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Abstract
This paper presents the design and implementation of Geo-
sphere, a physical- and link-layer design for multi-cell
access point-based MIMO networks that consistently im-
proves network throughput. To send multiple streams of
data in a MIMO system, prior designs rely on a technique
called zero-forcing, a way of “nulling” the interference be-
tween the different spatial streams by inverting the effect
of the wireless channel matrix. In many cases, when this
channel matrix is well-conditioned, zero-forcing is highly
effective, eliminating inter-stream interference. But mea-
surements from our indoor wireless testbed network indi-
cate that many of its links suffer from poorly-conditioned
MIMO channel matrices. In these situations, zero-forcing
techniques leave performance on the table, so Geosphere
uses sphere decoding that can make fewer errors, and
therefore can realize more of the MIMO capacity. To
overcome the sphere decoder’s computational complexity
when signaling with dense constellations at a high rate,
Geosphere uses novel tree-search techniques that incorpo-
rate geometric reasoning about the constellation to reduce
computational complexity by up to an order of magni-
tude. Thus Geosphere makes such an approach practical
for the first time in a 4 × 4, 256-QAM MIMO system.
Results from our WARP testbed show that Geosphere
achieves average throughput gains of 2× in 4 × 4 MIMO
systems and 47% in 2 × 2 MIMO systems, while simul-
taneously requiring up to nearly an order of magnitude
less computation relative to the sphere decoder, bringing
its computational demands in line with current systems
already realized in ASIC.

1 Introduction

One of the most important challenges in modern wire-
less networks is to meet users’ ever-increasing demand
for throughput, and one way of meeting this demand is
through a technique called spatial multiplexing. Networks

nc client antennas

na AP antennas

Wireless channel H = [ hkl ]

kth client antenna

lth AP antenna

hkl

Figure 1: A MIMO wireless LAN with nc client antennas
and na AP antennas. Different clients and APs may trans-
mit simultaneously, forming a MIMO system described
by the channel matrix H, whose entries characterize the
wireless channel between a client’s antenna and an AP’s
antenna.

that leverage spatial multiplexing increase capacity [30]
and throughput by sending multiple streams of data from
different transmit antennas. If enough receiving antennas
hear the resulting mixture of signals and channel condi-
tions are favorable, such systems can deliver these mul-
tiple data streams simultaneously, in the same frequency
bands and geographical spaces. Since multiple transmit
and receive antennas are required, these systems are called
multiple-input, multiple-output or MIMO systems, and
are ubiquitous in the design of wireless networks today.

The emergence of new applications such as video
IP telephony (e.g., Skype), wireless data backup, video
surveillance, and direct video uploading (e.g., Google
Glass) is today shifting the ratio between downlink and up-
link traffic in wireless networks towards the uplink. In this
setting, mobile transmitters may simply send their own
information streams to the access points (APs), which
are connected by a wired network backhaul, as shown in
Figure 1. While this frees clients from the need to cooper-



ate with each other before sending, each of the receiving
access point antennas then hears a tangled mixture y of
the information sent from all transmit antennas x after it
travels through the wireless channel H, plus background
noise w:

y = Hx + w. (1)

The resulting capacity (i.e., maximum theoretical through-
put achievable) is then

C = E
�

log det
�

Inr +
SNR

nt
HH∗

��
bits/s/Hz,

where H is a matrix whose entries describe the wireless
channel between each pair of client and AP antennas. In
this work we consider the problem of improving uplink
performance in a network served by a multi-antenna AP.
This paper poses the question of how best to turn the
above theoretical capacity gain into a practical throughput
gain.

An oft-applied solution is a demodulation scheme
known as zero-forcing. In order to decouple interfering
streams a zero-forcing receiver left-multiplies the received
vector y with the inverse of matrix H, denoted H−1:

H−1y = H−1Hx + H−1w = x + H−1w (2)

Zero-forcing has been proposed as part of a way to
accomplish spatial division multiplexing in SAM [28]
and BigStation [32], null out aligned interference in
IAC [9], and enable concurrent 802.11n transmissions in
802.11n+ [19]. It works well in these systems, achieving
multiplicative increases in capacity in line with expecta-
tions. But does it work consistently, on every link in a
testbed deployment?

A closer look at Equation 2 indeed reveals room for
improvement if we consider the condition number of H

κ(H) = �H�
��H−1�� , (3)

a metric from numeric linear algebra that measures
the sensitivity of the linear system described by H to
noise [18, Chp. 20]. κ(H) is always greater than
one. When the matrix H is well-conditioned (κ2(H) <
20 dB1 [1]), the noise term in Equation 2 above will be
small:

��H−1w
��2

≤
��H−1��2

�w�
2 =

κ2(H)

�H�
2 �w�

2 . (4)

but when reflectors are located solely in the vicinity of
one of the endpoints as shown in Figure 2, κ(H) becomes
large [31], H becomes almost singular, and its determi-
nant becomes small in magnitude. Under these conditions,

1We use decibels relative to one to capture the wide range in variation
of κ: κ2 (dB) = 20 log10 κ (linear scale).

Small angular separation

Client AP

Figure 2: When reflectors are located solely in the vicin-
ity of one of the endpoints (AP case shown here) of a
MIMO link, the result is a very small angular separation
of the energy arriving at the other end, and a poorly-
conditioned channel matrix H.

Figure 3: Cumulative distribution of the condition num-
ber κ(H) (defined in Equation 3) in our wireless testbed.

when the zero-forcing receiver left-multiplies the received
signal by H−1 (Equation 2), it amplifies the background
noise and interference w, leading to bit-errors and de-
creased throughput [7].

But how often is the MIMO channel poorly-
conditioned? Figure 3 shows measurements from our
experimental wireless testbed (Figure 9 on page 7). If
we use a generous 20 dB figure as a cutoff, these dis-
tributions show that a 3 × 4 MIMO channel is poorly-
conditioned 10% of the time, while a 4 × 4 channel is
poorly-conditioned 60% of the time, with all 4x4 chan-
nels having condition numbers of at least 8 dB. This is
consistent with previous measurements of 2 × 2 MIMO
channels in the 5 GHz band [17], and indicative of an
opportunity to harness increased throughput.

This paper presents the design, implementation, and
testbed evaluation of Geosphere, a system that closes
the gap to capacity that zero-forcing’s noise amplification
opens. Geosphere uses a decoder that can achieve the the-
oretical maximum-likelihood (i.e., the one that minimizes
the probability of bit error), the sphere decoder.
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The next section contains a primer on the sphere de-
coder, but in brief, the sphere decoder dramatically re-
duces the exponential (in terms of message length) asymp-
totic complexity of the maximum likelihood decoder by
means of a tree search. On average, the sphere decoder
achieves a computational complexity that allows system
throughput on par with current wireless LAN speeds. For
a point of reference, a 2005 hardware ASIC sphere de-
coder implementation [6] for a 4 × 4 16-QAM MIMO
system in a Rayleigh fading channel achieves line rate
over a 10 MHz frequency bandwidth. With advances in
ASIC technology and the parallelizability of the sphere
decoder by OFDM subcarrier, today’s implementations
can easily achieve line rates over 40 and 80 MHz wireless
channels.

While the sphere decoder is practical today at slower
802.11g rates, the search for higher throughputs is driv-
ing the use of denser signal constellations. For exam-
ple, 802.11ac devices already use 128- and 256-QAM
constellations. Denser constellations are also prerequi-
site for adopting the promising new family of rateless
codes [22, 10], which we discuss in further detail below
(§6). However, the branching factor of the sphere de-
coder’s tree search equals the size of the constellation.
This means that denser constellations necessitate a larger
search space for the sphere decoder, and a concurrent
increase in computation, overwhelming current state-of-
the-art implementations [6].

Geosphere makes two key fundamental intellectual con-
tributions to advance the state-of-the-art in MIMO wire-
less system design:
1. We observe that the sphere decoder can use the soft

information about each received constellation point
and the geometry of the constellation to prune the
sphere decoder’s search tree, in some cases without
calculating the metrics associated with each node in
the tree. This technique, which we term geometrical
pruning, is analogous to the pruning step in the clas-
sical A∗ search algorithm [11], but is tailored for the
particulars of the sphere decoder and the geometry of
the transmitted constellation.

2. We introduce a new technique, two-dimensional zigzag
enumeration, that approximates an expanding-ring
search about each constellation point. This permits
increasing the order of the transmitted constellation
with only an incremental increase in processing re-
quirements.

In the remainder, we begin with a primer on sphere
decoding (§2), setting up our subsequent discussion of
Geosphere’s design (§3). A performance evaluation fol-
lows, where we measure Geosphere’s performance in
trace-driven simulation, using wireless traces from a 15-
node wireless testbed built with Rice WARP version 3

radios [23]. Here we show that substantial throughput
gains can be achieved in comparison with systems em-
ploying zero-forcing decoding, and that in spatial-division
multiplexing systems where many single-antenna clients
transmit at the same time, Geosphere increases the per-
user throughput (i.e., Geosphere achieves super-linear
network throughput improvements). Results from our
WARP testbed show that Geosphere achieves average
throughput gains of 2× in 4 × 4 MIMO systems and 47%
in 2 × 2 MIMO systems, while simultaneously requiring
up to nearly an order of magnitude less computation rel-
ative to the sphere decoder, bringing its computational
demands in line with current systems already realized in
ASIC. We survey related work in Section 6, and conclude
in Section 7.

2 Primer: The Sphere Decoder

This section provides essential background on the sphere
decoder [2, 8], an algorithm able to determine the most-
likely transmitted bits x in the MIMO system that Equa-
tion 1 describes. Supposing transmitters send symbols
chosen from a constellation O of size |O| = 2Q (i.e., Q
bits per symbol), such a solution, called the maximum-
likelihood solution, finds

x∗ = arg min
s∈Onc

�y − Hs�2 . (5)

This is the solution that minimizes the bit error rate, max-
imizing throughput. Unfortunately, the computational
complexity of the exhaustive search in Equation 5 grows
exponentially both in the message length and in the con-
stellation size. For example, if we were to attempt to find
the maximum-likelihood solution by exhaustive search,
we would need to perform |O|

nc Euclidean distance cal-
culations. This means that for an OFDM system with
48 data sub-carriers, four antennas and a 4-QAM con-
stellation, we would need to calculate approximately 104

Euclidean distances, but in the same system sending with
64-QAM, we would need approximately 109 distance cal-
culations. Sphere decoding reduces this complexity while
still likely finding the maximum-likelihood solution.

2.1 The sphere constraint
The sphere decoder constrains its search to only those
possibilities s that lie within a hypersphere of radius r
about the received vector y, as measured by the Euclidean
distance d(s). This is the sphere constraint:

d(s) < r2, where d(s) = �y − Hs�2 . (6)

Most sphere decoders begin with r ← ∞, and upon
discovering a solution at distance r� < r, safely reduce
r ← r�, without the possibility of excluding the maximum-
likelihood solution.
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2.2 The tree

The sphere decoder recasts the maximum-likelihood prob-
lem (Equation 5) into a search in a tree of height nc (num-
ber of client antennas) and branching factor |O| (con-
stellation size). Figure 4 shows an example for nc = 3
and QPSK (|O| = 4) to which we will subsequently re-
fer. Each level l of the tree corresponds to a decision
on the value of the transmitted symbols from antennas l
through nc, which we will term a partial symbol vector
s(l) = [sl, sl+1, . . . , snc ]). Formulating the problem as a
tree search requires the channel matrix H to be triangular-
ized using a QR decomposition [27] into H = QR, where
Q (of dimension na × nc) has the property that Q∗Q = I
and R = [rij] (of dimension nc × nc) is upper-triangular
(i.e., has zeroes below its diagonal). We can then rewrite
the received signal (Equation 1) as

�y = Rs + Q∗w, where �y = Q∗y, (7)

and the Euclidean distances d(s) as

d(s) = K + ��y − Rs�2 . (8)

where K is an independent constant that can be safely ig-
nored. Since R is upper-triangular, we can now calculate
partial Euclidean distances for the partial symbol vectors,
starting at the top of the tree at level nc. We label each
branch in the tree with a non-negative branch cost

c(s(l)) =

������
�yl −

nc�

j=l

rljsj

������

2

. (9)

As we walk down the tree from the root, a selected branch
at level l prepends a new symbol sl to the partial symbol
vector s(l+1), where s(l+1) is the solution constructed up
to the level above. We calculate the partial Euclidean
distance for all s(l) as

d(s(l)) = d(s(l+1)) + c(s(i)). (10)

Since the branch cost is non-negative, the sphere decoder
prunes all children below partial symbol s(l) if

d(s(l)) ≥ r2, (11)

as they will violate the sphere constraint. This pruning
greatly reduces the number of solutions the sphere de-
coder needs to consider, but notice that further efficiencies
are possible if we visit solutions closest to the maximum-
likelihood solution earlier in our search. The efficiency
of the sphere detector is thus to a large part determined
by the tree-traversal strategy.

l = 3

l = 2

l = 1

12

3 4

1 2 3 4

a

b

c

d

Figure 4: The sphere decoder operating on nc = 3
transmit antennas, each sending a QPSK (|O| = 4) sym-
bol. Constellation points (denoted ×) and corresponding
branches of the tree are numbered at the uppermost level
(l = 3), and the received signal is denoted ◦. Visited
nodes are colored black.

2.3 Traversing the tree
We begin with a depth-first tree-traversal strategy, as it
is the approach we take in Geosphere for reasons that
will become clear later. A simple yet powerful refine-
ment of a textbook depth-first tree traversal is to visit
children of a tree node in ascending order of their partial
Euclidean distances, an idea known as Schnorr-Euchner
enumeration [26] after its inventors.

Continuing our example of Figure 4, conventional
Schnorr-Euchner sphere decoders will first greedily fol-
low the path to a leaf a that minimizes partial Euclidean
distance at each level (this path’s branches are shown
with thick lines in the figure). This entails computing
distances for this path as well as all sibling nodes along
the path (all nodes in this diagram). Upon reaching a,
the decoder sets its sphere radius to d(a) and backtracks
up one level to check the node whose distance is second-
closest, b. Let’s assume that d(b) < d(a); this means that
the sphere decoder needs to expand b, search its children,
and find the one with minimum distance (c). Once this
is finished, the decoder backtracks up one level again to
l = 3 and considers node d. Now d(d) ≥ d(a), so none
of d’s children could possibly be the maximum-likelihood
solution, so the sphere decoder terminates and returns a
as the maximum-likelihood solution.

It is clear that this pruning reduces the number of vis-
ited nodes, but reducing the number of visited nodes does
not necessarily reduce processing requirements. In partic-
ular, the sorting requirement of Schnorr-Euchner enumer-
ation is very computationally expensive for higher-order
constellations (e.g., 16- and 64-QAM), and can therefore
compromise the sphere decoder’s efficiency. In the fore-
going example, in order to determine the node to visit we
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have fully enumerated and sorted all possibilities when
we visited a node not violating the sphere constraint. This
entails, at each step, calculating partial Euclidean dis-
tances for all possible children and then sorting them, a
highly inefficient process, since we will spend processing
power calculating distances for many nodes that we will
never need to expand.

3 Design

This section presents the design of Geosphere, starting
from the enumeration technique we use in order to ef-
ficiently sort children of a node in the sphere decoder
(§3.1), and continuing to describe the improved pruning
technique that we propose (§3.2). Later in Section 5, we
will experimentally evaluate the relative gains of each to
highlight the different roles the two techniques play when
channel conditions are poor and favorable.

3.1 Constellation point enumeration
The goal of Geosphere’s enumeration technique is to de-
termine the order that the sphere decoder should explore
the set of constellation points O, when it is considering
which branch to expand at a particular node in the sphere
decoding tree shown in Figure 4 on the preceding page.
We wish to explore constellation points in order of in-
creasing branch cost, but the only soft information at our
disposal is the received symbol.

However, since constellation distance is related to par-
tial Euclidean distance by

c
�

s(l)
�
= |rll|

2
|�yl − sl|

2 (12)

(where �yl =
�yl−

�nc
j=l+1 rljsj

rll
), it suffices to explore the con-

stellation points in increasing Euclidean distance from
the received symbol in the constellation itself, rather than
as measured indirectly by the partial Euclidean distance
metric.

If we were sending constellation points in one dimen-
sion (this is known as pulse-amplitude modulation, or
PAM), the task is substantially easier, so we discuss this
case first. Figure 5 (left) shows a PAM constellation com-
prised of four constellation points (×) and a received
symbol (◦). To find the closest constellation point to the
received symbol we compare the received symbol against
the decision boundaries indicated by the vertical dotted
lines in the figure (this procedure is called slicing the re-
ceived symbol), and therefore order constellation point
(a) first. The zigzag rule tells us to visit the next closest,
unvisited constellation point from (a) in the direction of
the received symbol; this is (b) in the figure. Subsequent
applications of the same rule take us to (c) and then (d).

a
b cd

Figure 5: Left: The zigzag technique in a one-
dimensional (PAM) constellation visits constellation
points (×) in increasing distance from the received sym-
bol (◦). Right: Dividing a 16-QAM constellation into four
4-PAM subconstellations.

3.1.1 Two-dimensional zigzag enumeration

Now let’s consider the two-dimensional case. We are
in fact seeking an approximation of an expanding ring
search, starting at an arbitrary, continuous-valued received
symbol point ◦. One inexact way of accomplishing this
would be to partition the QAM constellation into PAM
subconstellations as shown in Figure 5 (left), and then
zigzag “vertically” within each subconstellation. But this
approach neglects the in-phase (i.e., horizontal, abbrevi-
ated I) component of the received symbol.

So instead Geosphere first slices the received symbol to
find the closest constellation point (call it a), and begins
the two-dimensional zigzag from that exact constellation
point. Note that the sphere decoder will then expand the
branch corresponding to a and search that subtree. Once
the sphere decoder returns to the node whose constella-
tion points we are sorting, should we zigzag horizontally
or vertically? We try both, since we are trying to find
the next-closest constellation point in (two-dimensional)
Euclidean distance, with the exception that we avoid a
horizontal zigzag if a constellation point from the target
PAM subconstellation is already in our list of outstanding
constellation points to explore. This ensures that we have
at most one candidate constellation point per (vertical)
PAM subconstellation.

Figure 6 on the next page shows the pseudocode for
the algorithm. Notice that as a consequence of the two-
dimensional zigzag rule, the algorithm needs a priority
queue of length at most

�
|O|. By only taking zigzag

steps one constellation point at a time, the algorithm de-
fers the Euclidean distance computation until as late as
possible, often by which time the sphere decoder has
pruned the relevant subtree. We demonstrate this in the
experimental evaluation following this section.

Example. Figure 7 on the following page shows an ex-
ample of the two-dimensional zigzag algorithm working
in a 16-QAM constellation. In each frame, we show the
16-QAM constellation points (×) alongside the received
symbol (◦), above the priority queue Q. In Step (i), the
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Algorithm (two-dimensional zigzag)
1. Initialize a sorted priority queue Q = ∅, comprising

constellation points (maintain Q sorted by Euclidean
distance to ◦ at all times).

2. Find the closest constellation point a to the re-
ceived symbol by slicing ◦ on the constellation’s
decision boundaries. constellation’s decision bound-
aries). Calculate a’s Euclidean distance and enqueue
a → Q.

3. Dequeue Q → x and explore x’s children in the
sphere decoder.

(a) Zigzag vertically from x with respect to ◦: call
the result zv. Calculate zv’s Euclidean distance to
◦ and enqueue zv → Q.

(b) Zigzag horizontally from x with respect to ◦; call
the result zh. If no other constellation point in
zh’s PAM subconstellation is in Q, calculate zh’s
Euclidean distance to ◦ and enqueue zh → Q.

4. Go to Step 3.

Figure 6: Pseudocode for Geosphere’s two-dimensional
zigzag algorithm.

slicer finds the closest constellation point to the received
symbol, a. The sphere decoder explores a, zigzags verti-
cally and horizontally, and enqueues b and c, respectively
in Step (ii). Since b is closer of b and c to ◦, in Step (iii)
the algorithm explores and zigzags from b. But notice
that a horizontal zigzag step from b to e would land in
the same PAM subconstellation as a previously-explored
constellation point (c). Consequently, we only zigzag ver-
tically from b, enqueuing d. In Step (iv), we explore and
zigzag from c, picking up e and visiting all four constel-
lation points surrounding ◦ (the closest to ◦) in Step (v).
Subsequent steps continue in the same manner, filling in
the “expanding ring” around a, b, c, and e.

3.2 Geometrical pruning
We now turn to Geosphere’s approach to pruning off
whole sections of the sphere decoder’s search tree, a key
step in making the search process tractable in practice.

Suppose that the sphere decoder has identified a
currently-best candidate node a (referring to Figure 8)
somewhere in the tree, and now keeps track of the as-
sociated partial Euclidean distance d(a). Recall from
Section 2 that when the sphere decoder visits node x else-
where in the tree it considers whether or not to prune each
branch emanating from x. The most straightforward way
of doing this is to evaluate the exact branch cost c

�
sl
�

for
each, but this requires two floating-point multiplication
operations and an addition.

Geosphere instead uses the constellation’s geometry

(i.) a (ii.) a
b

c

c b

(iii.) a

b

c

d
d c

e

(iv.) a

b

c

d
f d e

f

e

(v.) a

b

c

d
h f d

f

e

h
(vi.) a

b

c

d
i h f

f

e

h

i

(vii.) a

b

c

d
j i h

f

e

h

i

k

j

k (viii.) a

b

c

d
k j i

f

e

h

i

l

j

k

l

Figure 7: Geosphere’s two-dimensional zigzag enumer-
ation in the 16-QAM constellation. We denote constel-
lation points ×, label constellation points whose partial
Euclidean distances have been computed, and denote con-
stellation points that have been explored �.

dI = dQ = 2

a

x

...

...

Figure 8: Geometrically lower-bounding the distance
between received symbol ◦ and another constellation
point at horizontal (dI) and vertical (dQ) offset two from
the closest constellation point. Constellation points are
spaced two units apart.
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to establish a lower-bound on the exact branch cost, as
shown in Figure 8 on the preceding page. If the constel-
lation point corresponding to the branch being tested is
offset from the nearest constellation point by dI horizon-
tally and dQ vertically, Geosphere computes

ĉ
�
sl� =

�
(2dI − 1)2 + (2dQ − 1)2 (13)

based on a fast table lookup indexed on |dI | and |dQ|

instead of floating-point operations, and uses ĉ(·) in-
stead of c(·) in its pruning decision. Since ĉ(·) ≤ c(·),
pruning based on Equation (13) alone doesn’t exclude
the maximum-likelihood solution, but may expand more
branches than pruning based on exact branch costs. For
this reason, if the above geometrical pruning test fails to
exclude a branch, we calculate the branch’s exact cost and
attempt to exclude the branch on that basis.

4 Implementation

We implement Geosphere on Rice WARP v3 radio hard-
ware and WARPLab software. Using WARPLab, we
implement OFDM modulation and demodulation using
4-, 16- and 64-QAM constellations. All clients send data
using 1/2-rate convolutional coding (similar to recent
802.11 standards), and transmitted packets are limited in
size to 500 Kbytes due to restrictions on the maximum
packet size that WARPLab can handle.

5 Evaluation

In this section we measure Geosphere’s throughput perfor-
mance gains and complexity requirements in real indoor
office conditions. First, we show that the indoor wire-
less channel is often quite poorly-conditioned, and that
zero forcing-based techniques are leaving performance
on the table. Then, in terms of throughput, we compare
Geosphere with MIMO systems that use zero-forcing
and attempt to intelligently adapt to poorly-conditioned
MIMO channels by varying the number of antennas and
spatial streams they use. Finally, we evaluate the com-
putational complexity of Geosphere, comparing it with
the well-established depth-first sphere decoder of [12]
which is one the few, and probably the most efficient
solution able to provide the exact maximum-likelihood
performance. Table 1 on the following page summarizes
the experimental results presented here.

Testbed setup. Our testbed consists of single-antenna
clients and four-antenna APs, communicating over a wire-
less channel of 20 MHz bandwidth in the 5 GHz ISM
band. The distance between consecutive AP antennas is
about 20 cm (approximately 3.2λ, where λ is the wireless

U
p

Up

Client for channel character ization

AP for channel character ization

C lient for throughput evaluation and 
channel character ization
AP for throughput evaluation and 
channel character ization

Figure 9: Floor plan of the office space housing the wire-
less testbed used in Geosphere’s experimental evaluation.

wavelength) so that the wireless channels from each AP
antenna to a client are uncorrelated with each other.

We evaluate Geosphere in actual office conditions: Fig-
ure 9 shows the testbed environment, including the places
we position APs and clients. Note that the topology in-
cludes both line-of-site and non-line-of-site paths due to
furniture and people but also due to transmissions pene-
trating through and reflecting off walls.

5.1 Channel characterization
As we mention above (§1), when the channel is well-
conditioned, zero-forcing is a very efficient way to de-
multiplex the interfering streams. So, the question that
naturally arises is whether the channels we face in an
indoor environment are typically well-conditioned. Or
equivalently, is there throughput on the table for Geo-
sphere?

Methodology. To answer this question we measure the
corresponding MIMO channels, for several concurrently-
transmitted streams, across all OFDM subcarriers (i.e. on
slightly different frequencies), and for many different po-
sitions of the clients and APs. Figure 9 shows their exact
positions, with hollow circles and red triangles denoting
client positions in this experiment, and squares denoting
APs.

In order to characterize the corresponding channels we
will use two metrics. The first is the square of the con-
dition number κ2(H) which as discussed in 1 is a good
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Experiment Section Conclusion
Channel characterization §5.1 2×2 indoor MIMO channels are poorly-conditioned 60% of the time;

4 × 4 indoor MIMO channels are almost always poorly-conditioned.
Throughput comparison §5.2 Geosphere achieves 2× throughput gains over multi-user MIMO for

four AP antennas and four clients, and 47% throughput gains over
multi-user MIMO for the 2 × 2 case.

Computational complexity §5.3 Geosphere reduces the required computation for the sphere decoder
by nearly one order of magnitude over the ETH-SD sphere decoder
([12], cf. §5.3), making the sphere decoder practical for dense con-
stellations.

Table 1: A summary of the major experimental results in this paper.

Figure 10: Cumulative distribution across testbed links,
OFDM subcarriers, and spatial streams of κ2 (deci-
bels), the power of the MIMO channel condition number.
Higher values of κ2 indicate worse channel conditioning.

upper-bound on the actual noise amplification due to zero-
forcing. However, this metric doesn’t necessarily pro-
vide us with the actual performance difference between a
zero-forcing system and one using a maximum-likelihood
detector like Geosphere.

The metric of most interest is the signal-to-noise ratio
(SNR) of the kth transmitted stream after being transmitted
over the MIMO channel H: [H∗H]k,k

2σ2 . The SNR of the same
stream after zero-forcing can be easily calculated to be

1
[(H∗H)−1]k,k2σ2 . Thus, the SNR degradation for stream k is

λk =
[H∗H]k,k

[(H∗H)−1]k,k
.

We are interested in limiting the damage done to any
particular user, and so we define our figure of merit Λ to
be the maximum over λk. In other words, Λ denotes the
worst (over clients) SNR degradation due to zero-forcing
noise amplification.

Results. In Figure 10 and Figure 11 we show the the
cumulative distributions of κ2 and Λ respectively, parti-
tioned by different numbers of clients and receive anten-
nas at the AP. In the two-client, two receive antenna case

Figure 11: Cumulative distribution across testbed links
and OFDM subcarriers of Λ, the signal-to-noise ratio
degredation that the most-degraded user experiences for
each particular link.

(i.e., 2 × 2), 60% of the links experience channels with
condition numbers larger than 10 dB while in the 4 × 4
case, nearly all links are poorly conditioned.

To characterize the links in terms of the maximum
SNR degredation that any particular user sees we refer
to the cumulative distributions of Λ (Figure 11). We ob-
serve that the use of zero-forcing will result in 30% of
the MIMO channels experiencing an SNR degradation
of more than 5 dB, while 90% of the channels will face
such a degradation for 4 × 4 links. This shows that there
are a significant number of situations where Geosphere
can substantially increase throughput, especially when
simultaneously serving more clients (increasing both the
clients and receive antennas) as systems such as BigSta-
tion [32] do. From Figures 10 and 11, we also see that if
we fix the number of receive antennas to a large number
(e.g. four), we can achieve a better-conditioned channel
by decreasing the number of clients transmitting simul-
taneously. For example, if only two clients transmit, the
maximum degradation to due to zero-forcing will be less
than three decibels for 90% of the channels. That means
that we can sacrifice channel capacity to reduce the degra-
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dation due to zero-forcing. Then the question is, if we
do that, do we still need Geosphere? This is one of the
questions we will answer next.

5.2 System throughput
We now examine the uplink throughput that zero-forcing
achieves when serving a network of clients, in comparison
with Geosphere. The previous discussion shows that due
to characteristics of the channel there is an opportunity
for throughput improvement for Geosphere, especially for
the 4 × 4 case; we now examine whether Geosphere can
realize these gains in practice.

Methodology. We position clients and APs in a sub-
set of the positions used for channel measurements, de-
noted by hollow circles and hollow squares respectively
in Figure 9 on page 7. We send data to the AP using vari-
ous modulations to characterize performance at different
sending rates: we transmit all 4-, 16- and 64-QAM con-
stellations. We note that the channel is changing due to
people walking nearby. We also note that for this subset
of positions the condition number and the Λ values of
the links are smaller than those when all positions are
included. Therefore, we are evaluating here a particularly
challenging case for Geosphere.

We consider three SNR ranges, 15 dB ±5 dB,
20 dB ± 5 dB, and 25 dB ±5 dB, where the SNR in
question is the average SNR over all transmitted streams.

Results. In lieu of implementing an rate adaptation al-
gorithm, we show throughput results for the constellation
that achieves the best average throughput for the corre-
sponding range; this emulates an ideal bit rate adapta-
tion algorithm. In Figure 12 on the next page we show
achieved throughput for different numbers of clients and
receive antennas. We can see that Geosphere consistently
provides better throughput than zero-forcing. Moreover,
as expected, the throughput gains increase with the condi-
tion number and Λ. In particular, for the 2 × 2 case Geo-
sphere can provide a throughput increase of up to 47%,
while for the 4 × 4 case it can be more than two times
faster. Even in the worst case for Geosphere of two and
three clients and an AP with receive antennas where the
corresponding channels are most often well-conditioned,
Geosphere provides gains of 6%. These throughput gains
are consistent with what we where expecting from our
channel characterization.

Since the condition number of a matrix becomes
smaller with decreasing numbers of concurrently trans-
mitting clients, another question we may ask is whether
zero-forcing and an appropriate time-division schedul-
ing strategy could equal Geosphere’s performance, with

Figure 13: Throughput comparison between zero-forcing
MIMO and Geosphere for different numbers of users
accessing a four-antenna AP at the same time.

fewer clients per timeslot. But Figure 12 on the follow-
ing page shows that this is not in fact true. Geosphere
with four clients and four receive antennas consistently
provides better performance than a zero-forcing scheme
which three transmitting clients, with throughput gains
that can be up to 36% (at 20 dB).

Figure 13 shows the achievable uplink throughput of
zero-forcing and Geosphere for a four-antenna AP when
we increase the number of clients at 20 dB. We see Geo-
sphere achieves linear gains in throughput with the num-
ber of clients while zero-forcing does not.

5.3 Computational complexity
We compare Geosphere against the most efficient known
depth-first sphere decoder implementation able to achieve
the maximum-likelihood solution (we denote this system
ETH-SD in the following experimental results). In particu-
lar we base our implementation of ETH-SD on the sphere
decoding implementation of [6] but instead of decom-
posing the constellation to equivalent constant-amplitude
sub-constellations (i.e., PSK ones) we use the superior
method of [12] which splits the QAM constellation to
horizontal sub-constellations, performs one-dimensional
zigzag and compares Euclidean distances across all sub-
constellations to determine the node we will visit next.
This approach is more efficient for dense constellations
since it involves fewer sub-constellations.

Methodology. First we compare the complexity of Geo-
sphere and ETH-SD using the real experiments we have
collected. In particular, we decode the collected traces
using both sphere decoders and we compare their com-
plexity in terms of partial distance calculations since these
are the main sources of complexity. Since in an OFDM

9



Figure 12: Throughput comparison between zero-forcing MIMO and Geosphere for different numbers of clients and
AP antennas.

system the MIMO processing takes place per sub-carrier,
we show the average required partial distance calculations
across data sub-carriers. In order to show that Geosphere
is the first (to our best knowledge) sphere decoder appro-
priate for the detection of very dense constellations, and
since our WARP platforms cannot reach the required SNR,
we perform trace-driven simulations, using the transmis-
sion channels collected from our live testbed experiments.

Results. In Figure Figure 14 on the following page we
show the average number of partial distance calculations
for all experiments. We see that Geosphere is consistently
less complex than ETH-SD, and the gains increase when
SNR increases, due to fact that Geosphere is more effi-
cient in dense constellations. In the 25 dB range, our
complexity gains can be up to 63%.

As we discussed in the previous paragraphs, the
throughput gains of Geosphere are modest for well-
conditioned channels. So, one could argue that our ap-
proach is not needed, and we ought to switch from Geo-
sphere to zero-forcing. However, the above results show
that Geosphere adjusts its computational complexity to
the transmission environment, and so its complexity for
well-conditioned matrices is actually very small.

In Figure 15 we perform simulations to see the com-
plexity of Geosphere for dense constellations and we split
the gains of Geosphere to zigzag only and full. We show
complexity for the SNR such that each constellation can
reach a frame error rate of 10%. We see that while the
complexity of ETH-SD greatly increases with the order

Figure 15: Complexity comparison between zero-forcing
MIMO and Geosphere for different numbers for dense
QAM constellations through simulations.

of constellation, this is not the case for Geosphere. As
a result Geosphere is about an order of magnitude less
complex than ETH-SD. In addition we see that the zigzag
algorithm is the main source of complexity improvement
for large constellations while the early pruning is signifi-
cant for lower constellation sizes.

6 Related Work

Work on the sphere decoder has been extensive, and we
are not the first to note the importance of and measure
the condition number of the MIMO channel, and propose
solutions for noise amplification. We now discuss related
work in these two areas, as well as in their intersection,
placing Geosphere into context and highlighting our con-
tributions. We finish the section with prior work relevant
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Figure 14: Complexity comparison between zero-forcing MIMO and Geosphere for different numbers of clients and
AP antennas.

to wireless constellation geometry.

Sphere decoder optimizations. Other sorting ap-
proaches that approximate Euclidean distance with sim-
pler norms have been proposed to mitigate sphere de-
coder processing overhead while preserving maximum-
likelihood optimality [6, 12]. However, their computa-
tional overhead remains high when sending dense constel-
lations, making them impractical at high data communi-
cation rates.

Zhao and Giannakis [33] generalize Schnorr-Euchner
enumeration probabilistically to reduce sphere decoder
complexity, but by their own admission, their techniques
are only beneficial in the high-SNR regime (> 22 dB).
By comparison, Geosphere’s techniques are effective over
the entire range of SNRs commonly found in wireless
local-area networks (see §5).

Another body of work, e.g. Peel et al. [21], precodes
(i.e. alters, across antennas) information at the transmitter
in order to simplify the problem. Precoding, however,
requires that clients track the wireless channel as they
move, which adds complexity and can add overhead to
the system. Nonetheless, Geosphere is complementary to
precoding: we expect the two should achieve complemen-
tary performance gains if implemented together.

Breadth-first sphere decoders. In this work we have
focused our discussion on depth-first sphere decoders, as
Geosphere takes this approach, but there is a large body
of work on sphere decoders that explore the decoding tree
breadth-first instead.

The fixed-complexity sphere decoder [4] is a specific
type of breadth-first sphere decoder that initially searches

the first p levels of the tree, then plunges depth first, but
using a branching factor of only one. Jaldén et al. show
that the fixed-complexity sphere decoder can only asymp-
totically reach maxium-likelihood performance at high
SNRs [16]. We view the fixed-complexity sphere decoder
work as complementary to Geosphere, as the key zigzag
and geometrical pruning techniques that we propose in
this work can also be applied to breadth-first sphere de-
coders; we leave an exploration of this for future work.

Finally, we note that the Spinal codes [22] decoder re-
sembles a breadth-first sphere decoder with a bounded
branching factor at each level. However, Spinal codes
uses a novel encoder design that improves performance.
With regards to Geosphere, Spinal Codes are designed for
a point-to-point wireless channel, not the multi-antenna
MIMO channel, but we speculate that they may be ex-
tended to the MIMO channel in the future.

Channel conditioning and noise amplification.
While the MIMO channel condition number has been
previously measured, published measurements are
mostly associated with mobile cellular systems, and
thus often taken outdoors (e.g., Teague et al. [29], in
the 2.16–2.18 GHz frequency band), indoors, but in a
mobile celluar frequency band (e.g., Kita et al. [17]), or
in an unspecified environment (e.g., Agilent Corp. [1]).
Nonetheless, we note that the MIMO channel condition
number distributions obtained in this related work are
roughly comprable to our measurements (§1, §5), suggest-
ing that the problem of poor channel conditioning occurs
in general, in outdoor as well as indoor environment, and
across the range of microwave communication carrier
frequencies.
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Channel hardening [13, 15] refers to the linear increase
in throughput possible in zero-forcing multi-user MIMO
systems, when the number of antennas increases dramati-
cally. This is due to the ability of the access point to select
a set of antennas that results in a well-conditioned MIMO
channel matrix. Among its results, this theoretical work
shows that many more antennas than users are required to
acheive linear throughput gains.

The minimum mean-squared error (MMSE) detector
is an improvement on zero-forcing of similar complexity
that balances between completely decoupling the inter-
fering streams and amplifying noise. However, MMSE
cannot provide substantial throughput gains compared to
zero-forcing in the medium and the high signal-to-noise
ratio regime [31].

In recent wireless systems work, the authors of BigSta-
tion [32] have speculated that their zero-forcing multi-user
MIMO access point may require more than 40 antennas
(or 2× the number of users) in order to mitigate the prob-
lem of a MIMO channel hardening. In this context, our
work on Geosphere offers an alternative solution to dra-
matically increasing the numbers of antennas and radios
(with their associated costs) at the access point.

Chen and Wang [7] analyze the interaction of zero-
forcing and time-division scheduling techniques, deriving
closed-form analytical throughput expressions.

Channel condition-aware sphere decoders. These
sphere decoders adapt their behavior (or even switch be-
tween zero-forcing and sphere decoding) based on the
channel condition number κ(H).

With measurements from random, simulated MIMO
channels, Artés et al. [3] also note the effect of the condi-
tion number on the zero-forcing decoder, and propose a
linear filter that compensates for the distortion the zero-
forcing decoder introduces. While this method makes few
bit errors a small constellation size (i.e., four), it has not
been shown to scale to larger constellations Leveraging
the power of the sphere decoder, Geosphere maintains
performance while scaling to 256-QAM.

Sayana et al. [25] use successive interference can-
cellation [31] and soft information to reduce the effects
of noise amplification in a MIMO system, but their de-
sign is tied to a specific type of coding and modulation
(bit-interleaved coded modulation), whereas Geosphere
is generalizable to many different coding schemes.

Maurer et al. propose a system that switches between
zero-forcing and maximum-likelihood decoding via a
threshold test on the channel condition number [20]. How-
ever, unlike Geosphere, they do not present experimental
results with a real sphere decoder, and use random ma-
trices rather than real MIMO wireless channel matrices,
calling into question the practical applicability of their
simulation-based results. Also missing is a means of

choosing the switching threshold. In a similar vein, Roger
et al. [24] propose a sphere decoder that expands at most
K branches of each node in the decoding tree, varying
K based on κ(H). Compared to both works, Geosphere
makes the sphere decoder practical with new techniques
that markedly reduce its complexity, and we present a full
working system design and experimental evaluation in
real indoor office conditions.

Constellation geometry-aware approaches Brown et
al. [5] use log-likelihood ratios to compute decision re-
gions for the various bits of a grey-coded constellation.
Geosphere’s two-dimensional zigzag enumeration can be
extended to use these decision boundaries to reduce the
number of distance computations even further; we leave
this optimization for future work.

7 Conclusions and Future Work

We have described Geosphere, a wireless multi-user
MIMO system that consistently achieves higher uplink
throughputs than similar systems based on zero-forcing.
Geosphere makes the sphere decoder practical in a real
wireless system sending at high rates (using dense con-
stellations) with two new ideas: two-dimensional zigzag
enumeration, and geometrical pruning.

Scope. We note that since sphere decoder-based tech-
niques need to exchange information between receiving
antennas, Geosphere provides performance improvements
only in the case of the uplink where many clients are trans-
mitting to a single AP, or over individual links where one
AP or client with many antennas transmits (uplink or
downlink) to another AP or client with many antennas.
However, with the shifting ratio of downlink to uplink
traffic driven by file system backup, VOIP, and video tele-
phony, performance improvements in the uplink are direly
needed and increase overall spectrum efficiency.

As a consequence of using the sphere decoder, Geo-
sphere is extendable to iterative soft-input, soft-output
sphere decoders, which combine error control coding
with MIMO to achieve theoretical rates very close to the
MIMO channel capacity. Since these soft-input, soft-
output sphere decoders can be decomposed to many con-
ventional sphere decoders running in parallel [14], we
speculate that we may be able to leverage the techniques
proposed in this work in soft-input, soft-output designs.
One outstanding set of challenges here is how to manage
the corresponding complexity while meeting latency and
power consumption requirements.
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