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ABSTRACT

The recently-proposed AirSync and JMB systems allow
spatially-separated transmitting radios to form a fully
distributed multiple-input, multiple-output (MIMO) sys-
tem. This makes dramatic wireless capacity gains possi-
ble even in networks where mobiles have just one to two
antennas. However, very tight synchronization among
transmitters’ radio oscillators remains the limiting factor
in these systems’ performance. Even a slight loss in syn-
chronization results in misalignment of the concurrently-
transmitted signals and a consequent increase in the num-
ber of errored bits, harming network throughput. Fur-
thermore, the demands of these systems for accurate syn-
chronization increase monotonically with the number of
participating access points (APs), and constellation den-
sity. So in order to maintain synchronization, these sys-
tems rely on periodic synchronization updates between
all radios involved. This substantially limits capacity
gains in the regime of tens of APs and high data rates.

We propose FASTER, a novel approach to synchro-
nization that is orders of magnitude more accurate than
that of the above systems. This frees a large distributed
MIMO system from the need to sacrifice capacity by per-
forming frequent phase updates. We have implemented
FASTER in both simulation and on the Rice WARPv3
FPGA radio platform. Our experimental results show
that FASTER achieves synchronization that is two orders
of magnitude more precise than the best known practical
approaches. FASTER is therefore the first practical syn-
chronization algorithm to support distributed MIMO net-
works of tens of APs in size. It is also the first practical
synchronization algorithm to support distributed MIMO
in the presence of walking-speed client mobility.

1. INTRODUCTION

One of the most fundamental challenges in modern wire-
less communication systems is to meet an ever-increasing
demand for network throughput from ever-increasing
numbers of users. One way of meeting this demand is the
use of spatial multiplexing, whereby radios are equipped
with multiple antennas (i.e., MIMO). Then senders can
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Figure 1: The oscillators of access points (APs) 1 and

2 have respective frequencies f1 and f2, resulting in a

frequency offset ∆f = f1 − f2. Between them they

also have a separate but related time-varying phase

offset of ∆θ, which is critical in determining overall

system performance. Both APs send simultaneously

using standard omnidirectional antennas.

stripe multiple streams of data concurrently over the same
frequency band, increasing network capacity. But as many
have observed [3, 5], the number of antennas at transmit-
ter and receiver limits the gains that MIMO can achieve.
Smaller mobile clients with their limited numbers of an-
tennas exacerbate the issue.

A promising way of overcoming this limit, however,
is to use antennas placed on different clients or access
points (APs), distributing the MIMO system. And so there
is an opportunity for such distributed MIMO systems
to achieve dramatic, multiplicative increases in network
capacity by allowing many clients to receive at the same
time, over the same frequencies. In these systems, APs
exchange data frames to be sent to each client over a wired
Ethernet backhaul, then together send the data frames so
that their combined transmissions corresponding to each
client’s data frame reinforce constructively at that client
and destructively at other clients. This technique is called
transmit beamforming when the system’s goal is to deliver
the data frame to a certain client [1, 14], and interference

alignment when the system’s goal is to reduce interference
to others [5]. Recently, JMB [14] has realized distributed
MIMO’s potential to achieve throughput gains that scale
linearly with the number of clients.

But how far can we push these capacity gains, in the



face of increasing numbers of clients and increasing rates?
The answer lies in a closer look at the factors involved in
a distributed MIMO network’s capacity apart from spatial
multiplexing. These are the following:

1. Phase synchronization. Since the radios’ oscillators
are independent, each experiences a distinct oscillator fre-
quency and phase offset (∆f and ∆θ, respectively) from
every other transmitting AP or client, as Figure 1 shows
for one pair of radios. Even small non-zero values of
∆θ result in misalignment of the concurrent signals and
a consequent increase in bit error rate (BER), harming
throughput. Therefore the first step in the overall synchro-
nization procedure is frequency synchronization, to drive
∆f as low as possible.

Phase noise variation in ∆θ cannot be compensated
by any frequency synchronization algorithm, and there-
fore periodical phase updates are required. However in
practice, while the phase rotation can significantly vary be-
tween adjacent samples (and therefore the instantaneous
frequency can significantly change) the average phase
rotation is usually constant for a relatively long time, For
example, Murphy [11] shows that the average frequency
can be unchanged for several tens of milliseconds. Conse-
quently for such periods of time, phase noise can be well
modelled as additive (thermal) noise.
2. Transmission rate. In the past, bit rate adaptation al-
gorithms have adjusted the transmission rate on a link
to match conditions, sending with a denser constellation
when the wireless channel is strong, and a sparser con-
stellation when the wireless channel is weak. Distributed
MIMO systems’ sensitivity to phase misalignments in-
creases with the density of constellation symbols, and so
in order to push capacity gains in these systems further,
we need to drive ∆θ close to zero.

Furthermore, in order to opportunistically capture in-
stants when a weak channel briefly becomes strong, recent
rateless transmission schemes send with a very dense con-
stellation under all conditions [13]. Thus systems that
attempt to combine distributed MIMO with rateless cod-
ing will place even greater demands on synchronization.
3. Resynchronization period. Even small errors in an
estimated frequency offset will soon result in signifi-
cant phase errors. Therefore, in order to maintain ∆θ
between all radios involved close to zero, a distributed
MIMO system requires periodic phase resynchronization
between radios, but this compromises channel efficiency.
How frequently this needs to happen depends on both
the uncertainty of the algorithm that estimates ∆f , and
second, the dynamics of ∆f itself (which are a prop-
erty of the oscillator). Therefore, further capacity gains
in distributed MIMO systems can be met with the use
of higher-precision oscillators, but this in turn demands
higher-precision frequency estimation algorithms.

These three factors collude to prevent current distributed
MIMO systems from fully achieving capacity gains com-
mensurate with AP count past approximately 10 APs, as
our evaluation shows (§3). In response, we propose a
fundamentally different approach compared to previous
systems. Instead of trying to estimate or track any phase
differences due to inaccuracies of the frequency synch-
ronization process as previous systems do, we seek to
minimize ∆f immediately and directly.

In this paper we present FASTER, a novel frequency
synchronization algorithm that substantially outperforms
prior work in terms of both its frequency estimation ac-
curacy and computational complexity. FASTER achieves
an accuracy close to the Cramer-Rao bound [6], more
than two orders of magnitude better frequency estimation
accuracy than standard approaches [16], while simultane-
ously requiring two orders of magnitude less computation
than other algorithms of similar accuracy [10], whose
computational overhead makes them difficult to realize in
practical systems.

The key to FASTER’s performance gains is that in-
stead of attempting to measure phase rotation directly [10,
16], FASTER uses spectral (Fourier) analysis on the re-
ceived preamble. However, standard spectral analysis is
highly computationally demanding, so FASTER leverages
a generalization of the classical Goertzel algorithm [17]
to evaluate individual terms of a Fourier transform in
a computationally-streamlined manner, thus iteratively
refining its estimate of ∆f .

The level of accuracy that FASTER achieves allows
it to support denser modulations and larger numbers of
simultaneously-sending APs without the need to rely on
lengthening the synchronization preamble or averaging
over many synchronization preambles. This in turn en-
ables FASTER to better support mobile clients. In our
performance evaluation (§3), we show that to achieve
FASTER’s rate and AP counts, the synchronization algo-
rithms that systems such as JMB [14] use need to take
measurements over such a long period of time that both
the channel and ∆f change, invalidating the estimate.

In the next section, we describe FASTER’s design. A
description of our implementation and a performance
evaluation (§3) follows. We then discuss further related
work in Section 4, and conclude (§5).

2. DESIGN

We now sketch the design of a generic distributed MIMO
system, in order to put FASTER into context. In such
systems, one AP acts as a lead AP, broadcasting periodic
beacons, synchronizing the clients and other APs in time.
Multiple APs exchange data and client channel estimates
via a high-throughput backbone network (e.g., Gigabit
Ethernet, optical) and transmit on the downlink together,
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Figure 2: The training sequence added to the begin-

ning of the lead AP’s transmission consists of a short

cyclic prefix followed by S identical training symbols

(denoted “TSk” above).

forming a distributed MIMO downlink. Then, multiple
clients transmit concurrently over the same frequency
band to all APs, forming a distributed MIMO uplink.
Synchronization. The lead AP transmits a training se-
quence to all radios in the network consisting of S identi-
cal long OFDM training symbols, as shown in Figure 2.
Then, upon receiving the training symbols, each other AP
or client calculates its respective ∆f relative to the lead
AP. The effect of ∆f is to rotate the complex received
samples in time, and so correlation-based frequency esti-
mation algorithms like Schmidl-Cox [16] calculate ∆f by
measuring the angle between pairs of received samples
from S = 2 training symbols, which in the absence of
frequency offset would be identical.

Even if the frequency synchronization is very accurate,
after some (long) period of time the resulting phase offset
will be large. This has been correctly noticed in JMB,
and, therefore, we similarly assume that at the beginning
of the frame phase update is required. However, as we
will discuss later in detail, due to FASTER’s, accuracy
phase updates are less frequently required, or equivalently
longer frames can be supported, resulting in a better chan-
nel utilization efficiency.

Another thing to notice is that, after the initial syn-
chronization, we can use FASTER to further update the
frequency estimate by using the preambles used for phase
updates, as long as they these preambles are transmit-
ted periodically. This practically increases the effective
“training” period.

2.1 The FASTER algorithm

In contrast to the Schmidl-Cox and related algorithms
which try to calculate ∆f by measuring phase rotation,
FASTER uses Fourier (spectral) analysis of the received
training sequence. To accurately and reliably estimate ∆f

through Fourier analysis, we have two goals:
1. The input signal should have no other dominant fre-

quency content except for ∆f itself. In other words,
the signal we analyze should be roughly constant in
time except for the frequency offset component.

2. By the law of large numbers, larger averages have less
variance (uncertainty), so we seek to collect energy
from all the received samples, in order to minimize
the uncertainty of our ∆f estimate.

Let’s denote the k
th received sample of the l

th training sym-
bol as rl[k]. Since the S OFDM symbols are 64 samples
long, k ∈ [1, 64] and l ∈ [1, S].

Property 1 holds if we sample the training sequence
shown in Figure 2 at a period of 64 samples, because
the training symbols are identical and the entire sequence
is short enough to go through a stationary channel at
walking- or even driving-speed coherence times. With 64
S-point FFTs, we could therefore make 64 estimates of
∆f and average them together:

F ( r1(1) r2(1) · · · rS(1) ) → �∆f 1
F ( r1(2) r2(2) · · · rS(2) ) → �∆f 2

...
F ( r1(64) r2(64) · · · rS(64) ) → �∆f 64

But if noise causes an error in any of these �∆f
k
, it will

dominate the average and significantly diminish the preci-
sion of the estimate (Property 2).

Another approach might be to sum the received samples
of each training symbol and perform spectral analysis on
the result. However, since the phases of the received
samples vary randomly due to the effect of the channel,
such an addition can be destructive, as the curve labeled
“Addition” in Figure 3 shows. How then can we combine
all the received samples to make a more robust estimate
in noise?

2.1.1 Coherent sample combination

The approach we take is to align all received samples to
have the same phase as the first sample in each symbol,
adding them coherently. In the absence of noise, the ratio
Rl(k) =

rl(k)
rl(1) is constant over all l values, even for non-

zero ∆f . In the presence of noise, for each sample, we
acquire an estimate of the above ratio (R̂(k)) by adding the
corresponding Rl(k) across symbols. From this estimate
we calculate the average phase difference between the kth
sample and the first as φ̂(k) = ∠R̂(k). We are then in
a position to coherently sum across the samples of each
OFDM symbol to yield yl (l ∈ [1, S]):

r1(1) r2(1) · · · rS(1)
r1(2)e−jφ̂(2)

r2(2)e−jφ̂(2) · · · rS(2)e−jφ̂(2)

...
r1(64)e−jφ̂(64)

r2(64)e−jφ̂(64) · · · rS(64)e−jφ̂(64)

y1 y2 · · · yS

We then take an S-point FFT over the [yl] data. Choosing
the maximum of the result yields a coarse initial frequency
offset estimate �∆f initial

. To see the gains of coherent com-
bination against averaging we transmit a training sequence
using the WARP, and after we correct its frequency off-
set, we observe its frequency spectrum. In Figure 3 we
see that the maximum energy of the spectrum formed by
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ent combination is orders of magnitude larger than

the one of simple addition.

coherent combination is three orders of magnitude larger
than that formed by simple averaging. Therefore, since
spectral analysis methods choose the frequency with the
maximum energy, estimators that use coherent combina-
tion are more robust to noise.

2.1.2 Fine frequency offset estimation

Our next challenge is performing a fine-grained, accurate
spectral analysis on the [yl] data.

The spectral resolution of the FFT (and therefore the
quality of the estimate) is a function of its size (NFFT ).
In particular, if some frequency content lies between two
FFT bins (i.e., two integer multiples of 1/NFFT ), then its
power will be observed in the FFT bin whose frequency
is closest to the signal. Therefore, the FFT introduces
an uncertainty of half the FFT frequency bin size, or
1/2NFFT . To reduce this uncertainty we could increase
the NFFT and pad the data with zeroes in the time domain.
However, as show later in Section 3, the required accuracy
implies FFT sizes too large for practical hardware.

FASTER initially performs an FFT of size S (the num-
ber of training symbols). Then to refine �∆f

k
, it employs

the Generalized Goertzel algorithm [17] which calculates
the Discrete-Time Fourier Transform of a signal x(τ)

X (ω) =
∞�

τ=−∞
x(τ)e−jωτ

at specific frequencies ω. For FASTER this becomes:

Y (ν) =
S�

l=1

yl · e
−j

2π
S
ν(l−1). (1)

This can be calculated in two steps. First, we iteratively
calculate

zl = yl + 2 cos
�

2πν
S

�
zl−1 − zl−2 (2)

frequency

1. After initial FFT:

2. After one Goertzel iteration:

3. After two Goertzel iterations:

Figure 4: FASTER’s “binary-search” frequency re-

finement algorithm: at each iteration a star indicates

the true frequency offset and a circle indicates the fre-

quency bin with greatest magnitude. Arrows show

the new frequencies FASTER evaluates.

for l = 1, ..., S+1 and with z−1 = z−2 = rS+1 = 0. Then,

Y(ν) =
�
zS+1 − e

−j
2πν

S zS

�
e
−j2πν . (3)

The initial S-point FFT limits uncertainty to 1
2S

, so we
use the Goertzel algorithm to evaluate the power spectrum
of [yl] at frequencies �∆f initial

±
1

4S
, thus obtaining a new

frequency estimate with half the uncertainty. As shown
in Figure 4, this process is repeated until we reduce the
uncertainty to an acceptable level.

Finally, note that the receiver must estimate the wire-
less channel to the sender. We reuse the synchronization
training sequence for this step, reducing overhead.

3. EVALUATION

In this section we measure the impact of synchronization
on system throughput through simulations, then evaluate
FASTER using simulations and our WARPv3 implemen-
tation. We compare with the following three algorithms:
1. JMB, which measures the phase of pairs of training

symbols and then averages the resultant ∆f estimates
to calculate a final estimate. JMB spreads these pairs
over different frames and therefore each training sym-
bol is used only in one intermediate estimate.

2. A simple extension of the Schmidl-Cox algorithm [16]
(“ESC”) that estimates ∆f repeatedly using overlap-
ping pairs of adjacent training symbols, and averages
the resultant estimates to calculate a final estimate.

3. A highly compute-intensive, non-linear approach pro-
posed by Morelli and Mengali (“MM”) [10] that can
achieve near Cramer-Rao bound performance.

For all simulations we assume an eight-tap, independent
and identically distributed (i.i.d.) Rayleigh channel. We
simulate a distributed MIMO system using zero-forcing
beamforming (similar to JMB). Packets are 1,500 bytes
long, and the data are uncoded, 16-QAM modulated.1

3.1 The need for accurate synchronization

Impact on distributed MIMO system throughput. As dis-
cussed in Section 1, even small phase offsets result in
1Since a frequency synchronization error adds noise, similar
results hold for all coding schemes and constellations.
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Figure 5: Effect of frequency estimation error on

the achievable aggregate rate as function of the num-

ber of APs simultaneously transmitting 16-QAM and

1500-byte packets.

misalignment of concurrently transmitted signals and a
consequent increase in BER, harming throughput. To
quantify this effect, we simulate a distributed MIMO
system’s rate with the only impairment or noise being
a randomly and normally distributed, zero-mean resid-
ual frequency offset of root-mean-square (RMS) error
∆fRMS (given in degrees per OFDM symbol) at the slave
APs. Figure 5 shows that this aggregate rate markedly de-
creases with increasing frequency synchronization error.
We also see that frequency offset estimation errors pre-
vent us from using large AP counts, and that if we want to
increase the number of APs from four to 32, we need an
order of magnitude more accurate frequency estimation.
Frequency oscillator drift. As discussed in Section 2, to
achieve such a level of accuracy we can use long training
synchronization sequences. However, reaching high lev-
els of accuracy requires that both the transmission channel
and the oscillators’ frequency remain static over the train-
ing sequence period. This is tens of milliseconds for
walking-speed, 2.4 GHz systems. Even in the absence of
mobility, the dynamics of ∆f limit the size of the training
sequence that we can use efficiently. Specifically, when
the training sequence is so long that ∆f changes within
its length by an amount greater than the uncertainty of
the estimator itself, the frequency estimate error will be
dominated by the corresponding dynamics.

Murphy [11] has quantified these frequency dynamics
for the WARP platform.2 He shows that within a timescale
of 100 ms the frequency changes randomly with a con-
stant mean and an RMS variance of less than 4 Hz (which
for a 20 MHz, 64-subcarrier system corresponds to about
0.006◦/symbol). Within a period of a 500 ms we can see

2The WARP platform uses a Crystek CVT32 crystal clock oscil-
lator and MAX2829 transceiver [11], which are representative
of the most recent commercial 802.11n/ac chipsets’ higher fre-
quency stability.
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Figure 6: Estimation performance as a function of the

training time. The SNR for simulations and WARP

experiments is 13 and 13–16 dB respectively.

an additional change in the mean value of about 5 Hz, or
an RMS error of roughly 0.013◦/symbol, while within
two seconds we can see changes of more than 15 Hz or
0.022◦/symbol. This highlights that oscillator frequency
dynamics can be the critical limiting factor in distributed
MIMO performance, especially when the system uses
large training sequences. In the next section we look at
the training sequence length that each system requires.

3.2 FASTER evaluation

Estimation accuracy. We compare FASTER’s estimation
accuracy against JMB, ESC, and MM algorithms; both by
simulation and by implementation on the WARP platform
at 20 MHz bandwidth. Using WARPLab we transmit 110
consecutive training symbols. Then, at the receiver, we
perform frequency estimation with each of the examined
methods, using S long training symbols from the data.3
Then, we compare these frequency estimates with the
corresponding estimates acquired over the whole, over-
sampled (at 40 MHz) received sequence which is a much
stronger estimate due to the longer training sequence, and
therefore we take it as the “ground-truth.” We perform the
experiments for an SNR range between 13–16 dB. For
the simulation we assume an SNR of 13 dB. In Figure 6
we first validate that FASTER can reach the near-optimal
performance of MM. In addition, FASTER significantly
outperforms ESC and JMB. In particular, for S = 128,
FASTER is an order of magnitude more accurate than
ESC and two orders of magnitude than JMB, with very
close agreement between simulation and experiments.

Complexity. In Figure 7 we show the complexity of the
different approaches in terms of complex multiplications.

3For a conservative comparison with JMB, we do not incor-
porate OFDM cyclic prefix overhead into S, but JMB’s non-
contiguous training sequences require more cyclic prefixes.
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Figure 7: Complexity comparison of the different fre-

quency estimation methods.

We set the required uncertainty of FASTER less than 10−4

degrees per OFDM symbol. We also show the complexity
for the same target accuracy if instead of FASTER we
perform spectral analysis by using a large FFT (and zero
padding). We see that FASTER is more than an order of
magnitude less complex than the MM, and approximately
four orders of magnitude less complex than the FFT, with-
out compromising the estimation performance. The JMB
and ESC algorithms are less complex but, as we showed
in Figure 6, their accuracy is orders of magnitude poorer
than the one of FASTER and MM.

Channel Utilization and Resynchronization. As we dis-
cussed in Section 1 even small errors in an estimated fre-
quency offset will soon result in significant phase errors.
Therefore, in order to maintain a small phase error, we can
periodically phase resynchronize based on preambles sent
by the lead-AP. Unfortunately, such transmissions reduce
the available time for data transmission, and therefore
reduce the achievable throughput. We now evaluate how
efficiently the channel can be utilized as a function of the
frequency synchronization method and the required phase
synchronization accuracy. Regarding the phase accuracy,
we examine two scenarios. The “loose sync requirements”
scenario assumes that the maximum phase rotation due
to residual frequency error should never be larger than
the RMS rotation in the end of 1500-byte frame with
∆fRMS = 0.01◦/symbol (without any resynchronization).
According to Figure 5 this level of accuracy enables a
nearly linear relationship between throughput and AP
count for up to eight APs. The second, “medium sync
requirements” scenario assumes a maximum frequency
error of ∆fRMS = 0.005◦/symbol. According to Figure 5
this level of accuracy enables a nearly linear relationship
between throughput and AP count for up to 16 × 16 dis-
tributed MIMO. For our calculations we assume that per-
fect phase synchronization can be achieved transmitting
preambles of a single OFDM symbol length. In real-
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Figure 8: Channel utilization rate for different esti-

mators, tight and medium synchronization require-

ments, 13 dB SNR, 16-QAM and 1500-byte packets.

ity, longer preambles may be needed to acquire accurate
phase estimates in noisy environments, which will result
in further throughput degradation than the ones we show
due to phase updates. In this case, the accuracy of the syn-
chronization algorithm will be even more significant. For
our evaluation we use the results of Figure 6 for an SNR
of 13 dB. Figure 8 shows that FASTER significantly out-
performs all other approaches with gains which increase
when the synchronization requirements become tighter.
We note that depending on the accuracy of the estimate,
the frequency error could be such that resynchronization
is required every OFDM symbol, resulting in a complete
degradation of channel utilization and throughput.

Explaining JMB’s linear throughput gains. The natural
question that arises after the previous discussion is why
JMB achieves its published throughput gains, which scale
linearly with the number of clients. To explain this we run
some additional simulations evaluating ∆fRMS (Figure 6)
for 13 dB SNR and even larger training sequences. In or-
der for JMB to achieve a ∆fRMS accuracy of 0.01◦/symbol
(sufficient for a close-to-linear throughput increase for a
8× 8 system), it requires a training sequence of 6.5× 104

symbols (about 210 ms for a system at 20 MHz). In indoor
static environments where coherence time is hundreds of
milliseconds ([14], §5), JMB therefore excels.

Then why do we need FASTER? In order to achieve
a ∆fRMS accuracy of 0.004 (sufficient for a 16 × 16 sys-
tem) at 13 dB, FASTER requires 128 OFDM symbols
(410 µs at 20 MHz), and JMB requires 5 × 105 OFDM
symbols (1.7 seconds at 20 MHz), which exceeds an in-
door stationary channel coherence time. In addition, as
Murphy [11] shows, frequency oscillator changes would
reach more than 0.017◦/symbol, preventing JMB from
reaching the accuracy of FASTER in this regime. This
therefore precludes JMB from scaling in large distributed
MIMO systems with 16 APs or more, or being used in mo-
bile environments where the coherence time can be down
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to a few milliseconds, as in the case of walking-speed
client mobility in the 5 GHz band.

4. RELATED WORK

Two recent distributed MIMO systems, JMB [14] and Air-
Sync [1], have demonstrated in practice that such systems
can achieve dramatic increases in network throughput.
We have discussed JMB at length in the preceding, so
focus on AirSync in this section.

AirSync achieves tight synchronization by exploiting
full-duplex wireless communication. A lead AP broad-
casts pilot tones, while the other APs receive these tones
while transmitting and use Kalman filtering to phase-
synchronize their own transmissions. The lead AP, how-
ever, transmits these tones outside the data band, consum-
ing additional bandwidth. In addition, the Kalman filter’s
convergence time limits synchronization accuracy in the
presence of frequency offset dynamics.

Since frequency synchronizaion is one of the most
important tasks performed in wireless receivers, the cor-
responding literature is very rich. However, it typically
focuses on how to extend the frequency estimation range
and estimation performance when using one or maximum
two OFDM symbols. FASTER, goes one step further.
It applies to long training sequences which are required
when the estimation accuracy provided by short train-
ing sequences is insufficient, as in the case of distributed
MIMO systems. Typical frequency synchronization tech-
niques ([9, 10, 16]) employ short preambles (one or two
OFDM symbols) that consist of identical parts. Estima-
tion of the frequency offset is then performed by calculat-
ing phase rotations between these identical parts. Except
for the MM algorithm which we have extensively dis-
cussed, such methods are not applicable large training
sequences or to very large frequency offsets. This is be-
cause they require phase rotation, due to frequency offset,
between identical parts should not exceed 2π. To avoid
this problem and to reduce computational complexity,
Cvetkovic et al. have recently proposed in [4] to perform
phase unwrapping and to perform estimation using the
phases of the received samples instead of their complex
values. While Cvetkovic proposed the algorithm for short
training symbols (i.e., one OFDM symbol), it is also ap-
plicable to long training sequences. However, the main
drawback of the approach is that its complexity is a func-
tion of the frequency offset, and can thus explode for
small frequency offsets. In particular, its maximum com-
plexity when applied to FASTER’s sequence is O(64∗S

2)
which, as we see in Figure 7, is similar to the complexity
of the MM algorithm. Instead of using known preambles,
Van de Beed et al. [18] suggest to exploit the redundancy
of the cyclic prefix over data transmission while Bolcskei
[2] suggests to explore the statistics of the received data
OFDM signal. However, to apply such approaches in a

fully distributed MIMO system, the slave APs should be
able to receive the signal from the lead AP while trans-
mitting to the clients. In other words, and in contrast to
FASTER, such techniques require APs with full-duplex
capabilities.

Similarly to FASTER, Lei and Ng [7] perform spectral
analysis to estimate the frequency offset. In particular,
they show we can find can find the maximum-likelihood
frequency estimate via spectral analysis. However, in
order to cope with the complexity of calculating the pe-
riodogram, and avoid zero-padding, they propose a sub-
optimal algorithm which requires a specific pilot structure
(i.e., an OFDM symbol with distinctively spaced pilots),
which prohibits its use for concurrent synchronisation and
highly accurate channel estimation (i.e., it would require
frequency domain interpolation), as is feasible with FAS-
TER. FASTER, on the other hand, is applicable to Lei and
Ng pilot structure. In addition, the algorithm of Lei and
Ng uses only a single OFDM symbol, and its extendabil-
ity to long training sequences is not examined. Such an
extension is feasible by means of FASTER’s techniques.
In [8] Li et al. also perform spectral analysis but they use
aggressive zero-padding to compute the periodogram up
to the required accuracy which, as we discussed, is not
efficient for highly accurate estimators.

Finally, methods to compensate for the effects of the
residual frequency offset at the receiver side have been
proposed in [12, 15]. However, such approaches cannot
compensate for the effects of erroneous precoding, but
only for distinct syncronization errors between APs and
clients.

5. CONCLUSION

We have described FASTER, a synchronization algorithm
for distributed MIMO wireless networks. FASTER’s di-
rect and highly-accurate frequency offset estimate enables
distributed MIMO at scales greater than were possible
before, with respect to transmission rate, number of APs,
and number of users.
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