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Abstract:

Ubiquitous crowd-sourcing has become a popular mechanism to harvest knowledge from the
masses. OpenStreetMap (OSM) is a successful example of ubiquitous crowd-sourcing,
where citizens volunteer geographic information in order to build and maintain an accurate
map of the changing world. Research has shown that OSM information is accurate, by
comparing it with centrally maintained spatial information such as Ordnance Survey.
However, we find that coverage is low and non uniformly distributed, thus challenging the
suitability of ubiquitous crowd-sourcing as a mechanism to map the whole world. In this
paper, we investigate what contextual factors correlate with coverage of OSM information in
urban settings. We find that, although there is a direct correlation between population density
and information coverage, other socio-economic factors also play an important role. We
discuss the implications of these findings with respect to the design of urban crowd-sourcing
applications.



Putting Ubiquitous Crowd-sourcing into Context

ABSTRACT

Ubiquitous crowd-sourcing has become a popular mecha-
nism to harvest knowledge from the masses. OpenStreetMap
(OSM) is a successful example of ubiquitous crowd-sourcing,
where citizens volunteer geographic information in order to
build and maintain an accurate map of the changing world.
Research has shown that OSM information is accurate, by
comparing it with centrally maintained spatial information
such as Ordnance Survey. However, we find that coverage is
low and non uniformly distributed, thus challenging the suit-
ability of ubiquitous crowd-sourcing as a mechanism to map
the whole world. In this paper, we investigate what contex-
tual factors correlate with coverage of OSM information in
urban settings. We find that, although there is a direct corre-
lation between population density and information coverage,
other socio-economic factors also play an important role. We
discuss the implications of these findings with respect to the
design of urban crowd-sourcing applications.
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INTRODUCTION

Cities are highly dynamic entities, with urban elements such
as businesses, cultural and social Points-of-Interests (POlIs),
housing, and the like, continuously changing. Maintaining
accurate spatial information in these settings has become an
incredibly onerous task, rendering some centrally-maintain-
ed public datasets obsolete [14]. A solution made possi-
ble by the upraise of social media is crowd-sourcing, where
user-generated content can be cultivated into meaningful and
informative collections, as exemplified by sites like Wiki-
pedia [24]. This form of crowd-sourcing is no longer con-
fined to the Web: equipped with powerful mobile devices,
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citizens have become surveyors, with council-monitoring ap-
plications like FixMyStreet;' reporters, with micro-blogging
sites such as Twitter;? and cartographers, with geo-wikis like
Cyclopath? and OpenStreetMap.*

OpenStreetMap (OSM) is perhaps one of the most success-
ful examples of ubiquitous crowd-sourcing, with currently
over 547,270 users, collectively building a free, openly ac-
cessible, editable map of the world. OSM exhibits ubiqui-
tous features, because of the spatio-temporal nature of the
knowledge it gathers (map elements of the changing world).
Furthermore, Hecht et al. [9] have shown that the “local-
ness” of participation in repositories of user-generated con-
tent with geospatial component is high if the available edit-
ing tools make use of GPS, as is the case with OSM (acces-
sible and editable via mobile phone applications). It can thus
be assumed that editing urban elements in OSM is done by
citizens who have actually visited that location.

The geographic information stored in OSM has been demon-
strated to be of high quality, where quality has been mainly
measured in terms of positional accuracy. Indeed, OSM’s ac-
curacy has shown to sometimes supersede the most reputable
geographic datasets, performing especially well in urban ar-
eas [6, 13]. However, relying entirely on user-generated con-
tent for urban mapping raises concerns, not only in terms
of accuracy of the collected information (which, for OSM,
is presently high), but crucially in terms of coverage. In
other words, what part of the physical world is being dig-
itally mapped? Studies that looked at who the main contrib-
utors of crowd-sourcing systems (i.e., Wikipedia) are have
shown these to be a group of predominantly young and edu-
cated male [3]; they also reported a large gender gap among
editors (87% male vs. 13% female). As the crowd-sourcing
user base is not representative of the world population, can
we expect the geographic content they contribute to be repre-
sentative of the whole physical world? To answer this ques-
tion, we performed a study in the area of Greater London,
UK, where OSM was originally created and launched, and
where the community of contributors is particularly active.
As we shall demonstrate in the paper, OSM map features are
not uniformly distributed across the city. This raises a funda-
mental question: what contextual factors contribute to cover-
age of volunteered geographic information in urban settings?

"http://www.fixmystreet .com/
https://twitter.com/
*http://cyclopath.org/
‘http://www.openstreetmap.org/



Answering this question is necessary, so to understand where
crowd-sourced map information can be relied upon (and cru-
cially where not), with direct implications on the design of
applications that rely on having complete and unbiased map
knowledge.

In this work, we investigate to what extent various socio-
economic factors of urban areas correlate with coverage of
crowd-sourced geo-spatial data. Although this research ques-
tion has been studied extensively in the social sciences [22,
7], it has received limited attention from the ubiquitous com-
puting community. Thus, in this paper, we report on a study
that aims at discovering the contextual factors that impact
coverage of information in OSM for the city of London,
UK. As one can expect, we find that coverage is directly cor-
related with population density; however, we also find that
other socio-economic factors are highly significant.

The rest of this paper is structured as follows: after a brief
overview of the state-of-the-art in ubiquitous crowd-sourcing
research, we describe the dataset at hand, the metrics we
computed, and the methodology we adopted. We then il-
lustrate the results of our analysis, before moving on to the
discussion section, where we state the implications of these
findings for the design of ubiquitous crowd-sourcing appli-
cations. We finally conclude the paper and elaborate on fu-
ture directions of research.

BACKGROUND AND RELATED WORK

Ubiquitous crowd-sourcing is a form of collective gathering
of user-generated content that has seen a massive uptake in
recent years, thanks to the combined and wide adoption of
mobile technology and social media. A popular example of
user-generated content is volunteered geographic informa-
tion (VGI), such as that maintained by OSM. In order for
businesses (e.g., Foursquare) to rely on VGI as opposed to
proprietary datasets (e.g., Google Maps), quality of the con-
tributed information must be high. For years, the research
community has studied the quality of such information [4],
compared to traditional geographical datasets maintained by
national mapping agencies, as well as proprietary datasets
maintained by commercial companies such as Navteq.’ The
findings show very high accuracy: for example, Haklay et
al. [5, 6] measured the positional accuracy of OSM road net-
works in the UK and found it to be very high (i.e., on av-
erage within 6 meters of the position recorded by Ordnance
Survey). The authors have also investigated the impact of
the number of contributors on positional accuracy, and esti-
mated that high accuracy is achieved when there are at least
15 contributors per square kilometre. Works such as [2, 12]
have confirmed these observations for countries like France,
Germany and Switzerland. Moving from accuracy to cov-
erage of OSM data, a recent study by Zielstra et al. [25]
shows that coverage in Germany sharply decreases as we
move away from city centres; Girres et al. [2] also discov-
ered a correlation between the number of OSM objects in an
area and number of contributors in that area (i.e., areas with
up to three contributors per square kilometre had ten times
more contributions than areas with only one contributor, and
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areas with more than three contributors had up to hundred
times more contributions).

A limitation to the studies conducted by the VGI community
on OSM is the focus on road networks only. However, the
contribution process associated with editing roads and that
associated with editing Points-of-Interests, such as restau-
rants and cafes, differ greatly: indeed, the former is typically
done by a selected number of users who have high expertise
in both the geography of an area and the editing tools re-
quired to digitally represent it; the latter can be performed
by any city dweller owning a GPS-enabled smart-phone in-
stead. It is the latter that is most representative of citizen
engagement. In this work, we thus focus on eliciting the fac-
tors that relate to coverage of crowd-sourced POIs in urban
areas.

OSM is not the only example of crowd-sourced urban in-
formation. For example, Cyclopath is being successfully
used to digitally map route information for bicyclists in Min-
neapolis. The system has been widely studied by the aca-
demic community, both in terms of its design and rationa-
le [18], its effectiveness [20] and in terms of user’s partic-
ipation and behavioural analysis [19, 15, 16]. In [19], for
example, the authors investigated the techniques and moti-
vations that lead to an increased amount of volunteered geo-
graphic information in Cyclopath. They found that visually
highlighting contribution opportunities and asking users to
work on an area that they are mostly familiar with, lead to
better coverage. Similarly, [18, 20] discovered that cyclists
were interested in sharing their expertise with each other, to
cover gaps in terms of missing routes in the geo-wiki, thus
increasing coverage of the crowd-sourced information.

These studies offered valuable insights into the motives be-
hind user’s participation and the impact they have on urban
crowd-sourcing. Another important aspect is understanding
the contextual factors that may affect crowd-sourcing cov-
erage. This line of research has been explored extensively
in Wikipedia, where contextual factors of contributors have
been analysed in relation to coverage. For example, [10]
studied gender imbalance in Wikipedia, and reported on how
topics of particular interest to females were substantially less
covered than topics of specific interest to males. In [8], the
indegree summation (i.e., number of inlinks per article in the
Wikipedia Article Graph) on 15 different language editions
of Wikipedia was analysed; their findings suggest that popu-
lation is not the most important factor to be considered, and
other factors such as fluency in languages are more strongly
correlated with indegree instead. They conclude that, when
developing technologies to rely upon community maintained
repositories, contextual factors of the contributors, such as
language and culture, must be carefully examined. This has
been done in other user-generate content datasets too; for
example, [17] proposes a machine learning technique for es-
timating location and gender of Flicker users based on the
tags they associate to the content they produce.

The work we present in this paper falls into the stream of re-
search that aims to understand the relation between contex-



tual factors and coverage of user-generated content. More
precisely, we focus our attention on OSM, an example of
ubiquitous crowd-sourcing, where content has a distinct
spatio-temporal nature. In this domain, we aim to under-
stand the impact that urban factors, such as population den-
sity, distance to the city center, poverty, and the like, have on
OSM coverage. We delve into this study next.

RESEARCH METHODOLOGY

Dataset Description

We begin our study with a detailed description of the crowd-
sourcing dataset at hand, that is, OpenStreetMap. The dataset
is freely available to download and contains the history of
all edits (since 2006) on all spatial objects performed by all
users. In OSM jargon, spatial objects can be one of three
types: nodes, ways, and relations. Nodes are single geospa-
tial points, defined using latitude/longitude coordinates, and
they typically represent POIs; ways consist of ordered se-
quences of nodes, and mostly represent roads (as well as
streams, railway lines, and the like); finally, relations are
used for grouping other objects together, based on logical
(and usually local) relationships (e.g., administrative bound-
aries, bus routes).

For the purpose of this study, we restricted our attention to
nodes only. In particular, as our choice of sampling strat-
egy, we focused on those that represent urban elements com-
monly interpreted as leisure POISs, such as cafes, restaurants,
pubs and bars. These are the categories that are most com-
mon to mobile applications such as MyCityWay,® Google
HotPot” and Foursquare,® which are used by city dwellers to
navigate the urban landscape. To ensure we are considering
genuine crowd-sourcing contributions, and not those made
by bots (i.e., mass imports), we have eliminated from the
dataset those users who performed an excessive number of
edits in a very short time (i.e., those who edited more than 40
POIs in a single changeset session in OSM, with the thresh-
old of 40 chosen after manual inspection of the per-user edit
distribution). Finally, we focused on the area of Greater Lon-
don, UK, which is an example of urban city with many ad-
ministrative districts with different socio-economic factors
(as we shall present later). The resulting crowd-sourcing
dataset consists of 818 users, editing 9,573 POIs by means
of 19,139 edits overall.

In order to compute coverage of OSM, we required (i) a
benchmark against which to compare OSM POIs and (ii) a
matching algorithm to map OSM POlIs to those in the bench-
mark dataset.

Benchmark. We required a ground-truth dataset, contain-
ing all POIs physically present in each chosen area. For this
purpose, we selected Navteq, the leading global provider of
maps and location data, covering not only roads but also mil-
lions of POIs of varying nature, from restaurants to hospitals
and gas stations. Being a commercial service, Navteq’s pri-
mary objective is to ensure the highest level of accuracy of

*http://www.mycityway.com
"http://www.google.com/hotpot
$https://foursquare.com

Amenity Perc. in OSM Amenity Perc. in Navteq
Post box 18% Restaurant 12%
Nightlife 15% Vehicle Repair 8%
Place of Worship 6% School 8%
Restaurant 6% Clothing Store 6%
Bicycle Parking 6% Nightlife 6%
School 5% Cafe 5%
Cafe 4% Grocery Store 3%
Other 40% Other 52%

Table 1. Amenity Distribution in OSM and Navteq

its data (the information contained there is factually correct
and up-to-date).

Table 1 reports on the most popular amenity categories in
OSM and Navteq separately. It is worth noting that, while
OSM also deals with objects that are of interest to the com-
munity, such as post boxes (18%) and bicycle parking (6%),
Navteq is primarily concerned with commercial entities in-
stead, such as restaurants (12%) and clothing stores (6%).
In this work, we restrict our attention to what we call leisure
POIs, to indicate those categories which have a presence in
both OSM and Navteq.

POI Matching Algorithm. To be able to measure cover-
age, we first need to relate POIs in OSM with the same
POIs in the ground-truth dataset in an automatic way. In
both OSM and Navteq, a POI is defined as a tuple: poi =
(name, (lat,lon)), where name is the POI’s name, and (lat,
lon) are the coordinates determining its geographical posi-
tion. We then define and quantify, for each POI in OSM, two
measures: geographic error and lexicographic error. More
precisely, let poi, be a single POI, and POI, the set of all
POIs, with z being either the OSM dataset or the ground-
truth dataset (to which we will refer, for convenience, sim-
ply as gt). We thus state that poi,s,, is equivalent to poig
if both their geographic distance and lexicographic differ-
ences are below some specific thresholds. The geographic
distance geog,r (-, ) is computed as the Euclidean distance
between the two points, while the lexicographic difference
lexical g (-, -) is computed as the Levenshtein distance be-
tween the POI names normalized between [0,1] by the length
of the POI names.

To determine suitable thresholds to use in our POI match-
ing algorithm, we proceeded as follow: we first considered
a subset of 100 POIs from OSM, computed geographic and
lexicographic distance to all ground-truth POIs, and deter-
mined the ‘closest match’ for each of these. We then man-
ually inspected which of these were indeed matches, and
which were not. Based on this inspection, we empirically de-
rived a threshold of 100 meters for the geographic distance,
and a threshold of 0.33 for the lexicographic difference. To
further validate these choices, we ran the matching algorithm
using these thresholds; upon completion, we selected a small
(different) subset of 30 POIs, and manually inspected the
correctness of the matches. We found that 97% of these had
been correctly matched, while only 3% were not. For il-
lustrative purposes, Table 2 presents some examples of POIs
that our matching algorithm correctly relates (first three), de-
spite some lexicographic and geographic error; it also illus-



[ OSM name [ ground-truth name [ geoErr [ lexical g,y [ Equiv. l

Rondhouse Rondhouse Om 0 Yes
The Green Gate Green Gate 33m 0.28 Yes
Smollenskys Bar Smollensky’s 48 m 0.33 Yes

Eardley Arms Eardley Garage 145 m 0.29 No
Whittington Stone Whittington NHS 180 m 0.29 No

Table 2. Some example of POIs in OSM and ground-truth dataset with
different values of geographic distance and lexicographic difference

trates two examples of correct mismatches (the POIs in OSM
are pubs, while those in Navteq are a garage and a hospital
respectively).

Metric. Based on the above mapping, we have evaluated

coverage of OSM POlIs for Greater London as:

#({POIs in OSM} N {POIs in Navteq})
#{POIs in Navteq}

coverage =

with coverage € [0, 1]. The higher the coverage, the higher
the extent to which the ground-truth POIs are also present in
OSM.

Contextual Factors of OSM

Our hypothesis is that there is a strong relationship between
socio-economic characteristics of an urban area and the level
of coverage that can be expected of this area by means of vol-
unteered contributions. To validate this hypothesis, we focus
on OSM coverage for London at a finer level of granularity
than the city level, that is, the level of wards. We have cho-
sen this level of granularity as wards are the smallest regions
defined by local authorities in London.”

London presently comprises 600 wards. Figure 1 illustrates
the frequency distribution of ground-truth POIs at ward level.
As it can be seen from the head of the distribution, there are
many wards with less than 5 POIs, and a long tail of a few
wards with many POIs. To avoid biased analysis due to spar-
sity of this data, we have considered only wards that have
5 or more POIs. In so doing, we disregarded 120 wards,
analysing 480 of the original 600. For each ward, we have
collected the following contextual factors:

Population. Using UK Census 2011 data published by the
National Statistics Office,'® we have information about
population at ward level. Previous studies of OSM cover-
age for road networks have revealed a correlation between
the number of contributors in an area and the number of
OSM objects digitally mapped in that area [2]. We have
thus selected population as an attribute for investigation
in this study, as it can give us an expectation of contribu-
tions per area. Although higher population density does
not directly translate into higher number of contributors,
we may expect more contributors per unit area to exist in
denser areas. The hypotheses we thus want to test are:
(i) the higher the population density of an area (that is,

*http://data.london.gov.uk/datastore/package/
ward-profiles-2011
Yhttp://www.ons.gov.uk/ons/guide-method/cen
sus/2011/census—-data/2011-census—-prospectus/
index.html
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Figure 1. Frequency Distribution of POIs at Ward Level

population divided by ward size), the higher the coverage;
and (ii) the higher the population per POIs in an area (that
is, population divided by number of POIs), the higher the
coverage.

Poverty. Analysing the relationship between poverty of an

area and coverage is important, as it may reveal the im-
pact that (lack of) technology adoption (e.g., use of smart-
phones and Internet), as well as (lack of) available leisure
time, has on it. In this regard, UK Census data contains in-
formation about the Indices of Multiple Deprivation (IMD).
IMD are a set of indicators, published by the UK Office
for National Statistics, measuring deprivation of small ge-
ographic areas known as Lower-layer Super Output Areas
(LSOA) in England. IMD consist of seven domain indica-
tors. The one we are interested in this study is the Income
Deprivation Index, that measures the number of people
claiming income support, child tax credits, or asylum; we
refer to this factor as poverty henceforth. The hypothesis
under test is that poverty of an area is negatively correlated
with digital mapping of its POIs. This is another impor-
tant aspect to look into, if we are to rely on volunteered
mapping information alone, as it may reveal where gaps
arise, thus enabling intervention via contingency plans.

Dynamic Population. While the previous two factors cap-

ture ‘static’ characteristics of the residents of an area, they
do not reveal much about the actual pulse of the city, that
is, where city dwellers (i.e., the potential contributors of
ubiquitous crowd-sourced information, be them residents
or tourists) spend time. We thus add a dynamic attribute
based on Foursquare check-ins, which we refer to as dy-
namic population.

We acknowledge that Foursquare and OSM share com-
monalities: neither represents fully the urban population,
with a bias towards young, educated and wealthy people;
furthermore, the type of content they gather has a com-
mon spatio-temporal nature. However, despite these com-
monalities, we do not expect the behaviour of the crowds
that contribute to these systems to be the same: this is be-
cause, in Foursquare, users contribute data (check-ins) to
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show/share their location and social life with their friends,
reflecting an egocentric behaviour, whereas OSM editors
contribute in order to improve the existing map, thus ex-
hibiting a community behaviour. We are thus interested
in studying what dynamic population can reveal with re-
spect to coverage. We measure dynamic population based
on the last four years of Foursquare activity in London,
computing the density of check-ins per ward (i.e., the to-
tal number of check-ins in a ward divided by its size);
Figure 2 shows a choropleth map of such density distri-
bution across all wards in London: the darker the ward,
the higher the density of check-ins. Similarly Figure 3
illustrates the histogram approximating the frequency dis-
tribution of density of Foursquare check-ins at ward level:
as shown, there are many wards with very low check-ins
density, and a long tail of wards with higher check-ins
density.

Distance to the Closest Poly-centre. The last factor we con-
sider is the distance from where the social and economic
activities happen. Previous studies on OSM have shown
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that road coverage decreases when moving away from the
city centre [25]. Similarly, we are interested to exam-
ine the effect of distance from the city centre on cover-
age. However, in metropolitan cities there is not just one
centre but multiple urban hubs [1]. Specifically, a recent
study [21] has found that London has 10 different polis.
In this work, we thus computed the Euclidean distance
from the geographic centre point of each ward to the geo-
graphic centre point of each of the 10 polis. We then used
the shortest distance as our ‘distance from the centre’ fac-
tor, and tested the hypothesis that the closer to the centre,
the higher the coverage.

RESEARCH RESULTS

This section reports on the results of our analysis. We first
considered the area of Greater London as a whole, for which
we found coverage to be 0.35. However, this single aggre-
gate value does not reveal much in terms of what areas of
London are being digitally mapped. Figure 4 illustrates the
choropleth map of London’s coverage, where each tile rep-
resents a ward. As shown, coverage is non-uniformly dis-
tributed across the city. Previous studies on coverage of
OSM for road networks have revealed that distance from the
city centre is inversely related to coverage [25]; although at
a first approximation a similar pattern seems to emerge for
POIs too (i.e., the further away we move from the city cen-
tre, the worse the coverage), we can also identify various
suburban areas with high coverage instead. We thus hypoth-
esise that distance from the city centre cannot fully explain
coverage.

Figure 5 further shows the histogram approximating cover-
age distribution at ward level. As shown, there are many
wards where coverage is very low (= 0), and a few wards
where coverage is quite high (= 0.6) instead. We now pro-
ceed to analyse what contextual factors contribute to this dis-
tribution. The factors we are interested in are those listed in
the previous section, that is: population density, population
per POI, poverty, dynamic population, and distance from the
closest poly-centre. To quantify the extent to which cover-
age is related to such parameters, we proceeded in two steps:
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Factor [ B [ R? [ p-value ]
Population Density 0.075 | 0.10 oAk
Population per POI 0.005 | 0.00

Poverty -0.021 | 0.01 *
Dynamic Population 0.090 | 0.15 ok
Distance from the Nearest Poly-centre | -0.085 | 0.13 oAk

Table 3. 3 Coefficient, Multiple R? and p-value of Single Linear Re-
gression Models of Coverage on Socio-Economic Factors at Wards
Level (p-value significance. codes: 0 “**% (0,001 ‘*** 0,01 ‘** 0.05 ¢’
1

first, we used single linear regression, considering one pa-
rameter at a time as independent variable, and analysed how
coverage varies with it. Second, we applied a multiple re-
gression model, so to control for the various parameters at
play simultaneously. In all models, all our parameters fol-
lowed normal distribution, with the exception of dynamic
population for which we computed the natural logarithm.
Finally, in order to easily interpret the 3 coefficients of the
regression models, we computed the z-scores of each pa-
rameter; in so doing, 3 coefficients indicate the increment in
coverage for one unit of standard deviation increment of the
corresponding parameter.

We begin analysing the results of the five single linear re-
gression models independently. For each such model, Ta-
ble 3 reports (i) the 3 coefficient, representing the indepen-
dent contribution of each factor to coverage, (ii) R?, indi-
cating how well each regression model fits the data, and (iii)
p-value, indicating the significance level of each presented
result.

Population Density

We first focus our attention on population density, i.e., the
number of people over the number of hectares of each ward.
Our intuition is that citizens care most about the area where
they live, thus being actively involved in digitally mapping
their space. As a consequence, we expect that wards with
higher coverage are those where population density is partic-
ularly high. Table 3 indeed confirms that population density
is positively correlated with coverage (3 = 0.075, R? =
0.10, p-value < 0.001). In particular, the 3 coefficient of
0.075 indicates that an increment in population density of
50 people per hectare (i.e., of one unit of standard devi-

ation) would improve coverage of that ward by 0.075. If
we consider the distribution of coverage of Greater London
(as shown in Figure 5), this increment corresponds to 25%
increase in coverage for the average case. The R? value
is however fairly low, suggesting that a regression model
purely based on population density does not fully explain
the residual between actual and expected coverage.

To further understand the relation between coverage and pop-
ulation density, the box plot of Figure 6 shows how cover-
age varies with the change in population density. In particu-
lar, the plot for each range of population density presents: a
bin graphically depicting the smallest observation, the lower
quartile, the median, the upper quartile, and the largest ob-
servation for that range of population density. The circles
in the figure are the observations that are considered to be
outliers. From Figure 6, we can thus see the effect that pop-
ulation density has on coverage (as one grows, so does the
other). It is worth noting that there exist very few outliers,
thus confirming the validity of our results (i.e., positive cor-
relation between population density and coverage).
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Figure 6. Coverage vs. Population Density

Population per POI

We now move our attention to population per POI, that is, the
number of people over the number of (ground-truth) POIs
for each ward. The hypothesis we examine here is whether
having more people per POI in an area means better cov-
erage of the information in that area. If so, we could then
aim to identify a minimum number of people per POI that
is required to expect the POI to be mapped, as done in [6]
for roads. Interestingly, our analysis (Table 3) reveals oth-
erwise (8 = 0.005, R? = 0.00, p-value > 0.05). The box
plot of Figure 7 depicts variation of coverage with regards to
population per POI; as shown population per POI bears no
correlation with coverage. In other words, having a higher
number of residents per POI does not translate into those
POIs being mapped.
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We next examine how poverty of an area plays a part in that
area being mapped. Studies such as [10] have revealed the
contributors of crowd-sourcing to be predominantly a group
of young, educated and wealthy males. We thus hypothe-
sise that poverty of an area (measured as deprivation of its
residents) is negatively correlated to coverage of that area.
Table 3 confirms that poverty of an area has a (weak) nega-
tive correlation (=—0.021) with coverage; that is, a decre-
ment of one unit standard deviation of poverty in a ward
would improve coverage of that ward by 0.021 (this incre-
ment corresponds to 7% increase in coverage for the average
case). Note that R? = 0.01 is significantly lower than that
found for other factors such as population, suggesting that,
although significant, poverty itself is only a secondary factor
in explaining coverage residual, as computed via linear re-
gression. This is confirmed also by Figure 8 which displays
how coverage changes with variations in poverty level. We
will return to this point when considering all factors together
in a multiple regression model.

Dynamic Population

We now turn our attention to dynamic population. Our hy-
pothesis is that the higher the number of check-ins/visits in
an area is, the better mapped such area will be. One may
wonder whether poverty of an area and dynamic population
of an area (measured as density of Foursquare check-ins)
are surrogate of each other, the idea being that poorer ar-
eas attract fewer people, while richer areas are expected to
attract more businesses and thus more visitors too. How-
ever, by performing a correlation analysis between poverty
and dynamic population, we discovered the two to be non
correlated; in other words, there are areas in London whose
residents are income-deprived (e.g., Camden and Hackney)
and yet attract large crowds.

Table 3 confirms that dynamic population is highly and sig-
nificantly correlated with coverage (3 = 0.090, R? = 0.15,
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Figure 8. Coverage vs. Poverty

and p-value < 0.001), with 3 and R? values higher than
those computed for previous factors. The box plot of Fig-
ure 9 also confirms that dynamic population of an area has a
positive correlation with coverage.
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Distance from the Closest Poly-centre

We now turn our attention to the last factor under examina-
tion, that is distance to the closest poly-centre. Our hypoth-
esis is that the closer a ward is to the nearest poly-centre of
London, the better its coverage. This intuition is confirmed
by Table 3, which shows that distance from the closest poly-
centre is inversely correlated with coverage (5 = —0.085,



R? = 0.13, p-value < 0.001). In particular, the 5 coeffi-
cient of -0.085 indicates that a decrement of 5km in distance
from the closest poly-centre (i.e., of one unit of standard de-
viation) would improve coverage of that ward by 0.085 (this
increment corresponds to 28% increase in coverage for the
average case). Similarly to what we noted before for popula-
tion density, the R? value of a single linear regression model
based on distance is relatively low, suggesting that distance
from the closest poly-centre does not fully explain the resid-
ual between actual and expected coverage.

The box plot of Figure 10 shows how coverage varies as one
moves further away from the closest poly-centre: note that,
for short distances from the nearest poly-centre, correlation
with coverage is indeed rather high; however, as distance
increases, this correlation weakens considerably. We will
return to this observation in the next section.
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Understanding Mediating Influence

Although the previous single predictor models afford us valu-
able insights into the relations at play between each such
variable independently and coverage, in practice we expect
coverage to depend on these factors as a whole. We thus
need to analyse these parameters together, and understand
the relative importance of each of them while controlling for
others. We do so by means of a multiple linear regression
model.

Table 4 presents the results of such model, reporting /3 coef-
ficients for each factor and their level of significance, along
with multiple R2. As shown, dynamic population, distance
from the nearest poly-centre and population density are the
dominant factors, with higher contribution weight and lower
p-values. This analysis confirms that population per POI
does not contribute to coverage of an area. Finally, the low
B coefficient and the high p-value associated with poverty
confirms that the correlation between poverty and coverage
(as presented in Table 3) is of secondary importance when
we consider the mediating influence of all other factors.

Factor [ B [ p-value |
Population Density 0.027 *
Population per POI 0.010
Poverty -0.007
Dynamic Population 0.054 ok
Distance from the Nearest Poly-centre | -0.031 *

| Multiple R? [ 017 [ *% ]

Table 4. 3 Coefficient, Multiple R and p-value of Multiple Linear
Regression Models of Coverage on Socio-Economic Factors at Wards
Level (p-value significance codes: 0 ‘*#** (0,001 “**° (.01 ‘** 0.05 < * 1)

If we now compare the multiple R? value for the multiple re-
gression model (Table 4, R? = 0.17) with the R? value for
the best fitting single regression model (Table 3, R? = 0.15
for dynamic population), we observe only a marginal im-
provement in terms of model fit. There may be two rea-
sons for this: on one hand, the factors we examined in this
work only partly capture the facets of urban context that re-
late to coverage; future work is required to examine other
aspects not included so far. On the other hand, there might
be interactions between the factors under study that a simple
multiple linear regression model does not capture. In or-
der to evaluate the extent of the impact of these interactions
we also considered a multiple regression model with bilinear
interactions across all pairs of predictors. We found that the
multiple R? value of the model with interactions is 0.24 with
p-value < 0.001; this means that the model with interactions
fits 41% better than the model without, revealing that the ef-
fect of interactions between our socio-economic parameters
is not negligible. We do not delve further into modelling in-
teractions in this paper; however, we note that, as one moves
from understanding the relevance of contextual factors on
coverage (i.e., the goal of this work) into building predictor
models of coverage growth, such interactions should be ex-
plored further (for examples, by means of non-linear models
such as SVM).

So far we have attempted to build a model that explains cov-
erage in terms of socio-economic factors, while looking at
the area of Greater London as a whole. However, London
is a large and complex metropolitan city, and one may won-
der whether different regression models should be built and
analysed for different sub-areas instead, with the expecta-
tion that the same predictors would play a rather different
role in such sub-areas. We did so by dividing Greater Lon-
don in two: Inner London and Outer London, as depicted in
Figure 11.!" The distinction comes from the London Gov-
ernment Act 1963'2 where Inner London is defined as the
richest area in Europe, albeit widespread poverty towards
the East and South.

We built two multiple regression models for Inner and Outer
London separately; we used the model without interactions
so to afford direct interpretation of the § parameters with
those derived for Greater London as a whole (Table 4). Re-
sults for Inner London are reported in Table 5; results for
Outer London are aligned with those for the whole of Greater

"This image has been taken from http://wikitravel.org
Phttp://www.legislation.gov.uk/ukpga/1963/33



Inner
@ outer

Southwark Greenwich

Hacknéy
Islington
Westminster Tower
" Hamlets
Kensington
& Chefsea
am

Lewisham

Figure 11. Inner and Outer London

[ Factor [ B [ p-value |
Population Density 0.013
Population per POIL 0.024
Poverty -0.028 *
Dynamic Population 0.008
Distance from the Nearest Poly-centre | -0.380 ok k

[ Multiple R? [ 019 [ *== ]

Table 5. 3 Coefficient, Multiple R> and p-value of Multiple Linear
Regression Models of Coverage on Socio-Economic Factors for Inner
London (p-value significance codes: 0 ‘*#** (0.001 ‘*** 0.01 ‘** 0.05 ¢’
D

London and thus not repeated in the interest of space. Note
that, while dynamic population and population density were
primary factors in relation to coverage when looking at the
whole of Greater London, they become secondary factors
when we focus on Inner London instead (their /3 values are
lower, and their p-values higher compared to those in Ta-
ble 4). For Inner London, it is poverty that now shows cor-
relation with coverage (higher 5 value and lower p-value
compared to those reported in Table 4). As an example,
we considered two wards in Inner London, one in Chelsea
(just north of the river) and one in Battersea (just south of
the river, opposite Chelsea). We found that the former has
low poverty and high coverage, while the latter has high in-
come deprivation and much lower coverage. Note also that,
when focusing on Inner London, distance from the near-
est poly-centre is much more strongly related to coverage
(8 = —0.380) than when looking at Greater London as a
whole (8 = —0.031) . This insight is in accordance with
Figure 10, which highlights how distance matters on short
and medium length, but less so as one moves away from the
center.

DISCUSSION

Limitations

In the previous section we have shown results of an investi-
gation into the relationship between socio-economic factors
of an area and the coverage of its POIs in OpenStreetMap.
A number of limitations have to be highlighted in relation
to the findings previously reported. First, our findings are
valid for London, but cannot be directly translated to other

cities. We chose to study London because it is an example of
a large and complex metropolitan setting, and also because
of the rich set of information about this city that is freely
available for investigation: being the birth city of OSM, it
has a large community of active contributors; furthermore,
details of the socio-economic status of its administrative re-
gions is available at a very fine level of granularity. While
we cannot expect the findings reported in the previous sec-
tion to hold true for other cities, the general approach we
have presented can be followed to understand what contex-
tual features correlated with coverage in ubiquitous crowd-
sourcing domains. For example, one may analyse the extent
to which factors such education are correlated with cover-
age in cities in the developing countries, where there exists
a much bigger gap between different groups of the society
than in London.

A second limitation relates to the choice of POIs that we
have examined (leisure POIs, such as cafes, restaurants, pubs
and bars). Our findings cannot be generalised to the mapping
of other spatio-temporal information, as it may take place
during disaster recovery efforts [26].

Finally, we used census data released in 2011 by the UK
Government as measure of population and wealth. This data
is valuable, but limited in that it only offers aggregate values
per ward. Should we have been in possession of further in-
formation, such as wealth distribution and standard deviation
within a ward, we could have delved into a more fine-grained
assessment of the relationship between these variables and
coverage.

Implications

How does the study reported in this paper affect the develop-
ment of urban crowd-sourcing applications? As our results
have highlighted, coverage of VGI in OpenStreetMap varies
depending on a variety of contextual factors, in particular
distance from the center, dynamic population and population
density. Furthermore, in large metropolitan cities like Lon-
don, the relative importance of each such factor may vary
when looking at different geographic clusters; for example,
in Inner London coverage is strongly related to poverty but
not to dynamic population. Understanding the contextual
factors that relate to coverage is important for developers of
ubiquitous crowd-sourcing applications, so they can better
engineer one. For example, a variety of incentive schemes,
spanning from financial rewards to gamification (e.g., in the
form of competitions or mapping parties) to location-based
social network features [23, 11] can be planned, so to nudge
the crowds toward mapping areas that would otherwise be
naturally neglected (e.g., because far from the city center, or
because they are poor areas within the center).

Understanding the contextual factors of the areas being
mapped is only one aspect that developers need to consider
in building successful ubiquitous crowd-sourcing applica-
tions. Two further aspects require investigation: on one hand,
understanding the characteristics of the crowd that the appli-
cation attracts (for example, locals vs. visitors), and on the
other hand the characteristics of the urban objects that such



crowds actually map (for example, services as opposed to
leisure POIs). Both directions deserve future investigation.

CONCLUSION AND FUTURE WORK

The study presented in this paper has shown that coverage in
OSM, a ubiquitous crowd-sourcing dataset, is non-uniformly
distributed across the city. Different contextual factors, in-
cluding population density, dynamic population, distance
from the center and poverty are correlated with informa-
tion coverage. Raising awareness of the factors that corre-
late with (lack of) coverage is a first step towards planning
interventions, such as developing incentives to nudge the
community to take part in a more guided crowd-sourcing act
(e.g., to geo-map areas that would otherwise be neglected).
Being aware of the contextual factors that affect coverage of
crowd-sourced urban information is important for end-users
too, so to understand where they can rely on the crowd-
sourced information (the risk, in fact, is to make decisions
based on partial and biased information).

We are continuing the work started in this paper along two
main directions. On one hand, having analysed what con-
textual factors correlate with coverage in OSM, the next step
is to study the crowd-sourcing process as it happens over
time. The aim is to build dynamic models that leverage the
previously elicited parameters to accurately predict what ar-
eas will be covered and, crucially, what areas will not, so to
direct resources towards targeted interventions.

On the other hand, we are looking at the crowd-sourcing pro-
cess from a contributors perspectives, rather than from a spa-
tial one. A study focused on OSM contributors will enable
us to understand what human factors (both static, such as age
and gender, and dynamic, such as mapping patterns) con-
tribute to coverage, and of what type of information. In so
doing, we aim to offer a better understanding of the sustain-
ability of crowd-sourcing as a means to gather information
about our changing world.

REFERENCES
1. S. Brunn, J. Williams, and D. Zeigler. Cities Of The
World: World Regional Urban Development. Rowman
& Littlefield Publishers, 2003.

2. J. Girres and G. Touya. Quality Assessment of the
French OpenStreetMap Dataset. Transactions in GIS,
14(4):435-459, 2010.

3. R. Glott, P. Schmidt, and R. Ghosh. Wikipedia
Survey—overview of results. United Nations University:
Collaborative Creativity Group, 2010.

4. M. Goodchild. Citizens as sensors: the world of
volunteered geography. GeoJournal, 69(4):211-221,
2007.

5. M. Haklay. How good is volunteered geographical
information? A comparative study of OpenStreetMap
and Ordnance Survey datasets. Environment and
Planning B: Planning and Design, 37(4):682-703,
2010.

10

10.

11.

12.

14.

15.

16.

17.

. M. Haklay, S. Basiouka, V. Antoniou, and A. Ather.
How Many Volunteers Does it Take to Map an Area
Well? The Validity of Linus Law to Volunteered
Geographic Information. Cartographic Journal, The,
47(4):315-322, 2010.

. E. Hargittai and E. Litt. The tweet smell of celebrity
success: Explaining variation in twitter adoption

among a diverse group of young adults. New Media &
Society, 13(5):824-842, 2011.

. B. Hecht and D. Gergle. Measuring self-focus bias in
community-maintained knowledge repositories. In
Proceedings of the 4th International Conference on
Communities and Technologies, pages 11-20. ACM,
2009.

. B. Hecht and D. Gergle. On the localness of
user-generated content. In Proceedings of the 13th
International Conference on Computer supported
cooperative work, pages 229-232. ACM, 2010.

S. T. K. Lam, A. Uduwage, Z. Dong, S. Sen, D. R.
Musicant, L. Terveen, and J. Riedl. WP:Clubhouse? An
Exploration of Wikipedia’s Gender Imbalance. In
Proceedings of the 7th International Symposium on
Wikis and Open Collaboration, pages 1-10. ACM,
2011.

D. Laniado, R. Tasso, Y. Volkovich, and

A. Kaltenbrunner. When the Wikipedians Talk:
Network and Tree Structure of Wikipedia Discussion
Pages. In Proceedings of the 5th International AAAI
Conference on Weblogs and Social Media. 2011.

I. Ludwig, A. Voss, and M. Krause-Traudes. A
Comparison of the Street Networks of Navteq and
OSM in Germany. Advancing Geoinformation Science
for a Changing World, 1(2):65-84, 2011.

. A. Mashhadi, G. Quattrone, L. Capra, and P. Mooney.
On the Sustainability of Urban Crowd-sourcing for
Maintaining Large-scale Geospatial Databases. In

Proceedings of the 8th International Symposium on
Wikis and Open Collaboration. ACM, 2012.

I. Masser. Governments and Geographic Information.
Taylor and Francis, London, 1998.

K. Panciera, R. Priedhorsky, T. Erickson, and

L. Terveen. Lurking? Cyclopaths? A Quantitative
Lifecycle Analysis of User Behavior in a Geowiki. In
Proceedings of the 28th International Conference on
Human factors in computing systems, pages
1917-1926. ACM, 2010.

K. A. Panciera, M. Masli, and L. G. Terveen. “How
should i go from _ to _ without getting killed?”’:
Motivation and Benefits in Open Collaboration. In
Proceedings of the 7th International Symposium on
Wikis and Open Collaboration, pages 183192, 2011.

A. Popescu and G. Grefenstette. Mining user home
location and gender from Flickr tags. In Proceedings of
the 4th International AAAI Conference on Weblogs and
Social Media. 2010.



18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Priedhorsky, B. Jordan, and L. Terveen. How a
Personalized Geowiki Can Help Bicyclists Share
Information More Effectively. In Proceedings of the
3rd International Symposium on Wikis and Open
Collaboration, pages 93-98, 2007.

R. Priedhorsky, M. Masli, and L. Terveen. Eliciting and
Focusing Geographic Volunteer Work. In Proceedings
of the 13th International Conference on Computer
Supported Cooperative Work, pages 61-70. ACM,
2010.

R. Priedhorsky and L. Terveen. The Computational
Geowiki: What, Why, and How. In Proceedings of the
1 1th International Conference on Computer Supported
Cooperative Work, pages 267-276. ACM, 2008.

C. Roth, S. M. Kang, M. Batty, and M. Barthlemy.
Structure of Urban Movements: Polycentric Activity
and Entangled Hierarchical fFows. PLoS ONE, 6(1), 01
2011.

J. Schradie. The Digital Production Gap: The Digital
Divide and Web 2.0 Collide. Poetics, 39(2):145-168,
2011.

Y. Volkovich, S. Scellato, D. Laniado, C. Mascolo, and
A. Kaltenbrunner. The Length of Bridge Ties:
Structural and Geographic Properties of Online Social
Interactions. In Proceedings of the 6th International
AAAI Conference on Weblogs and Social Media. 2012.

J. Voss. Measuring Wikipedia. In Proceedings of the
10th International Conference of the International
Society for Scientometrics and Informetrics, pages
24-28, 2005.

D. Zielstra and A. Zipf. A Comparative Study of
Proprietary Geodata and Volunteered Geographic
Information for Germany. In Proceedings of the 13th
International Conference on Geographic Information
Science, 2010.

M. Zook, M. Graham, T. Shelton, and S. Gorman.
Volunteered Geographic Information and
Crowdsourcing Disaster Relief: A Case Study of the
Haitian Earthquake. World Medical and Health Policy,
2(2), 2010.

11



	Introduction
	Background and Related Work
	Research Methodology
	Dataset Description
	Contextual Factors of OSM

	Research Results
	Population Density
	Population per POI
	Poverty
	Dynamic Population
	Distance from the Closest Poly-centre
	Understanding Mediating Influence

	Discussion
	Limitations
	Implications

	Conclusion and Future Work
	REFERENCES 

