UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/15/05

Hennessy-Milner Completeness in Transition Systems with
Synchronous Concurrent Composition

8" December 2015

Gabrielle Anderson

James Brotherston

David Pym

Abstract

We consider the problem of obtaining Hennessy-Milner soundness and completeness --- the
coincidence of logical equivalence and bisimilarity --- in the setting of transition systems with
synchronous concurrent composition. Starting from a richly expressive modal logic,
motivated by resource semantics and distributed systems modelling, including both additive
and multiplicative propositional connectives and also additive and multiplicative action
modalities, as well as certain first-order quantifiers, we establish sufficient conditions for
Hennessy--Milner soundness and completeness to hold. We develop two examples in detail.
First, using the propositional part of the logic, we consider a calculus of resources and
processes, explaining how the semantics may be refined to give a familiar equational theory.
Second, employing a first-order, arithmetic theory, we consider a calculus with utilities that is
able to express optimality and equilibria in resource allocation.



Hennessy-Milner Completeness in
Transition Systems with Synchronous
Concurrent Composition

Gabrielle Anderson, James Brotherston, and David Pym

University College London

Abstract. We consider the problem of obtaining Hennessy-Milner sound-
ness and completeness — the coincidence of logical equivalence and
bisimilarity — in the setting of transition systems with synchronous
concurrent composition. Starting from a richly expressive modal logic,
motivated by resource semantics and distributed systems modelling, in-
cluding both additive and multiplicative propositional connectives and
also additive and multiplicative action modalities, as well as certain first-
order quantifiers, we establish sufficient conditions for Hennessy—Milner
soundness and completeness to hold. We develop two examples in detail.
First, using the propositional part of the logic, we consider a calculus of
resources and processes, explaining how the semantics may be refined to
give a familiar equational theory. Second, employing a first-order, arith-
metic theory, we consider a calculus with utilities that is able to express
optimality and equilibria in resource allocation.

1 Introduction

We consider the problem of obtaining Hennessy-Milner soundness and com-
pleteness — the coincidence of logical equivalence and bisimilarity — in the
setting of transition systems with synchronous concurrent composition. This
declarative—operational equivalence property is an important tool for modelling
methodologies based on logic and transition systems. Starting from a richly ex-
pressive modal logic, motivated by resource semantics and distributed systems
modelling, including both additive and multiplicative propositional connectives
and also additive and multiplicative action modalities, as well as certain first-
order quantifiers, we establish sufficient conditions for Hennessy—Milner sound-
ness and completeness to hold. We develop two examples in detail. First, using
the propositional part of the logic, we consider a calculus of resources and pro-
cesses, explaining how the semantics may be refined to give a familiar equational
theory. Second, employing a first-order, arithmetic theory, we consider a calcu-
lus with utilities that is able to express optimality and equilibria in resource
allocation.

In [20], O’Hearn and Pym introduced BI, the logic of bunched implications.
BI's semantics is based on preordered partial monoids and can be interpreted as
providing an account of resources in terms of their combination and comparison.



BI’s theory has been developed in various settings, including [21, 13]. In [11, 10],
a modal extension of BI, called MBI, was introduced as a Hennessy—Milner-style
logic associated with a calculus, SCRP, of co-evolving resource—process pairs.
MBI is based on BI’s monoidal resource semantics.

Although a great deal of theory — as well as many rich examples and
industry-strength modelling applications [9,3,16,7] — can be developed for
SCRP and MBI, the development presented in [11,10] is hampered by the
lack of a full Hennessy—Milner soundness and completeness theorem (hence-
forth ‘Hennessy—Milner completeness’ theorem). This weakness derives from the
failure of the natural notion of bisimulation for SCRP to be a congruence, so
that the soundness direction of the theorem obtains only in the absence of BI's
multiplicative implication (—) and the multipicative modalities (that is, action
modalities whose truth is parametrized by additional, local resource) [11,10].

Recently, in [2], Anderson and Pym have obtained a full Hennessy—Milner
completeness theorem for versions of SCRP and MBI based on a revised resource
semantics. In this semantics, resources are bunched, and may be combined using
two combinators, ® and @. While ® corresponds to the monoidal composition
of BI’s resource semantics, and is used to interpret concurrent composition, @
provides a combinator corresponding to non-deterministic choice.

In this paper, we provide a more general perspective in which we start, in
Section 2, from a more abstract formulation of MBI that is based on a semantics
that employs a labelled transition relation on states. We also include first-order
predication and quantification over term and action variables (for reasons that
will become clear below). We then obtain general conditions on the transition
relation under which Hennessy—Milner completeness holds.

In Section 3, we explain how the resource—process calculus of [2] — based
on the combinatorially richer resource semantics described above — provides an
instance of the required set-up. We also give an extended example, based on
semaphores, of how the resource—process calculus and the logic MBI are used.

Enriching the combinatorial structure of the resource semantics is, however,
not the only way to recover Hennessy—Milner completeness. By working with
a much weaker process structure, in which transitions between resources are
labelled by actions, we can recover Hennessy—Milner completeness whilst intro-
ducing new features to the semantics. We illustrate this direction, in Section 4,
by introducing a simple notion of utility (see, for example, [24]) to BI’s (and
MBT’s) elementary resource semantics. This development requires the first-order
structure mentioned above. Specifically, we introduce strategies and payoffs, in-
corporating them into the definition of bisimulation for resource transitions,
while obtaining the conditions determined in Section 2 for Hennessy—Milner
completeness to hold. We give an extended example of the the use of resource
semantics with utility by using MBI to reason about the Prisoner’s Dilemma
problem and the notion of best response (see [24] for an introduction to these
topics).

Finally, in Section 5, we discuss some directions for research further exploring
the relationship between resources, dynamics, and logic.



2 A modal logic of resources and processes

In this section, we define an expressive modal logic, MBI, for expressing prop-
erties of transition systems with concurrency. We define a semantics for MBI
in terms of a transition relation with a notion of (‘concurrent’) composition on
its states, and its corresponding bisimulation relation. Our key technical result
is that, for any model of MBI in which (a) bisimulation is a congruence with
respect to concurrent composition, (b) any state can only evolve in finitely many
ways under a given action, and (c) all predicates are closed under bisimulation,
we have full Hennessy—Milner completeness for the logic: that is, two states are
bisimilar if and only if they satisfy the same MBI formulas. We write vector
notation to abbreviate tuples.

We assume a two-sorted first order language X', building standard terms ¢, u,
etc., from standard variables z, vy, z, etc., and action terms, denoted w, w’, etc.,
built from action variables a, 3, etc., that contains constants for all the actions
a € Act. The predicate symbols of the language, however, may be applied to
standard terms only.

Definition 2.1 (MBI-model). A model M of MBI, together with a valuation
p of variables, interprets standard terms in a carrier set D and action terms in
a set A of actions, in the manner familiar from first-order logic. We write t™
for the interpretation of the term t in model M (extended pointwise to tuples of
terms). Models contain the following elements:

— a set S (of states), equipped with partial binary composition o : S x S — S
and distinguished element s, € S;

— an interpretation p™ < S x D*, for each predicate symbol p of arity k; and

— an action-indexed transition relation on states, ~>: S x S, where a € A.

For the remainder of this section, we assume a fixed MBI-model. If 5,8’ € S
then we write sos’ | to mean that sos’ is defined. We write r — s if there exists
some a such that r = s, —* for the reflexive, transitive closure of —, and —+
for the transitive closure of —.

The transition relation — induces a notion of bisimulation between states in
the standard way.

Definition 2.2 (Bisimulation). Define ~ to be the largest symmetric binary
relation on states such that, whenever sy ~ sy and s — s}, then there exists s
such that sy % s and s ~ sb.

We will examine two different concrete models of MBI in Sections 3 and 4,
the first based on a calculus for processes equipped with resources, the second
on a calculus for actions on resources with an associated notion of utility.

Definition 2.3 (MBI-formulae). Formulae of MBI are given by the following
grammar, where P ranges over predicate symbols, w over action terms and t
over tuples of standard terms (of appropriate length):

pu=pt|L]o—=o|(wo|[w]p|I|dpx¢|d—o|(wye|[w],¢|Ix.¢|Ia.d



sk, L never

s =p pt it (s,p(t)) ep™

sk, 1 — @2 Ml s, ¢1 implies s =, ¢o

s |, (w)e i 35 s 2 ¢ and =, ¢

s b=p [w]o it vs.if s 2 s', then s’ =, ¢
syl iff s~ se

s f=p ¢1 % P2 iff  3s1,89. s~ 51082 and s1 =, ¢1 and s2 =, @2
skp o1 —x¢e it Vs if ' =, ¢ and sos’ |, then sos’ =, ¢o

s f=p (W@ iff 3¢',s".sos | and sos LSRN =, ¢

s =p [w]uo it Vs,s". ifsos | andsos LSON s”, then " =, ¢
s f=p Jz.0 iff s =pppi—a) ¢ for some d e D

s =p Jag iff s Fp[aizq] ¢ for some a € A

Fig. 1. Satisfaction relation for MBI

Intuitively, the (w) and [w] modalities are the familiar ‘possibly’ and ‘nec-
essarily’ action modalities (cf. Hennessy-Milner logics for process algebras such
as CCS), while the connectives I, *, and — are respectively the multiplicative
conjunction, implication and unit familiar from bunched logics [13] and in par-
ticular Boolean BI [17]. The modalities {w), and [w], are possibly / necessarily
modalities with respect to state addition in a certain sense, and the quantifiers
range over actions or domain values in the usual way. Negation can be defined
as implication of |, and v, A, and V by classical duality. The modalities are all
displayed for convenience.

Now we give a Kripke-style frame semantics for MBI. First, a valuation is a
function mapping standard variables to elements of D and action variables to
actions in A. Valuations extend to (standard/action) terms in the usual way. We
can then define the semantics of formulas ¢ via the satisfaction relation s =, ¢,
where s € § and p is a valuation. The definition of our satisfaction relation is
given by Figure 1. In the sequel, we drop the model M or the valuation p, writing
5k, ¢ or s = ¢, when their definitions are obvious.

We can observe that the resource-additional modalities, {(w), and [w],, are
in fact already definable in the rest of the logic:

Proposition 2.4. For any model of MBI, we have the logical equivalences

(w)r¢ == =(T = —~(w)¢) and [w], ¢ = T — [w]e.
Now, we define a logical equivalence between states as follows.

Definition 2.5 (Logical equivalence). Fix some model M. Then, r =ygru $
if and only if, for all valuations p and formulae ¢, v =, ¢ if and only if
SEM,p ¢.



In order for the Hennessy-Milner completeness property to hold for our logic
(see below), we shall require the following crucial properties of our models:

Predicate ~-closure: If s ~ s’ and (s,d) € pM, then (s',d) € pM;

Image-finiteness: For any s € S and a € A there are only finitely many s’
with s = §;

Congruence: If s; ~ s} and s ~ s3” and s 085 |, then s} 0}, | and s; 089 ~
s} o sh.

With these properties in place, we can prove the Hennessy—Milner complete-
ness theorem.

Theorem 2.6 (Hennessy-Milner completeness for MBI). For any states
s1 and sa, we have s1 =\pr S2 if and only if s1 ~ sa.

Proof. Straightforward. The if direction of the equivalence relies upon the predi-
cate ~-closure and congruence properties above, while the only if direction relies
upon image-finiteness. m]

3 Example: A calculus of resources and processes

One modelling approach, which might be expected be an example of our ap-
proach, is that based on the resource-process calculi given in [11,10]. These
calculi consist of two components: resources, which describe objects that can be
created, moved, and consumed; and processes, which describe the dynamics of
systems, and have various algebraic properties. Each component has a notion of
composition, and so resource-process pairs have the obvious composition pair-
wise on the components. An action-indexed transition system can be defined in
terms of a structural operational semantics over the structure of processes, so
that resources and processes (i.e., the state) co-evolve: R, E % R’ E’. In this
set-up, MBI’s worlds are states, so that we work with a satisfaction relation of
the form R, E |= ¢.

Unfortunately, in such calculi (for example, in [11, 10]), bisimulation fails to
be a congruence for concurrent composition. As a result, the soundness direc-
tion of the Hennessy—Milner property holds only for fragments of the logic that
exclude the multiplicative implication (—=) and the multiplicative modalities
(here (@), and [a],). Bisimulation fails to be a congruence because of the way in
which the resource semantics interacts with the resource-process operational se-
mantics. Resources can be viewed as being ‘capabilities’, which enable behaviour
in the process components of the pairs. When performing concurrent composi-
tion, these ‘capabilities’ can be exchanged between the process components of
the pairs, enabling different behaviour in different compositions. This clearly
violates the required congruence property.

In order to resolve this issue, and gain the congruence property, we change
the resource semantics to ensure that ‘capabilities’ cannot be exchanged between
process components in the operational semantics. We introduce additional struc-
ture to the resource model, beyond that in [11, 10]. The key property is injectivity



of concurrent composition, which enables us to prove the requisite congruence
property of concurrent composition. We then describe how actions modify re-
sources — that is, the resource semantics — and introduce the various definitions
required to describe processes. We specify a structural operational semantics for
resource-process pairs, and then state the required congruence result.

Let R be a set of resources, equipped with an ‘empty’ element e € R. We
write R, S, etc. to denote resources. We consider unique (partial) concurrent
composition of, and non-deterministic choice between, resources. In [22,20, 11,
10], and other works in the relevant logic tradition, bunches are trees with leaves
labelled by atomic resources, and internal nodes labelled by either @ or ®. We
implement bunching through the use of two injective functions; a resource is a
node of a particular type if there exists some (unique) pair of resources that are
mapped to the initial resource by the relevant function.

Definition 3.1 (Resource model). A resource model (R,e,®,®) is a struc-
ture consisting of a set of resources R with a distinguished ‘empty’ resource
e € R, and two injective, partial functions ®, @ : R x R — R.

In the sequel, when we write an expression of the form R® S or R® S, we
assume that the result of the application of the partial function to its arguments
is defined. Actions correspond to the events of a system. In resource-process al-
gebra as set up in [11,10], actions are used to determine how resources evolve.
This necessitates a relationship between the structure of actions and the struc-
ture of resources. To obtain an analogous relationship in our setting (formally
stated in Definition 3.3), we also require action composition to be injective.

Definition 3.2 (Actions). An action model (A,-, 1) is a structure consisting
of a set of actions with a distinguished ‘unit’ action 1 € A, and an injective,
total function -.

Note that we do not require that 1 be a unit for -, so that A is not a monoid.
Let ab denote a - b. An atomic action is an action a such that there do not exist
actions a; and as such that a = a1 - as. The semantics of resources is then given
by a functional relationship from action-resource pairs to resources.

Definition 3.3 (Modification functions). A partial function n: AXR — R
is a modification function if, for all resources R, S € R and actions a,b € Act:

= If u(a, R), u(b,S), R®S |, then p(ab, R® S) = p(a, R) ® u(b, S);
- u(l,R) = R. O

Modification functions are homomorphisms with respect to the concurrent
product structure of resource bunches. As a result, we cannot use the modi-
fication function to ‘move’ resources from one side of a concurrent product to
another (such a move corresponds to changing the process to which the resources
are allocated, for example, passing an object from producer to consumer). Using
a modification function, we can only add or remove resources to each side of a
product independently of what is on the other side of the concurrent product.



As we cannot use a modification function for redistribution of resources,
instead, we make use of redistribution functions. In Figure 2, the rules for the
operational semantics of sequential composition are

RESRE — ~el RESRE » ~el
PREFIXONE PREFIXTWO

RE: F%R E . F RE: F%~(R), F

The resource-process pair R, F :, F' consists of a resource bunch and a sequen-
tial composition. The sequential composition consists of two processes, E and
F, and a redistribution function . If the prefix E can evolve with the resources
R to a non-blocked state, then the sequential composition evolves similarly (the
PREFIXONE rule). If the prefix E can evolve with the resources R to a blocked
state, then the redistribution function is applied to the resulting resources R’,
and the pair that consists of the redistributed resources and the suffix, v(R'), F,
is the result of the transition (the PREFIXTwO rule). The redistribution func-
tion is applied to the resources so that the structure of the resulting resources
will match the structure of the suffix process. Redistribution functions are total
so that the evolution of a sequential composition can only be blocked by the
behaviour of the prefixing process, not the redistribution of resources.

Definition 3.4 (Redistribution functions). A redistribution function is a
(partial) function v : R — R. Let there be a set of redistribution functions I'
whose elements are written v, 7', etc..

Redistribution functions are total so that the evolution of a sequential com-
position can only be blocked by the behaviour of the prefixing process, not the
redistribution of resources. From a modelling perspective, we argue that the use
of redistribution functions encourages good discipline with respect to making
decisions about how resources are allocated to processes within a system.

In classical process calculi, restriction is used to ensure that certain behaviour
is only visible, or accessible, in certain parts of a system. A similar feature can
be incorporated into resource—process modelling [11]. If a resource-process pair
is allocated additional resources, it may be able to perform additional behaviour.
The hiding operator on processes associates additional resources with the pro-
cess to which it is applied. If a resource—process pair is allocated additional
resources, it may be able to perform additional actions. This behaviour must
then be restricted, however; only actions that could be performed without the
additional resources must be visible beyond the process where the hidden re-
sources are available. First, we define a notion of action containment, so that we
can formalize the notion of ‘additional behaviour’.

Definition 3.5 (Action-containment order). We define < to be the least
reflexive-transitive relation on actions such that 1 < « for any atomic action «,
and ifa < a and b<V thena-b<a V.



Then, we define hiding functions on actions and resources. In Figure 2, the
rule for the operational semantics of hiding functions is

hR),E% h(R),E' heH
R,vh.E X% R vh.E'

HiDE.

A resource-process pair R,v h.E evolves by stripping the hiding operator v h.
from the process component and applying the hiding function h to the resource
component, resulting in the resource-process pair h(R), E. Following the evo-
lution of the transformed state, the resulting pair h(R’), E’ is modified by ap-
plying the inverse of the hiding function to the resource component and adding
the hiding operator to the process component, resulting in the resource-process
pair R, v h.E'. To ensure that a hiding function and its inverse can be uniquely
applied, hiding functions on resources are bijections.

Definition 3.6 (Hiding functions). Let (R,e,®,®) be a resource model and
u be a modification function. A function h : R — R on a resource model is a

hiding function if it is a bijection. Let there be a set of hiding functions H whose
elements are written h, h', etc.. Define A: (R - R) - Act — P(Act)

A(h,a) ={b<a]| for all R,S € R, u(a, h(R)) = h(S) implies u(b, R) = S} .
Then, a hiding function on actions v : (R — R) — Act — Act is defined as

sup(A(h,a)) if sup(A(h,a)) is defined and unique
vh.a = .
1 otherwise.

Definition 3.7 (Processes). The set Proc of processes is given by the fol-
lowing grammar:

E:=0|X|a|E+E|ExFE|E: E|vhFE| fix X.E.

where, 0 is the zero process, X is a process variable, a is an action, h€ H is a
hiding function, and v € I" is a redistribution function.

We write E, F, etc. to denote processes. The process 1, which performs
the action 1 infinitely, is denoted as pX.1 ;4 X. The process structure broadly
follows that of ACP [4]. Thus E + F' is a sum, E x F is a synchronous product,
and fix X.F is a fized point. The term vh.E is a hiding process, as in [11,10].
The term E :, F' is an annotated sequential composition. The fix operator binds
occurrences of process variables within processes. Here, we only consider process
expressions that are closed, in that they contain no free variables. We define
a state to be a pair consisting of a resource and a (closed) process, and write
State = R x Proc for the set of all states.

We make use of an empty term language. Let the action term language be
formed according to the grammar w 1= a | a | w ¢ w, where a is a constant
denoting the action a, and there exists a constant a for each action a € Act.



Ria E’L o R;v E':

p Act - SuMm, 7 € {1,2}
R,a = u(a,R),0 Ry ® Ry, By + B2 — R}, E]
R17E1 ﬂ’ I17Ei R27E2 E’ l27Eé
ar-as . y , y PrOD
Ry ® Ry, By X By — R} ® Ry, ] X By
R ESRE el R, E—» ~(R),F%R,F' ~vyel
@ p ; PREFIXONE a p y PREFIXTWO

RE:F%R E . F RE: F%RF

WR),E=hR),E heH R EB[fix X.E/X]% R, E
R,vh.E X" R vh.E' R.fix X.E % R'.E'

FV(E) < {X} REC

Fig. 2. Operational Semantics

Valuations map action constants to their obvious actions and ¢ to action com-
position -.

In order to obtain the Hennessy—Milner completeness result stated in Sec-
tion 2, we must show that our resource-process calculi are instances of the class of
systems considered in that section. States are resource-process pairs R x Proc,
and the distinguished state is (e,1). Concurrent composition of states maps
(O ((Rl,El), (Rg, E2)) = (Rl @ RQ,El X Eg) if and only if Rl ® R2 is defined.
The action-indexed transition relation on states is defined recursively using the
derivation rules in Figure 2.

Then, all that remains is to show that bisimulation is a congruence with re-
spect to the composition o. Note that, when composing states, it is important to
take account of the partiality of the resource model. As a result, when composing
states concurrently, we shall require the following ~-resource closure property of
our calculi: supposing Ry, F1 ~ S1, F} and Ry, Es ~ So, Fy, we have that R1® R»
(respectively, Ry @ Rs) is defined if and only if S; ® Sa (respectively, S @ S2)
is defined. From now on, all calculi are assumed to be ~-resource-closed. As an
additional result, when composing states sequentially, we require the following
v-sequence closure property of our calculi: a state R, E and a bunched resource
S are -sequence compatible if, for all states R, E’ that can be reached by the
transition system, R, E —* R/, F’  we have that R, E’ - implies v(R’) = S.

We can now obtain the key property: that bisimulation is a congruence, i.e.
an equivalence relation that is respected by the state constructors (excepting
the fixed point constructor). Note that injectivity concurrent composition (the
first of the two properties, above) is all that is required to obtain the congruence
property for concurrent composition, which is all that is required to obtain the
results in in Section 2.



wla,s) = s pu(l,e)=e p(l,e) =e u(b,s) =s

s,a % 5,0 e,1 5 ¢,0 e, 15 ¢,0 5,02 5,0
(s®s),(1+a) 25,0 (e@e),(1+b)i>e,0 (6@6),(1+a)i>€,0 (s@s),(l#»b)i»s,O
(@)@ (e®e),(1+a)x (1+b) 25 s@e,0x0 (e@e)@(s@s),(1+a)x(1+b) 5 e®s,0x0
R®S,E+E*Y% s®e,0x0 ROS,E+E L% e®s,0x0
Fig.3. First process accesses the Fig.4. Second process accesses the

semaphore semaphore

Theorem 3.8 (Bisimulation congruence). The relation ~ is a congruence
for concurrent, non-deterministic, and sequential composition, and hiding:

— Zf Ri,Ei ~ Si,Fi fO’F 1€ {1,2} and Rl ®R2 l, then Sl @SQ l and Rl ®
Ry, B @ Ey ~ S1® 52, F1 ® Fy;

— Zf R“El ~ S“Fl fO’/"i € {1,2} and Rl @RQ l, then Sl @SQ l, and Rl &)
Ro,E1 + Ey ~S51@® 85, F1 + Fy;

— if h is a hiding function with h(R),E ~ h(S), F, then R,vh.E ~ S,vh.E;

— if R1, E1, and Ry are ~y-sequence compatible, and Sy, Fy, and Sy are 7'-
sequence compatible, and R;, E; ~ S;, F; for i € {1,2}, then Ry, Ey :, By ~
Sl,Fl ! FQ.

Hence, our resource-process calculi are instances of the class of systems con-
sidered in Section 2, and have the Hennessy-Milner completeness property.

The SCRP framework has been used to underpin significant industrial mod-
elling [9, 10, 16, 6]. In order to be able to use CBRP as a replacement for SCRP,
we should be able to embed the latter soundly into the former. It is indeed
possible to do this; the approach is described formally in [1]. In order to rea-
son equationally about processes, it is also useful to establish various alge-
braic properties concerning concurrent composition and choice. Notable stan-
dard algebraic properties of process calculi are commutativity and associativ-
ity of concurrent composition, that is, R& S;E x FF ~ S® R, F x E and
RR(S®T),Ex (FxG) ~(R®S)®T,(E x F) x G. For the notion of
bisimulation in Definition 2.2, these properties do not generally hold. However,
we can recover these and other algebraic properties by quotienting bisimilarity
~ with respect to a natural notion of equivalence between actions. The technical
details, which are straightforward, can likewise be found in [1].

We conclude this section with a fully fledged modelling example of how to
model an unbounded series of accesses to a semaphore by concurrent processes,
in a resource-process calculus.

Ezample 3.9 (Semaphores). Consider a typical contested resource, a semaphore.
Semaphores are objects that should be ‘held” (or ‘used’) by at most one pro-
cess in a concurrent composition of processes. In this section, we describe how
to model two concurrent processes competing for the use of a semaphore in a
resource-process setting.

10



We model the resource aspect of the scenario as follows. Let the resource s
denote the semaphore, and e denote the empty resource. Suppose that U and V'
are (arbitrary) resources. We use (U, V') pairs to denote parallel compositions of
resources U and V', and (U; V) pairs to denote choice compositions of resources
Uand V. Let UV = (U, V) if and only if s does not occur in both U and V,
and U@V = (U; V).

We make particular use of the resources R = ((s; 5), (e;€)), S = ((e;€), (s;5)),
and T = (R;S). Let the set of resources be R = {s,e, (s,e), (e, s),R, S, T,...}.
Then, (R,e,®,®) is a resource model. Note then, that s ® s is undefined: this
models the key property of the scenario that two concurrent processes cannot
both hold a copy of the semaphore.

We model the process dynamics aspect of the scenario as follows. We use
two atomic actions, a and b, both of which require access to a semaphore, s, to
be performed. We differentiate between the a and b actions to help make clear
which process is accessing the semaphore at any given point. Let Act = {a, b}
be set of atomic resources. Let i be the least modification function such that
p(a,s) = s and u(b, s) = s. The process E = (1 + a) x (1 4+ b) denotes a system
where two concurrent processes each attempt to access the semaphore (through
actions a and b respectively). The resource R denotes the scenario where the
semaphore is allocated to the first process, and S where it is allocated to the
second process. The resource T then denotes the scenario where the semaphore
may be allocated to either of the processes, but not to both. The state T, E+ F
can either evolve through use of the resource R (with process E), or through the
use of the resource S (with process E). In the first case, the first process can
access the semaphore, but the second process can only tick (Figure 3). In the
second case, the converse is true (Figure 4).

It should not be possible for an action a and an action b to be performed
concurrently. This property can be represented formally by the logical formula
¢1 = —(({a)T) = ((b)T)). In this example, R® S, E + E = ¢ can only hold if
R®S,E+FE = (({a)T)#(<byT)) doesn’t hold. That is only the case if, for all Ry,
E1, Ry, Es, such that Ry ® Ro, E1 X B3 ~ R® S, E + E, either Ry, By = ({a)T)
doesn’t hold or Ry, F5 = ((b)T) doesn’t hold. As the semaphore s is required to
perform both the a and the b action, and R; ® R5 is undefined when s is in both
Ry and Rs, there are no Ry, E1, Ry, Es, such that RiQRs, B4 X Ey ~ RS, E+F
and both Ry, E1 = ((a)T) and Ry, E = ((b)T) hold. Hence, R® S, E+ E = ¢
holds.

It is, however, possible for each of the actions to occur separately. There
properties can be represented formally by the logical formulae ¢ = (((a)T) =
(1)T)) and ¢3 = (({<1)T) = (<b)T)). In this example, R, E = ¢o, as (s;5),1 +
a = {a)T and (e;e),1 +b = ()T, and S, E = ¢3, as (e;e),1 + a = (1)T and
(e;€), 1+ b (byT.

Furthermore, we cannot compose a resource-process pair that can perform a
b action onto one that can perform an a action. This property can be represented
formally by the logical formula ¢4 = ((¢a)T) = (((b)T) = L)). In this example,
R,E E {a)T, as R, E . Hence, in order to show that R, E = ¢4, we have to

11



show that, for all U, F such that U, F = (b)T and RQU |, RQU,E x F = L.
As there is no state that satisfies 1, we must have that there are no such U
and F'. As the semaphore s is required to perform both the a and the b action,
and R; ® Rs is undefined when s is in both Ry and Rs, for any U, F' such that

U F i, then R® U 1. Hence we have that R, F = ¢4. We can alternatively
express this concept as ((a)T) = ([ab], L), which denotes that it is not possible
to concurrently compose any resource-process onto one that can perform an a
action, such that the composed state can perform an ab action.

Although we have not made use of either redistribution functions or hiding
functions in the examples of this paper, they are nonetheless a significant part
of the resource—process modelling framework. The use of resources as tokens to
enable behaviour in the process component of a state is central to modelling
blocking behaviour in distributed systems. Without an opportunity to reallo-
cate resources from one process to another, however, there is no way to model
synchronization. Using redistribution functions, alongside concurrent and non-
deterministic composition, we can model a wide variety of synchronization ex-
amples, such as mutual exclusion, joint access control, producer—consumer, and
weak memory models [1].

In order to aid compartmentalization of implementation details, and hence
with the scalability of cognitive complexity of modelling, hiding can be used
to ensure that certain behaviour is only visible in certain parts of a system. In
order to handle the additional structure of resources introduced above, hiding
functions generalize the concurrent-composition approach taken to hiding in [11].
Examples of how to make use of this generalization — for example, in scenarios
where distributivity of product over choice is considered — can be found in [1].

4 Example: A calculus of resources with utility

In the previous section, we added extra structure to the resource semantics in
order to obtain the required congruence property of concurrent composition in
resource-process modelling and so obtain Hennessy—Milner completeness.

We can, however, also recover Hennessy—Milner completeness by working
with a much weaker notion of process, in which transitions between resources
are labelled by actions, using the modification function on resources to provide
an elementary dynamics. In this modelling approach, we do not require the
additional combinatorial structure over resources that is used in the previous
section, but introduce the additional concept of utility, a key tool in reasoning
about notions of optimality in distributed systems. Reasoning about this notion
of utility in MBI makes essential use of the first-order structure explained in
Section 2.

We begin with the notion of resource from Boolean BI, which can be seen as
liberalizing the combinatorial structure taken in Section 3 in that it does not con-
sider choices between resources, nor does it require the concurrent composition
to be injective.

12



Definition 4.1 (Resource monoid). A resource monoid is a monoid R =
(R, o, €) with carrier set R, commutative partial binary operation o : RxR — R,
and unit e € R.

In the sequel, when we write an expression of the form Ro S, we assume that
the result of the application of the partial function to its arguments is defined.
Note that this is essentially the same as resource models in Definition 3.1, but
without the additive structure and the injectivity requirement.

Let A be a commutative monoid of actions, freely generated from a set of
atomic actions, with operation - and unit 1. The actions correspond to the events
of the system. Let ab denote a - b. The dynamics of the system is then given by
the modification function, which describes how actions transform resources.

Definition 4.2 (Modification function). 4 modification function is a partial
function p : A x R — R such that, for all resources R,S € R and actions
a,b,ce A:

—if ula,R) |, p(b,S) |, and Ro S |, then p(ab, Ro S) = u(a, R) o u(b,S);

— (1, R) = R;

—if RoS | and u(c,Ro S) |, then there exist a,b € A such that ¢ = ab,
w(a, R) |, and u(b, S) |.

Note that this is essentially the same as Definition 3.3, but with one ad-
ditional property, which plays a similar role to the pProo rule in Section 3 for
determining the behaviour of a concurrent composition of states.

From a resource monoid, action monoid, and modification function, we derive
a transition relation. If the modification function is defined for an action a on a
resource R, and p(a, R) = S, then we say that there exists a transition R 58,
that S is a successor of R, and that action a is defined on resource R. The
notion of bisimulation in Definition 2.2 is immediately applicable to resources.
In this simple setting, bisimulation equivalence is the same as trace equivalence.
Following Section 3, we require the following ~-closure property: if Ry ~ Si,
Ry ~ S5, and Ry o Ry |, then S7 0 Sy |. From now on, all resource models are
assumed to be ~-closed.

In order to obtain the Hennessy—Milner completeness result stated in Sec-
tion 2, we must show that our resource models are instances of the class of sys-
tems considered in that section. States, concurrent composition, and the tran-
sition relation are as defined above. Then, all that remains is to show that
bisimulation is a congruence with respect to the composition o, and that the
interpretation of the ‘payoff’ predicate, which we use in expressing optimality
properties, is interpretation-~-closed. First, we present the congruence result.

Theorem 4.3 (Bisimulation congruence). The relation ~ on resources is
a congruence for the operation o: if Ry ~ S1, Ry ~ So, and Ry o Ry |, then
SloSgl andeoRg ~ SloSQ.

In order to reason about optimality properties of states and actions, we re-
quire a way to assign a value or payoff to states and actions.

13



Definition 4.4 (Action payoff function). An action payoff function is a par-
tial function v : Act — Q s.t. v(1)=0 and, for all a,be A, if v(a) and v(b) are
defined, then v(ab)=v(a)+v(b).

Note that it is possible to have that v(ab) is defined, but that v(a) and v(b)
are not defined (cf. Example 4.8).

The transition systems generated by our resource semantics can be non-
deterministic, in the sense that multiple actions can be defined on a given re-
source. In order to extend the notion of payoff to resources, we determine, at
each resource, a unique action to be performed

Definition 4.5 (Strategies). A strategy is a total function o : R — A such
that, for all resources R,S € R, u(o(R),R) is defined, and, if R ~ S, then
o(R) =o(S5).

Fix an action payoff function v, a strategy o, and let § be some rational
number in the open interval (0,1). We can then straightforwardly extended the
notion of preferences over actions to preferences over resources.

Definition 4.6 (Resource payoff function). A resource payoff function is a
partial function Uy .5 : R — Q such that

U5 (R) = v(a) + 0 X uy,o5(u(a, R)) if o(R) = a,v(a) |, and uyos(p(a, R)) |
v,0,9 " | undefined otherwise.

The value that can be accumulated from actions performed at resources
reachable in the future are worth less than value that can be accumulated im-
mediately. The discount factor ¢ is used to discount future accumulated values.
In the case that the set R is finite, we generate a finite set of simultaneous
equations which can be solved using the methods described in [15]. Henceforth,
we assume that all resource monoids have finite carrier sets. Note that bisimilar
states have the same payoff.

Lemma 4.7. If R ~ S, then for all 0, §, v, Uy 5,6(R) = Uy,5,6(5).

Proof. By our assumptions, R and S both have a finite number of successor
states. These states, and their relevant transition systems, can be uniquely
mapped into the final coalgebra of finite and infinite sequences of actions. In
particular, since R ~ S we know that both are uniquely mapped to the same
element of the final coalgebra (see Definition 4.5). By [18], as R and S both have
a finite number of successor states, the sequence to which they are mapped is
either finite or eventually periodic. Hence, the utility function can be defined
over these elements of the final coalgebra in a similar fashion to how it is de-
fined over states. To be precise both utility functions are defined as a unique
coalgebra-to-algebra homomorphism (for details see [15]) and they correspond
to computing the solution of a linear system of equations. As there is a unique
mapping from the states to the final coalgebra, and a unique mapping from the
final coalgebra to the payoff, there is a unique mapping from each of the states
to the payoff, which is identical for R and S.

14



We interpret terms in the rational numbers. In order to relate the value of
resources to terms that we can manipulate, we make use of a distinguished pred-
icate uy(t), whose interpretation is that (s, p(t)) € u if and only if u, 55(s) =
p(t). Note that, in a given interpretation M, we fix a strategy o and a discount
factor d. As bisimilar states have the same payoff, for fixed action payoff func-
tion, strategy, and discount factor (Lemma 4.7), the interpretation of u,(¢) is
interpretation-~-closed.

Let the action term language be formed according to the grammar w ::= a |
a | wow, where a is a constant denoting the action a. Valuations map action
constants to their obvious action and ¢ to action composition -.

Let ¢ be a term constant denoting the rational number ¢, and v(s) be a
constant denoting the rational-valued payoff of an action term s according to
payoff function v. Let the term language be formed according to the grammar
tu=ux|q|v(s)|t+t]|txt Valuations map term constants to their obvious
denotations and arithmetical functions their standard definitions.

Hence, our resource modelling semantics is an instance of the class of systems
considered in Section 2, and has the Hennessy-Milner completeness property.

Using this logic, it is possible to logically describe various interesting optimal-
ity properties, including Pareto optimality, best response, and Nash equilibrium
[2]. For now, we conclude this section with a fully fledged modelling example of
how to capture and reason about the Prisoner’s Dilemma and best response in
a resource semantics.

Ezample 4.8 (Prisoner’s dilemma). Two individuals have been arrested, and
are kept separately, so that they cannot collude in their decision-making. Each
is offered the choice of attempting to ‘defect’, and give evidence against their
partner, or to ‘collaborate’, and say nothing. If one person collaborates and the
other defects, then the collaborating partner goes to jail for a long time, and
the defecting partner goes free. If both defect, then they both go to jail for a
moderate time. If both collaborate, then they both go to jail for a short time.

Suppose a resource monoid ({ry,r2,71,2,€},0,e), where r; ory = r1 5. The
r1 resource denotes a resource where the first person can make a choice, the r,
resource denotes a resource where the second person can make a choice, and the
r1,2 resource denotes a resource where both people can make a choice at the
same time. Suppose actions ¢y, di, co, and do, where

pler,m) = pl(di,m) =e  ple,r2) = p(da,m2) =€
pleice,ri2) = plerde,r1,2) = p(dica, r1,2) = p(dida, r12) = e.

The ¢, action denotes collaboration by the first person, and the d; action denotes
defection by the person. The ¢; and dy actions have the obvious denotations for
the second person. We make use of the trivial strategy o(R) = 1. The action
payoff functions v; and wvs for the two people are

1}1(6101) = -2 Ul(cldg) = —6 ’U1(d162) =0 ’U1(d1d2) =—4
1}2(0101) = -2 UQ(CldQ) =0 ’U2(d102) = —6 ’UQ(dldQ) = —4.

15



Hence, if the first person collaborates and the second defects, then the first person
receives six years in prison (cost vi(cidy) = —6), while the second receives no
time in prison (cost va(c1dz) = 0).

We can define a notion of best response. An action a is a best response for
a given entity to a particular choice of action b by another entity, at a given
resource, if the (former) entity has no other action ¢ available to it such that the
action cb is defined on the resource and the entity (strongly) prefers c¢b to ab.
Formally, a is the best response to action b at resource R if

R = Ya3z,y.(((@)T A @)T) () A ([a o blu(@) A [aobu(y))

— ((v(@ob) +6 xy) < (v(aob) + 6 x x)).

We abbreviate the formula above, denoting that a is the best response to ac-
tion b for the agent whose payoff function is v, as BR(a,b,v). In the prisoner’s
dilemma example, the best response for the first agent to the action ¢ is dy, and
1,2 E BR(d1, c2,v1) holds.

5 Discussion and future work

The methodology used in this paper is to start with the desired logic, determine
the desired meta-theory of the logic, and then derive properties of the semantics
and interpretation of the logic that are sufficient to prove the desired meta-theory
of the logic. In general, this methodology provides a clear justification for design
decisions in the semantics of the logic.

We have shown that a version of resource semantics in which there is a closer
combinatorial match between the structure carried by resources and that carried
by processes permits us to obtain the Hennessy—Milner completeness theorem for
the full substructural logic, the lack thereof being a technical difficulty present
in an earlier formulation of the relationship between resources and processes. As
a result, our work suggests that the original ideas of resource semantics, already
useful and influential in, say, separation logic, may warrant further exploration.

Some conceptual and technical issues, beyond our present scope, remain to
be addressed, however. In recent work in logic [12], one of us has considered
a generalization of resource semantics to admit multi-dimensional satisfaction
relations of the form, for example, w,r = ¢, in which w € W are taken to be
Kripke worlds (ordered by =, say) in the sense of classical modal logic and r € R,
where R carries monoidal structure (with composition o, say), are interpreted
as resources. In this set-up, we can define, informally for now, a modality ¢, as

w,r E Os¢ iff there is a world w £ v such that v,7 o s = ¢.

Such a modality is highly expressive and, among other things, generalizes the
usual S4 modality [8]. It may be possible to define an analogous action modality,
{ays,F, which generalizes our multiplicative modality {(a),:

R,E & {a)s r ¢ iff Ja,R',S", E', F' such that R® S,FEQF > R ® S, E'Q F'
and R @9, E Q@ F = ¢.

16



Note that, unlike in the previous definition, we add both a resource and a process
component. We conjecture that the transition system employed in the body of
this paper and the construction described above are both examples of a more
general treatment of a more general multi-dimensional semantics that will have
natural resource interpretations.

A further question concerns the relationship between our work and concur-
rent separation logic [19]. Concurrent separation logic is built upon the resource
semantics of bunched logic and handles concurrent processes in the style of
Hoare logic. In general, there is a close relationship between Hoare logic presen-
tations of program logics on the one hand and modal logic presentations on the
other, based on representing Hoare triples { P}C{Q} as entailments of the form
P = [C]Q (although this relationship is less straightforward for fault-avoiding
interpretations of Hoare triples [23]). Nevertheless, we conjecture that our treat-
ment of resource semantics might be used to support CSL and other concurrent
phenomena too (cf. [14]), possibly including a synchronous semantics for concur-
rent separation logic (in contrast to Brookes’ interleaving semantics [5]). Such a
programme, however, awaits future investigation.

Finally, the point of view we have discussed in Section 4, related to ideas
presented in [2], suggests that a more substantial exploration of ideas of agency,
games, and knowledge — perhaps building on ideas in [12], with connections to
epistemic game theory — may be a fruitful direction.

Acknowledgements. We are grateful to Matthew Collinson, Guy McCusker,
and Alexandra Silva for their advice on writing this paper. This work has been
supported by the UK EPSRC project EP/K033042/1, ‘Algebra and Logic for
Policy and Utility in Information Security’.

References

1. G. Anderson and D. Pym. A Calculus and Logic of Bunched Resource Processes.
Accepted for a journal, subject to minor revisions, 2015. Manuscript at http:
//www0.cs.ucl.ac.uk/staff/D.Pym/AndersonPymBunchedResourceProcess.pdf.

2. G. Anderson and D. Pym. Substructural Modal Logic for Optimal Resource Allo-
cation. In Proc. Strategic Reasoning, 2015.

3. Y. Beresnevichiene and D. Pym amd S. Shiu. Decision support for systems secu-
rity investment. In Network Operations and Management Symposium Workshops
(NOMS Workshops), 2010 IEEE/IFIP, pages 118-125. IEEE Xplore, 2010.

4. J. Bergstra and J. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77-121, 1985.

5. S. Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 375(1-3):227-270, 2007.

6. T. Caulfield, D. Pym, and J. Williams. Compositional Security Modelling: Struc-
ture, Economics, and Behaviour. LNCS, 8533:233-245, 2014.

7. Tristan Caulfield and D. Pym. Modelling and simulating systems security policy.
In Proc. 8th. SIMUTools. ACM Digital Library, 2015.

8. B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

9. M. Collinson, B. Monahan, and D. Pym. Semantics for structured systems mod-
elling and simulation. In Proc. SIMUTools, pages 34:1-34:10, 2010.

17



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems
Modelling. College Publications, 2012.

M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.
Mathematical Structures in Computer Science, 19(5):959-1027, 2009.

J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities.
Manuscript, UCL, , 2015.

D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux.
Mathematical Structures in Computer Science, 15:1033-1088, 2015.

T. Hoare. Generic Models of the Laws of Programming. LNCS, 8051:213-226,
2013.

J.-B. Jeannin, D. Kozen, and A. Silva. Language Constructs for Non-well-Founded
Computation. In Proc. 22nd ESOP, pages 61-80. Springer-Verlag Berlin, Heidel-
berg, 2013.

Hewlett-Packard Laboratories. Towards a science of risk analysis. http://wuw.
hpl.hp.com/news/2011/oct-dec/security_analytics.html. Accessed 16 Octo-
ber 2015.

Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation be-
tween Intuitionistic BI and Boolean BI: an unexpected embedding. Mathematical
Structures in Computer Science, 19(3):435-500, 2009.

S. Milius. A sound and complete calculus for finite stream circuits. In Proc. 25th
LICS, pages 421-430, 2010.

P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer
Science, 375(1-3):271-307, 2007.

P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215-244, June 1999.

D. Pym, P. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics
of BIL. Theoretical Computer Science, 315(1):257-305, 2003.

S. Read. Relevant Logic. Basil Blackwell, 1988.

J. Reynolds. Separation logic: a logic for shared mutable data structures. In Proc.
of 17th LICS, IEEE, 2002.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2008.

18



