktops. We
hypothesise this is because sandboxes are incompatible with plugins, and with APIs used to implement a wide variety of
Desktop features. To verify this, we interviewed 13 expert users about their app appropriation decisions, and illustrate how they
recruit values like usefulness, productivity or reliability in their decisions. We found that (a) security is an unimportant factor
for appropriation; (b) plugins considerably support productivity needs and (c) users may abandon apps that remove a feature,
especially for feature removals justified by security. Productivity-oriented expert Desktop users place more value in a stable user
experience and in having flexible apps than in security benefits. Sandboxing thus conflicts with their values. We conclude that for
sandboxed apps to be systematically adoptable by expert users, sandboxes must no longer require the sacrifice of plugins and
features found in Desktop apps.

ADDITIONAL MATERIALS S. Dodier-Lazaro et al.

LIST OF INSTALLED PLUGINS
See Tables 1 and 2 for the list of plugins our participants
declared having installed.

LIST OF DESIRED PLUGINS
See Table 3 for a list of extra features or plugins our partici-
pants would like to have.

LIST OF REACTIONS TO FEATURE LOSS
See Table 4 for the features for which participants gave us a
reaction to the removal of.

LIST OF JUSTIFICATIONS FOR FEATURE LOSS
See Table 5 for the features used to discuss good and bad
reasons to remove a feature. P12 gave two bad reasons for J17,
resulting in 8 bad reasons in the paper for 7 features.

LIST OF SECURITY-MOTIVATED LOSS SCENARIOS
See Table 6 for the features involved when we asked par-
ticipants what they would think of a security-caused feature
removal. There were 12 features. P3 and P9 did not tell us
what they would do, and P10 gave us two different reactions
based on how concerned he would be about the security rea-
son at hand. This led to the 11 reactions to feature removal
presented in the paper.

RN/17/03 i

ADDITIONAL MATERIALS S. Dodier-Lazaro et al.

P# Cat. App name Plugin App trait
P1 web Chromium AdBlock ad blocking
P1 web Chromium OneTap work organisation
P1 web Chromium Tool to calculate distances in pixels integrating external features
P1 code Sublime Origami work organisation
P1 code Sublime Code snippets plugin improving task efficiency
P1 code Sublime Cooperative coding plugin enabling social interactions
P1 code Sublime Themes UI improvements
P2 web Firefox AdBlock ad blocking
P2 web Firefox Torrent downloader new features
P2 code Vim “reformatting and styling things” (name was inaudible,

assumed to be a syntax highlighting plugin)
UI improvements

P3 web Firefox uBlock ad blocking
P3 web Firefox NoScript security
P3 code Brackets Colour palette integrating external features
P3 code Brackets Python plugin format compatibility
P4 web Firefox AdBlock ad blocking
P4 web Firefox HTTPS everywhere security
P4 web Firefox Pushbullet cross-device computing
P4 web Firefox Vimperator improving task efficiency
P4 DE Xfce DevilsPie work organisation
P5 web Chromium AdBlock ad blocking
P5 web Chromium HTTPS everywhere security
P5 web Chromium Zotero integrating external features
P5 web Chromium Hangout enabling social interactions
P5 comm Thunderbird Enigmail privacy
P5 docu LibreOffice Zotero integrating external features
P5 DE Xfce Cairo improving task efficiency
P6 web Chromium uBlock ad blocking
P6 web Chromium TrackInhibitor privacy
P6 web Chromium ZenMate privacy
P6 sec KeePass A database backup plugin data backup feature
P6 sec KeePass Favicon Downloader UI improvements
P7 web Chromium uBlock ad blocking
P7 web Chromium Shortcut to Calendar integrating external features
P7 web Chromium Firebug new features
P7 web Chromium MyTexts cross-device computing
P7 web Chromium FacebookUnseen privacy
P7 web Chromium NAS downloader cross-device computing
P7 web Chromium Chromecast access to content
P8 web Chromium AdBlock ad blocking
P8 web Chromium Hoverzoom improving task efficiency
P9 web Chromium AdBlock ad blocking
P9 web Chromium Neutron IDE new features
P9 web Chromium POSTman new features
P9 web Chromium Telegram enabling social interactions
P9 web Chromium MEGASync cross-device computing
P9 web Chromium Hoverzoom improving task efficiency
P9 web Chromium Shortcut to Google Doc integrating external features
P9 code Eclipse SVN plugin integrating external features
P9 code Eclipse Javadoc plugin integrating external features
P9 code Eclipse UML plugin format compatibility

P10 web Chromium AdBlock ad blocking
P10 web Chromium Youtube repeater improving task efficiency

Table 1. Plugins installed by participants (1/2).

RN/17/03 ii

ADDITIONAL MATERIALS S. Dodier-Lazaro et al.

P# Cat. App name Plugin App trait
P11 web Firefox AdBlock ad blocking
P11 web Firefox FlashBlock security
P11 web Firefox FoxyProxy access to content
P11 web Firefox Youtube downloader new features
P11 web Firefox Video downloader (for Vimeo) new features
P11 web Firefox Roomy – bookmarks toolbar UI improvements
P11 web Firefox Xmarks – bookmark synchronisation cross-device computing
P11 web Firefox Foxtabs work organisation
P11 comm Pidgin Off-the-Record privacy
P12 web Chromium AdBlock ad blocking
P12 docu GIMP Extra brushes and effects new features
P12 docu Blender Tree modelling plugin new features
P12 DE Xfce Conky new features
P12 DE Xfce Kupfer improving task efficiency
P13 web Firefox AdBlock ad blocking
P13 web Firefox Tool to screenshot Web pages integrating external features
P13 code Emacs Org mode work organisation
P13 code Emacs Python mode format compatibility
P13 code Emacs C mode format compatibility
P13 code Emacs MarkDown mode format compatibility
P13 comm Thunderbird Enigmail privacy

Table 2. Plugins installed by participants (2/2).

P# Cat. App name Plugin App trait
P2 code Vim A mode to better organise tabs and simplify multitasking work organisation
P3 web Chromium A plugin to enhance the usability of Facebook enabling social interactions
P4 DE Xfce Faster access to recently used apps in app launchers work organisation
P5 web Chromium A password manager plugin that doesn’t lock you out

when you forget your master password
security

P5 web Chromium Support for more types of Web pages in Zotero format compatibility
P8 DE Xfce A way to suspend a task on the phone and resume it on

the Desktop
cross-device computing

P9 comm Skype A more reliable video calls feature replacing a buggy feature
P10 web Chromium A better way to display and organise browser tabs work organisation
P10 web Chromium Something like Vimperator for Web keyboard navigation improving task efficiency
P12 DE File manager A better way to navigate files with the keyboard improving task efficiency
P13 comm mutt A GPG plugin privacy

Table 3. Plugins or new features desired by participants.

RN/17/03 iii

ADDITIONAL MATERIALS S. Dodier-Lazaro et al.

ID P# Cat. App name Feature Threatened by sandboxing?
R1 P1 code Sublime Syntax highlighting plugins partly (some languages provided via plugins)
R2 P2 code Vim All plugins yes
R3 P3 medi Steam Game mods in Steam yes
R4 web Chromium Ad blocking plugin yes
R5 P4 DE GNOME DE All extensions yes
R6 P5 web Chromium HTTPS everywhere plugin yes
R7 web Chromium Ad blocking plugin yes
R8 IM Thunderbird Enigmail plugin yes
R9 docu LibreOffice Zotero plugin yes
R10 P6 docu LibreOffice Spell checking plugin yes
R11 docu LibreOffice Compatibility with Office no (but some plugins provide compatibility for other

formats)
R12 P7 code Eclipse All plugins yes
R13 code Notepad++ Searching through multiple files yes
R14 * generic generic ø
R15 P8 web generic Built-in PDF reader no
R16 P10 code IntelliJ IDE JAR decompression no
R17 docu SumatraPDF Reopening PDFs on previously open page no
R18 P12 DE Xfce DE All plugins yes
R19 P13 web Chromium Bookmarks no
R20 code Emacs All plugins yes

Table 4. Features for which participants described their reaction to the features’ removal.

ID P# Cat. App name Answer G B Threatened by sandboxing?
J1 P1 code Sublime All plugins 3 yes
J2 P2 code Vim All plugins 3 yes
J3 code Vim Any feature or plugin 3 ø
J4 P4 code LaTeX Macros provided by a LaTeX package 3 no
J5 medi MPV player Whole user interface 3 ø (Desktop sandboxes don’t support CLI apps)
J6 web Firefox Whole user interface 3 no
J7 P5 web Chromium Ad blocking plugin 3 yes
J8 docu LibreOffice Spell checking 3 partly (extra languages not packaged in the app)
J9 P6 docu LibreOffice Compatibility with Microsoft Office 3 no
J10 docu LibreOffice Grammar checking 3 partly (extra languages not packaged in the app)
J11 P7 * generic generic 3 3 ø
J12 code Notepad++ Searching through multiple files 3 yes (unless app granted special privilege to read

specific folders or all files of a certain type)
J13 P8 web generic Built-in PDF reader 3 no
J14 P9 web Chromium Cross-device bookmark synchronisation 3 3 no
J15 P10 docu SumatraPDF Reopening PDFs on previously open page 3 3 no (if sandboxed app is allowed to keep a cache)
J16 code IntelliJ IDE JAR decompression 3 no
J17 P12 DE Xfce DE Keyboard shortcuts to launch apps 3 3 no
J18 P13 code Emacs Syntax highlighting 3 partly (some languages provided via plugins)
J19 web Chromium Bookmarks 3 no
J20 web Chromium All plugins 3 3 yes

Table 5. Features for which participants told me about what good (G) or bad (B) justification developers might have for removing them. Yellow rows
correspond to primed answers in favour of security being a good justification.

RN/17/03 iv

ADDITIONAL MATERIALS S. Dodier-Lazaro et al.

ID P# Cat. App name Feature Threatened by sandboxing?
S1 P1 code Sublime All plugins yes
S2 code Sublime Syntax highlighting plugins partly (some languages provided via plugins)
S3 P2 code Vim Any feature or plugin ø
S4 P4 web Firefox Vimperator plugin yes
S5 P5 docu LibreOffice Spell checking partly (extra languages not packaged in the app)
S6 P6 docu LibreOffice Compatibility with Microsoft Office no
S7 P7 * generic generic ø
S8 P8 web generic Built-in PDF reader no
S9 P9 web Chromium Cross-device bookmark synchronisation no
S10 P10 docu SumatraPDF Reopening PDFs on previously open page no (if sandboxed app is allowed to keep a cache)
S11 P12 DE Xfce DE Keyboard shortcuts to launch apps no
S12 P13 web Chromium Any feature or plugin ø

Table 6. Features for which we asked participants what they would think of a feature removal justified by security reasons.

RN/17/03 v

