
Evolving Communities of Recommenders:

A Temporal Evaluation

Neal Lathia, Stephen Hailes, Licia Capra∗

n.lathia, s.hailes, l.capra @cs.ucl.ac.uk

February 13, 2008

Abstract

Collaborative Filtering (CF) is the established algorithm that fuels the
success of recommender systems. The assumption that these systems rely
on is that like-minded users can successfully share the experiences they
have had with the content provided; CF is thus a means of spreading in-
formation via similarity. There are many ways of measuring how similar
two users are, and the predictive power of each method has traditionally
been quantified by measuring the distance between predictions and the
actual ratings provided by users. However, the data that is available to
CF researchers is temporal in its nature; it grows as users respond to rec-
ommendations and rate items. The temporal nature of the data is highly
influential in determining how accurate and useful any particular predic-
tion will be in the actual deployment of a recommender system. In this
work we perform a full evaluation of CF algorithms that includes time,
by only considering the currently available information when making pre-
dictions. Unfortunately, traditional methods of measuring performance
in this context are no longer informative. To overcome this, we intro-
duce a classification of predictions based on confidence, and show that
both the parameters used to tune CF and the methods used to measure
user similarity will have a strong effect on the predictive confidence of the
system.

1 Introduction

Recommender systems, responding to the ever growing surge of information on
the web, have been designed to act as life vests for online users, who would other-
wise be overwhelmed by the vastness of information available to them. Whether
this content is movies, music, or the seemingly infinite catalogues of e-commerce
web sites, these users are unable to dedicate the time to sift through what is
available, or express their requests for new, interesting items in search queries;

∗Dept of Computer Science, University College London, London, WC1H 9EB, UK

1

they are confronted with the problem of information overload [1, 2]. Here, the
recommender system comes to the rescue, offering items to users based on their
profile, or historical behavior (in the form of implicit or explicit ratings). The
web is ripe with examples of recommender systems, ranging from Amazon.com’s
product recommendations1, to services such as Pandora2 and Last.fm3 for mu-
sic profiling and recommendations, to the Netflix million dollar competition to
improve its movie recommender system4. The generated recommendations aim
at providing each user with a unique, personalised experience that is tailored to
fit their taste, that allows users to continue dialoguing with the system as they
consume the content that is being offered.

Collaborative filtering (CF) is the dominant community-based algorithmic
solution that fuels recommender systems. The community of users, which may
include our fictitious protagonists, Alice and Bob, provide the system with the
opinions of the (usually limited) experiences they have had with the content.
The system collects the set of opinions, and can make predictions of how much
Alice will like items she has not encountered and rated already. It does so
by combining opinions for these unrated items, following a method built upon
the assumption that historically like-minded users will continue sharing similar
opinions. Therefore, predictions for Alice will be based on composing opinions
of other users who are similar to her, users who form a neighbourhood of recom-
menders for her. This neighbourhood may include Bob, and the contribution he
makes to a predicted rating for Alice will be weighted according to how similar
he is to her. The methodology described here brands this type of CF as kNN, or
k-nearest neighbour, user-user CF. Other methods may compare items rather
than users, but all methods aim to produce predicted ratings for items; this
way, a ranking of items based on the predictions can be presented to each user
as recommendations, in the hope that the predictions will closely match their
actual experiences when they rate the content.

One of the main points of research into CF has been on improving the pre-
dictive accuracy of the algorithm; excellent examples can be found in [3] and
[4]. This focus is echoed in the goals of Netflix prize, which aims at diminishing
the current root mean squared error in the predictions by 10%. Striving for
evermore accurate recommenders is grounded in the assumption that user rat-
ings express the experiences that the users are having with the content they are
consuming. Therefore, the better the system can predict a potential experience,
the more likely it is to provide useful suggestions to each user. This assumption
not only led to the reduction of the problem of recommending items to that
of predicting ratings, but also paved the way for the traditional methods of
evaluating the performance of a CF algorithm, based on measuring the distance
between predicted and actual ratings.

However, to date there is very little understanding of the effect that improved
mean error results will have on users, and it is very difficult to measure the effect

1http://www.amazon.com
2http://www.pandora.com/
3http://www.last.fm
4http://www.netflixprize.com

2

of a CF algorithm on the quality of user recommendations. On the one hand,
this is due to incompleteness of current error measures. On the other hand, these
evaluations do not include a separate component that is equally important to
the unique experience that each user will have with the system: the time when
the prediction was made. Evaluations of CF algorithms exclude the fact that the
dataset that fuels the recommendation engine is dynamic, growing over time,
and offers varying degrees of predictive power to users who interact with the
system at different times.

In this work we inject the temporal component into the evaluation of CF
algorithms. In particular, we:

• Review the current methods of user-based CF, by exploring the various
methdos of measuring user similarity in Section 2, and decomposing the
problem of generating predictions into three stages: neighbourhood for-
mation, opinion aggregation, and recommendation with feedback. From
this problem description, we can enumerate the assumptions that CF is
built upon, which we list in Section 2.4.

• Describe current methods of evaluating a set of predictions in Section 3,
and demonstrate that mean error values are not only lacking in informa-
tion, as they do not consider the extent to which predictions deviate from
the mean value, but also do not reflect the actual experience of the end
users. We explore this issue by introducing and applying a modified stan-
dard deviation function on a set of predictions on the MovieLens dataset5.

• Introduce the temporal characteristics of the MovieLens dataset, reporting
how the dataset changes over time, in Section 4. Based on these temporal
characteristics, we repeat rating-prediction experiments that include time,
to find that the traditional error measures no longer express useful perfor-
mance information at all. We compliment this analysis with a case study
of one of the users in the dataset, in Section 5, where we observe how
prediction error evolves over time using a time-averaged absolute error
metric.

• Introduce a new measure, based on confidence, to observe the extent to
which similarity-based CF meets these requirements in Sections 6-7. Mea-
suring the confidence that can be achieved on a set of predictions is de-
pendent on both the similarity measure that is used and the parameters
that tune the CF algorithm; a full set of results is detailed in Section 8.

2 Collaborative Filtering

The process that is performed by the kNN user-user CF algorithm that we
consider here can be decomposed into three steps: neighbourhood formation,
opinion aggregation, and recommendation and feedback. Each component is an

5http://www.grouplens.org/taxonomy/term/14

3

additional step to the formation of recommendations, and also reveals different
problems that plague the generation of good recommendations.

2.1 Neighbourhood Formation

The first step of CF entails finding a neighbourhood of recommenders for ev-
ery user. Drawing from the assumption that similar users will continue to be
like-minded, all of the user pairs in the system are compared, according to a pre-
determined measure of similarity, and each user receives a set of k neighbours.
This choice of neighbours determines who is considered to be good sources of
opinion information, and consequently both the value k (or size of the neigh-
bourhood) and the method used to measure similarity will have an effect on the
power the algorithm has to generate appropriate recommendations.

The simplest similarity measure between two users’ profiles, or historical
ratings Ra and Rb, can be derived using information that disregards the actual
ratings themselves, but considers two other factors. The act of rating an item
is a conscious decision made by human users, and represents a judgment on
a product that has been “consumed” (viewed, listened to, etc). Furthermore,
the mere problem of information overload explains that recommendation sys-
tems are built to aide product-selection. Therefore, when two users have rated
the same product, they already share a common characteristic: their choice to
consume and rate that product. This similarity measure disregards each user’s
judgment of the item, and weights users according to the proportion of co-rated
items [5]:

wa,b =
|Ra ∩Rb|
|Ra ∪Rb|

(1)

The more commonly cited similarity measure, however, is the Pearson Correla-
tion Coefficient (PCC) [6]. The PCC aims to measure the degree of agreement
between two users, thus including the idea of “how much” a user may have
liked or disliked an item. It does so by measuring the extent to which a linear
relationship exists between the two users’ historical ratings (Equation 2) , by
comparing the ratings (ra,i, rb,i) that users a and b gave for item i, which are
normalised with each user’s mean rating r̄a, and r̄b. Similarly, the Vector Sim-
ilarity (VS, Equation 3) aims at measuring the angle that exists between the
two user’s profiles.

wa,b =
ΣN

i=1(ra,i − r̄a)(rb,i − r̄b)√
ΣN

i=1(ra,i − r̄a)2ΣN
i=1(rb,i − r̄b)2

(2)

cos(Ra, Rb) =
ΣN

i=1ra,i × rb,i√
ΣN

i=1r
2
a,i

√
ΣN

i=1r
2
b,i

(3)

The PCC has been subject to a number of improvements. For example, [6]
was the first to introduce significance-weighting: a coefficient would be scaled
by n/50, where n is the number of co-rated items, if the two users had co-rated

4

less than 50 items. This extension is based on the observation that although
correlation coefficients demonstrate convergent behavior over time (as they are
recomputed with growing profiles), the values it takes when very few items
have been co-rated varies wildly. Significance-weighting, in essence, attempts
to incorporate a degree of reliability into the coefficient, and, in fact, [6, 7]
reported improved prediction results. There are also other heuristics that have
been applied; for example, the constrained-PCC uses the rating scale midpoint,
rather than the user’s mean.

Other methods do exist, and have yet to be fully explored. For example,
rather than considering a user’s profile to be a vector of numbers, as the above
methods do, each entry can be described as a judgement based on an ordinal
scale of values [8]. Two users can therefore be compared by constructing a conti-
gency table of agreement, which includes the possibility that the two users may
agree by chance [9]. Deciphering the optimal way of comparing judgements is
as of yet unresolved, but all of the above methods share the common character-
istic that they reduce the relationship between two users into a single numerical
value.

This step relies on profile information that the user has given in order to
find good sources of opinions. If the user has no historical profile, the cold-
start problem appears, and it becomes impossible to find any neighbours [10].
Furthermore, if there is no overlap between the user’s profile and those of the
rest of the community members, no useful comparison can be made, and once
again the user cannot be assigned any neighbours: the sparsity of CF datasets
prevents users from participating in one another’s recommendations. One of the
proposed solutions is to extend the formation of user neighbourhoods from mere
similarity towards the concept of trustworthiness [11]. Trust has been explored
from a number of perspectives in recommender systems [11, 12, 13, 14], but
continues to have a strong semantic overlap with the purpose of similarity: they
are both means of identifying neighbours. In [11] the cold-start problem is
overcome by asking users to provide trust scores for other users, thus allowing
neighbourhoods to be formed by means of trust propagation. Other solutions,
on the other hand, attempt to relieve the problem by looking to exploit available
user demographic data when no ratings are available [10].

2.2 Opinion Aggregation

All of the above measures are used to determine who will be in each user’s top-k
neighbours, and to find correlation coefficients wa,b, between all user pairs a and
b, that contribute to the generation of predicted ratings by acting as weights on
the opinions received from neighbors [6]:

pa,i = r̄a +
Σ(rb,i − r̄b)wa,b

Σwa,b
(4)

In other words, a predicted rating pa,i for user a’s unrated item i will be created
by combining the opinions (rb,i − r̄b) available in that user’s neighbourhood,

5

weighted according to the degree wa,b of similarity (or trust) in the neighbour
providing the opinion, and then adjusting this weighted mean to fit the user’s
rating style, by centering them on the user mean r̄a. From this equation we can
observe that the ability to make predicted ratings is heavily dependent on the
weight and opinions provided by the neighbours found in the neighbourhood
formation step.

However, by basing neighbourhood formation on historical profile informa-
tion, even when neighbours can be found they may not be good sources of
information. If, on the one hand, Alice and Bob had the exact same profile,
both in terms of items rated and the actual ratings given, then they would have
perfect similarity and would most likely appear in each other’s neighbourhood.
However, equivalent profiles does not imply that Bob will be able to provide
any information to Alice. In this cases, with the two profiles being equivalent,
he would not be able to contribute to any predicted ratings for Alice. On the
other hand, if Bob was the only user to have rated a particular item, but he did
not share any ratings with Alice, he could not be in her neighbourhood at all.
In both cases, the problem of poor prediction coverage arises.

2.3 Recommendation and Feedback

Once predicted ratings have been computed, they can be sorted and the top-n
can be presented to the user as recommendations. This step also gives the users
a chance to respond to the algorithm, by rating more items and incrementing
their profiles. As we will see in Section 4, these steps are repeated iteratively
over time and, as user profiles grow, the community of users changes, and the
amount of information available to generate predictions becomes richer.

This step of the recommender algorithm has also been subject to analysis.
Questions that arise include: what are the incentives for users to rate items
[15]? How does presenting information differently influence the rating trend for
each particular item [16]? Understanding how a user reacts to an algorithm is
also an open question and is equally important in order to construct systems
that meet the user needs, but is beyond the scope of the work we present here.
This last stage completes the process that continues cycling in a recommender
system, and using this we can take a step back, to outline the assumptions that
CF is constructed upon.

2.4 The Goals of Collaborative Filtering

The long-standing assumption of CF states that people who have been like-
minded in their past opinions will probably be like-minded in the future. It is
interesting to note that, stated this way, even the basic assumptions of informa-
tion filtering include a temporal component, thus reinforcing the requirement
that time play a significant role in the evaluation of CF algorithms. This as-
sumption further implies that a particular user’s tastes will not drammatically
change from one day to the next; we can safely expect users to display a certain

6

amount of “consistency.” Although consistency is a difficult quality to mea-
sure, without them the raison d’etre of CF is void. They also imply that the
opinions users put into the system will not be appropriate predictors for every
other user’s view of the same item. In essence, CF aims at capturing implicit
relationships within a community of users and items, and use this information
to subjectively guide users’ choices of which further items to consume.

Given this assumption, what is the goal of CF? In the context we consider
here, that of user-user CF, the goal is to create accurate predictions of unrated
items, by finding the appropriate neighbours for each user. The principle of
like-mindedness can therefore be extended, to form a clear picture of what a
successful CF algorithm should achieve:

1. If the set of users in the system is N , then for each user a there is a subset
Na,k of k users who are good neighbours for a. A good neighbour can be
further specified according to three characteristics:

• Similarity : the neighbour’s opinions will closely match a’s. In other
words, there is some measurable quantity between the two user’s
profiles, and ranking this value compared to the other users will place
it in the top-k.

• Reliability : the presence of a neighbour in the top-k will be deter-
mined by the similarity measure that is used on the set of profiles.
However, all similarity measures share a common characteristic: the
reliability that the computed value holds can be determined by how
much profile overlap there is between the current user and the neigh-
bour.

• Participation: the neighbour can provide information about a’s un-
rated items.

2. A good CF algorithm will be able to quickly find these k neighbours
for a; it will match similar users in order to “facilitate getting the right
information to the right people.” [17].

3. As time passes, a will continuously interact with these k neighbours, by
using the opinions they provide to generate predicted ratings of items.
Thus a will build a temporal relationship with these neighbours.

The main point that emerges from these assumptions is that time is a key
component of the process of generating recommendations. As we will explore in
Section 4, actual implementations of CF-based recommender systems undergo
iterative updates. At each update, all users’ neighbourhoods are recomputed
using the currently available profiles, which may have significantly grown in
the time that has passed since the last update. Therefore, at each update,
the algorithm will have more information about different users, and has the
opportunity to recompute the decisions it previously made. However, ideally it
is able to make the correct neighbourhood decisions as early as possible, and
may only have to revert previous decisions when temporal changes to the data

7

(such as new users entering the system) have changed the community to such
an extent that neighbours are no longer similar and can no longer participate
in each other’s recommendations. Otherwise, if early neighbourhood decisions
not only persist, but are reinforced over time, as profiles and the amount of
information available to compare users grow, then we know that our decision
mechanism is achieving our goals.

The dependence that CF algorithms have on k, the frequency of update, and
the method of measuring similarity all emerge from these assumptions. We can
also observe that they will all be inter related; finding k neighbours quickly will
depend on the update frequency, and populating a neighbourhood of k users will
depend on the measure of similarity. In particular, the measure of similarity
does not only tell us how much we should weight neighbour opinions, but plays
the more important role of telling us whether one user should be favoured over
another when being considered as candidates for a third user’s neighbourhood.

Given these goals that we set out to achieve, once a CF system is built we
require a means of evaluating the extent to which it meets our requirements.
In the next section, we explore the current methods that are used to measure
the predictive performance of various user centric CF algorithms. We demon-
strate that current error measures not only carry very little information about
the system’s performance, but that, by ignoring the temporal aspect of these
systems, also depart from realistically reflecting what users are experiencing.

3 Evaluation Methods

Evaluations of recommender systems can be broadly classified into two groups:
interface and algorithmic evaluations. The purpose of evaluating an interface
is to make a judgement on how well a system presents information to the user,
and is thus perhaps the most immediate kind of evaluation that a new system
requires [18]. If we were successful in creating the perfect algorithm, but could
not present the information to the user in a transparent, understandable, and
useful way, then the system still does not fulfill the “life-vest” role we intended
for it.

We also require a means of evaluating the underlying algorithm, which can
be performed parallel to any interface-level evaluations. Algorithmic evaluation
aims at measuring how well a system is generating the information that is
being provided to the user. To that end, interface concerns are ignored and
the evaluation focuses purely on the ratings that users have provided. To this
end, the MovieLens dataset has been widely used. The MovieLens dataset is
composed of 100, 000 ratings, made by 943 users on 1682 movies. The most
popular movie (in terms of rating frequency), with 583 ratings, is Star Wars.
There are 142 movies that have only a single rating, but all of the movies have
at least one rating. The dataset has been widely used to evaluate CF methods,
addressing an equally wide range of research topics; some examples can be found
in [19] and [20]. It also is available split into five disjoint 80%/20% training/test
sets, (u1, u2,...u5), in order to favour five-fold cross validation.

8

Figure 1: Actual vs. Predicted Ratings

An evaluation of a new CF method will therefore use the training set as
the basis, and set any initial values in the system based on the ratings in this
set. These may include user-pair similarity measures, which will be used to
define each user’s neighbourhood, and will determine what opinion information
is available. The new method is then asked to make predictions for all the
items in the test set, and we can derive the comparative performance of a
method to other benchmark results [5]. The aim of this evaluation method
is to measure the ability the algorithm has to create useful recommendations,
disregarding the accessibility or interface issues that also influence the user’s
experience. Traditionally, this characterisitc has been measured with either the
Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE) between the
predicted and actual ratings. Both provide similar insights into the underlying
performance, and thus in this work we focus on the MAE.

The quest for accuracy has already been described as a limiting factor in
the advancement of recommender systems [21, 22], as it blatantly ignores any
consideration of the order in which recommendations are given to users and
there is no existing work that formalises the extent to which a 10% improve-
ment translates into increased user satisfaction. However, it is grounded in the
assumption that ratings express the experiences that the users are having with
the content they are consuming, and alternative user-centric methods seem to
lack the objective and empirical results offered by statistical error measures.
However, reporting a simple MAE does not tell us anything about how much
the predictions are dispersed around this mean. In other words, a mean error
does not give us very much insight into the actual behaviour of our prediction
method. To get an idea of prediction dispersion, Figure 1 shows the results
of plotting the actual to predicted ratings of the MovieLens u1 subset, when
making predictions using all available neighbours and the PCC as the similarity
measure. The diagonal line across the plot is where a perfectly accurate CF
algorithm would place all the predicted values. This kind of addition to tradi-
tional evaluation methods shows the tendency of our algorithm to return certain
values; for example, in Figure 1 we can see that the majority of the predicted
ratings fall between 2 and 4 stars, and although the overall error is about 0.8,
the individual predictions sometimes do much worse than this aggregate value

9

Table 1: MAE Prediction Error with Standard Error Deviation

Neighborhood Co-Rated Weighted-PCC PCC VS
1 0.882±1.466 0.874±1.487 0.856±1.384 0.860±1.391
10 0.832±1.378 0.808±1.375 0.877±1.425 0.878±1.430
30 0.789±1.301 0.765±1.287 0.879±1.442 0.887±1.449
50 0.774±1.270 0.753±1.259 0.874±1.444 0.890±1.456
100 0.763±1.249 0.746±1.239 0.853±1.403 0.883±1.439

tells us (especially in the case of items the user rated 1 star).
The first additional piece of information that any evaluation of a CF method

requires, therefore, is a measure of dispersion. In other words, how much does
the error of each predicted rating spread from the MAE value that we have
collected? We can find this value by using a modified version of traditional
standard deviation:

σ =

√
1
N

ΣN
i=0(|ri − pi| −MAE)2 (5)

As is visible in Equation 5, we are interested in measuring how much the error
in each individual prediction deviates from the mean value that we collected, re-
gardless of whether the prediction was too optimistic (i.e. greater than the user
rating ri) or too pessimistic (less than ri), or whether the difference is greater
or less than the mean value, although perhaps future work may consider differ-
entiating between these outcomes as well. Given this new piece of information,
we can re-run our comparative experiments to see if they shed more light on
the influence of different similarity measures on the predictive power of our CF
algorithm. The results of running experiments on the MovieLens u1 subset are
shown in Table 1.

Measuring this additional statistic brings to light a new problem. Regardless
of the fact that the above report is incomplete without a measure of prediction
coverage, the standard deviations of the individual ratings from the mean errors
are so big that they do not allow us, for example, to differentiate between pre-
dictions made using co-rated similarity with 30 and 50 neighbours. Intuitively,
using 20 more neighbours should imply that we are using more information to
create the predictions. The actual predictions, however, are equally dispersed
no matter what neighbourhood size we use; it is no longer possible to measure
the effect of the algorithm on the accuracy of the predictions it creates.

We can view prediction dispersion from a different perspective by considering
the proportions of predictions we make that fall within certain ranges of error.
For example, from Table 1 we can infer that, when using the PCC, the average
error m̄, over all neighbourhood sizes is 0.867. If we are only considering the
MAE values (again, excluding prediction coverage) we would be inclined to say
that the PCC prediction method performs much better with 100 neighbours

10

Table 2: Proportion of (PCC-based) Prediction Error Less than m̄
Neighbourhood < 0.5m̄ < m̄ < 1.5m̄ < 2m̄ < 4m̄ < 6m̄

1 0.320 0.585 0.778 0.897 0.999 1.000
10 0.317 0.578 0.769 0.886 0.998 1.000
30 0.321 0.576 0.768 0.881 0.997 1.000
50 0.323 0.578 0.770 0.880 0.997 1.000
100 0.327 0.588 0.783 0.888 0.998 1.000

Average 0.322 0.581 0.774 0.886 0.998 1.000

than it does with 1. In other words, a higher proportion of the predictions
we make will have low error when we use 100 neighbours. We can compare
the different proportions of the dataset, or different number of predictions with
error that is within various ranges of the average value 0.867, as shown in Table
2. The table shows the various proportion of the test dataset predictions that
are made with different amounts of error. The predictions with error less than
m̄ do not drastically change, regardless of the neighbourhood size we select:
none of the values deviate remarkably from the average proportion within the
given range. The biggest change we notice over the other results is when 100
neighbours are used, and surprisingly, when a single neighbour is allowed.

Complimenting these results with coverage statistics drastically improves the
insight we gain into the performance of the algorithm. When a CF algorithm
can not make a prediction, it simply returns the user mean; including unrated
predictions in the MAE computation may therefore also skew the mean error
value, since CF datasets are known to have a positive distribution, and perform
relatively well when simply returning the user mean as a prediction [23]. One
possible solution is to exclude uncovered predictions from mean error calculation
[24]. However, based on all of these factors, it becomes quite apparent that an
evaluation of a CF algorithm that reports mean errors is not very informative or
sufficient; it does not satisfy our original goal of capturing the emergent implicit
relationships between the users in the dataset. Research in this field has already
identified that the user experience is also subject to time, by recognising that
the new cold-start users, who do not have a profile of ratings, will not be able
to receive useful recommendations. The cold-start problem already implies that
the growth of a user profile over time will influence the experience the user has.
Therefore, by ignoring the effect of time on predictions, this evaluation method
will not reflect the actual experience of participating users.

Can we use this information to make a more informed and reliable evaluation
of CF algorithms? We begin addressing this question by considering how the
dataset evolves over time.

11

Figure 2: Community and Rating Set Growth Over Time

4 Temporal Characteristics of the Data

The MovieLens rating dataset lists four pieces of information in each entry: the
user id, the movie id, the 1-5 star rating given by this user to the movie, and
a timestamp, in unix seconds, showing when the user made the rating. The
timestamp represents the number of unix seconds since January 1st1970; a day
in this metric is approximately 86400 unix seconds6.

The first rating in the dataset is marked 874724710, the morning of the 20th

of September 1997. The last rating is 893286638, or the evening of the 22nd of
April 1998. Submitting the first rating kickstarts the data that a CF algorithm
can operate on, and so we refer to this timestamp as time zero. Similarly, the
last rating that we have available marks the end of the temporal view we have
of this system. The dataset spans a seven month time period, and based on the
submitted timestamps, we can observe both the growth of the rating set that
is available to generate recommendations and the community that is using the
system. In Figure 2 we have graphed the growth of the community over time.
Users “join” the community the moment they make their first rating, and so
there is a strong coupling between the size of the community and the growth
of the rating set over time. The rating set reaches its full 100, 000-rating size
at the end of the seven month period, after near-linear growth over time. The
community consistently grows over time, without reaching a maximum value
until the end, and so is characterised by users who have a wide variety of entry
times and constant growth. Community growth over time like this, much like
the qualities of a network described by Metcalfe’s law, implies that the amount
of information available to create recommendations (and thus the value that
different users can draw from the system) at different times will be quite large.
The set of movies that can be rated will also grow over time, but is more difficult
to measure, since the dataset does not include time stamps for when a movie
was added to the system. We thus consider how many of the 1682 movies remain

6http://en.wikipedia.org/wiki/Unix time

12

Figure 3: Unrated Movies Over Time, and Time of First Rating Per Movie

unrated over time, in Figure 3. A very large proportion of movies receive their
first rating within a very brief interval from time zero; as Figure 3 shows, over
half of the set of movies receives its first rating within days. Users in this
group are therefore not simply responding to a set of recommendations, but
are proactively seeking to rate items, set rating trends, and respond to rating
incentives [15, 16, 25], although this activity seems to wane as time passes.

The first attempt at including time in the evaluation of a CF algorithm re-
quires a very small change to traditional methods. Rather than simply breaking
a user-rating matrix into training and test components, predictions are made
on all items based on the user-rating matrix that is available at that time. Due
to the fact that the dataset has been “cleaned up,” by throwing away profiles of
users who have rated less than twenty items or have not completed the demo-
graphic information and we do not know the exact times when the system was
updated, this evaluation will not be a fully accurate reproduction of what hap-
pened to the MovieLens users. However, it will reflect making predictions over
a dynamic rating dataset, highlight recommender system problems from new
pespectives, and call for a new method of measuring the effect of CF algorithm
parameters on the quality of the predictions.

4.1 Temporal Evaluation

The system begins at time zero, and will be updated at regular intervals, which
could range from daily, to weekly, fortnightly, or monthly. When an update oc-
curs, the system recomputes each user’s neighbourhood based on the currently
available user profiles, and then derives predicted ratings of unrated items in
order to present each user with personalised recommendations. An experiment
that mimics this behaviour will recompute user-similarity measures at each in-
terval and then make kNN predictions on all items that the user has yet to rate,
based only on information that is currently available. If the user has already
rated the item at the current time interval, the predicted value is not updated.

13

Table 3: MAE Prediction Error, PCC Similarity
Neighborhood Daily Weekly Fortnightly Monthly

1 2.851±2.007 3.039±1.849 3.133±1.740 3.201±1.670
10 2.859±2.023 3.044±1.862 3.137±1.749 3.205±1.679
30 2.855±2.016 3.041±1.854 3.135±1.746 3.203±1.676
50 2.847±2.001 3.035±1.844 3.130±1.738 3.200±1.669
100 2.836±1.982 3.027±1.829 3.124±1.725 3.194±1.658

The error measures collected from the dataset will therefore be based on the
last prediction made of the item before the user rated it, regardless of the time
interval between the last prediction and the user rating. The inputs to this
kind of experiment are the update interval, the neighbourhood size k, and the
method that will be used to derive user-similarity.

We chose to work with the 100, 000-rating MovieLens dataset since it has
played a key role in the historical development of CF algorithms. Other datasets
exist, such as the 1, 000, 000-rating MovieLens dataset and the Netflix prize set,
and both not only display different temporal characteristics, but also span a
larger time period and include a greater amount of data. The data we used
spans a seven month time period, and although this may seem relatively short,
it is an extremely long time for users, who may be expecting relevant and
accurate predictions from their first encounter with the system.

The first experiment that we performed does as described above, using the
PCC as the measure of user-similarity, varying both the neighbourhood size k
and the frequency with which the system is updated. The results shown in
Table 3 display the accumulated error over the full experiment.

The results could be used to highlight improvements in recommendation
accuracy when more frequent updates are performed. This reflects the fact
that when users join the system, their profile will be of size zero, and so it will
be impossible to find any neighbours for them. In the worst case, they will
have joined the system immediately after an update was performed, and so will
have to wait the full interval before their profile will be compared to the other
community members. The users begin building their profiles over time, but
if they have to wait a significant period before they have a neighbourhood of
non-zero weighted recommenders.

Unfortunately, these results are absolutely terrible. In fact, we repeated
the above experiment and simply returned a random number that is uniformly
distributed between 1 and 5, the rating scale used in this dataset, and achieved
a MAE of around 1.5± 1.3. Why are the results so bad?

5 Case Study: User 407

We explored the effect of temporal evaluations on error measures by restricting
the scope of our dataset. We selected user 407, and repeated the above ex-

14

periments, but only producing predictions on the profile items of the selected
user. The user’s profile has 226 items and spans a number of days, with vari-
able amounts of growth between updates, thus making user 407 an interesting
candidate for inspection. Overall error statistics remain worse than random;
for example, if we make predictions using daily updates, a single neighbour,
and the PCC, the overall MAE is 1.87 ± 2.57. The aim of our case study was
to understand why the error is so high, and to visualise the evolution of the
prediction error over time.

5.1 Time Averaged Absolute Error

To observe the dependence of prediction error on time, we modified the MAE
calculation, similar to the Time Averaged Rank Loss that is described in [26].
We first made predictions that include the temporal state of the dataset of all
the items in the user profile, and then divided the user’s profile into a number of
rounds. At each round, the user enters a rating, and so it is possible to calculate
the error of the predictions for ratings the user has made until that time. In
other words, the prediction error at round N is the sum of the absolute error
between all ratings ri and predictions pi made up to the current round, divided
by the number of rounds:

Error(N) =
ΣN

i=0|ri − pi|
N

(6)

We can similarly define the time-averaged coverage, as the number of covered
prediction over the total number of ratings done to date. Given that at each
update the user’s neighbourhood will be recreated using profiles that have grown
since the last update, we measured the time averaged absolute error from the
moment of the last update. In other words, once an update has been performed,
we reset the error and coverage counts to zero. The time averaged absolute error
and coverage results for user 407, when daily updates and a neighbourhood of
size ten (k = 10) is used, are shown in Figure 4. The vertical lines in the figure
represent when an update was performed. From the graph, we can infer that
the user does not consistently rate items; for example, the number of items that
were rated before the first update are far greater than those input before the
second.

The graph also gives a reason as to why overall statistics of the predictions
made for this user are worse than a random guess. Before the first update, the
error is incredibly high, and coverage is zero. In certain instances it exceeds
4, which intuitively would have been the upper bound for error for predictions
made on a five-star rating scale, and the time averaged error only returns to
below 1, within a range that would be expected of a CF algorithm, after the first
update. However, even after the third update, when the user’s profile exceeds
100 items, the time-averaged coverage does not exceed 70% of the rated items.
From this we can form a clear picture of the gravity of the cold-start problem [10]
for new users in recommender systems, and the continuous coverage problems

15

Figure 4: User 407, Time Averaged Absolute Error and Coverage (k = 10,
Pearson Similarity)

suffered by prediction algorithms over time. Error measures in the cold-start
region are so high that they will skew any overall statistics, and can be caused
for a number of features of the CF algorithm, which we further explore below.

5.2 Highlighting the Cold Start Problem

As we showed in Equation 4, a predicted rating is generated for a user by col-
lecting opinion information from neighbours and computing a weighted average
of the opinions using the similarity values. Opinions are the extent by which a
rating deviates from each users’ mean, and the reasoning behind this method
is that predicted ratings will be more suitable for user 407 by centering them
around that user’s mean. In a system that is dependent on time, and updated
at regular intervals, a number of problems arise with this method:

• First Rater: No opinion for that item. This forms part of the traditional
cold-start problem, in that if an item has not been rated by any members
of the user’s neighbourhood (or perhaps has not been rated by anybody)
then it is very difficult to recommend it successfully to anyone else.

• Lack of User Mean. When users joins the system, their rating mean will be
zero, unless a number of ratings are required of the user when they join.
Any weighted average of opinions that are centred on a zero-mean will
produce very high error results. For example, if the weighted average of
opinions predicts a rating to be 0.5 less than the user mean, the predicted
rating will be −0.5.

• Lack of Recommender Mean. Similar to above, if the only recommender(s)
who has rated the item in question has a zero mean, by rating the item
prior to any system update, then any deviations from this value become
useless; they do not express positive or negative opinions and will distort
any prediction made using them.

16

The relatively straightforward fix to this problem would be to centre rating devi-
ations from the rating scale mid point or overall average user rating, rather than
the user mean. This fix improves the error values that are collected from user
407’s ratings by injecting numbers that mask the underlying problem. However,
these results are still not expressing the full behaviour of the system; they are
merely returning the difference between the predicted and actual rating, regard-
less of whether a prediction was at all possible or not. A closer inspection at the
actual progression of user 407’s set of ratings reveals that all of the items before
the first update are uncovered ; no prediction could be made. This is due to the
fact that user 407’s neighbourhood is empty, or full of zero-similarity users, and
does not change until the next update is performed.

There are a number of other methods that could be applied in order to reduce
the error we report before the first update, in this cold-start region for the user.
For example, we could require the user to rate a number of items, whether
these be randomly selected or the most popular movies in the system [20], as
part of the user’s registration process. In fact, users of the MovieLens system
that appear in this dataset may have been required to complete such tasks;
however, the particular sign-up procedure is not detailed in the dataset. Work
has also been done to incorporate data that is external to mere ratings, such as
any available demographic information [10]. The choice that is implemented in
order to avoid the cold-start problem will have a strong effect on the neighbours
that are selected for the user after this bootstrapping process. However, we
did not include these methods in our evaluation as they are mostly ad-hoc;
moreover, our focus is on evaluating the temporal progress of the system rather
than the specific bootstrapping procedure. Furthermore, the successful cold-
start solutions also cross into a context-specific domain, since the amount of
information that is available to use may vary. For example, MovieLens users
were required to input basic demographic data, whereas the Last.fm signup
procedure7 only requires an email address. The one unifying factor is that the
success of each method will also be subject to time. For example, requiring users
to rate 15 items when they sign up will affect the early-adopters of the system
much differently than those entering at a later time. Decomposing the problem
as we did above above allows us to see that cold-start does not only affect new
users, but will also be a system-wide characteristic, and without implementing
one of a number of proposed solutions, will only be relieved with time and
proactive users. We leave a full temporal comparison of different bootstrapping
methods as a topic to be explored in future work.

6 Returning To The Community

Based on what we have observed in the progression of error in user 407’s set
of ratings, we can return to attempting to perform an evaluation of the entire
community. Figure 5 shows the time averaged absolute error results for the
first 5, 000 predictions over all community members, when using 50 neighbours,

7http://www.last.fm/join

17

Figure 5: Dataset (first 5,000 ratings) Time Averaged Absolute Error

Table 4: Ratings Made With No Historical Profile
Update Frequency Ratings Proportion (%)

Daily 73,384 0.73384
Weekly 80,575 0.80575

Fortnightly 84,468 0.84468
Monthly 87,065 0.87065

the PCC to measure similarity, and daily updates. Unfortunately, the results
highlight that the method we used to analyse the evolution of predictions made
for user 407 does not hold for the entire community. This is due to the fact
that, as we saw in Section 4, the community itself grows over time, and new
entrants into the system will skew error measures towards what appears to be
performing worse than a random guess.

To gain more insight into why such results appear, we can extract the pro-
portion of the dataset that is composed of ratings made when the user had
no historical profile. As above, this method will be dependent on the sign-up
procedure required of users and the exact system update times; here we are
considering the worst-case scenario, i.e. that of users not being required to rate
any items when joining. We have already seen that user 407 inputs over 50
ratings before the first of the daily updates was performed. How does this affect
the entire community? The results are shown in Table 4.

As we can see in Table 4, the proportion of the ratings in the dataset that
are based on no history is extremely large. This information can be interpreted
in two ways. One the one hand, it reinforces the need to address the cold-start
problem, since such a huge proportion of the user experience is not covered by
the CF algorithm. On the other hand, it sings the praise of the MovieLens
users, who seem to have been actively participating in the rating process, and
not simply responding to recommendations [15, 16, 25]. If we simply removed

18

Table 5: MAE Prediction Error Excluding Cold-Start Items (k = 50, Daily
updates

Neighborhood Co-Rated PCC Weighted-PCC VS
1 0.917±1.564 0.917±1.561 0.944±1.644 0.921±1.569
10 0.901±1.525 0.945±1.626 0.894±1.555 0.943±1.616
30 0.869±1.469 0.930±1.599 0.846±1.457 0.936±1.594
50 0.859±1.451 0.901±1.542 0.828±1.419 0.913±1.549
100 0.843±1.422 0.860±1.461 0.818±1.397 0.876±1.475

these ratings from the predictions that we collect performance metrics from, then
the numbers return to within ranges of what we would expect of CF algorithms,
as we display in Table 5.

There is still no quantifiable difference between using varying neighbourhood
sizes. Once again, our error measures do not capture the quantity or appropri-
ateness of the information that was used to generate the predicted ratings, and
it is thus very difficult to evaluate the system’s performance. We therefore take
a step back, and revisit the goals set by CF, in order to construct a new means
of evaluating system performance over time.

7 Prediction Confidence

As we have seen above, traditional error measures hide much of the activity that
is occurring within the system, and do not reflect the true experience that users
will have with the algorithm. Incorporating temporal characteristics into an
evaluation to compensate for the lack of realism produces error measures that
appear worse than random. However, can we use the temporal progression of the
system to our advantage, and use it to measure the implicit relationships that
each CF algorithm is generating between the users? We require a classification
scheme in order to achieve this, and in particular to divorce the effect of cold-
start users from the performance of predictions made with well established user
means and neighbourhoods. To do so, we define a grouping of the predictions
made in the temporal dataset based on prediction confidence.

A prediction is made confidently if it is based on the opinions of reliably
similar neighbours who have actively participated in the previous predicted rat-
ings. In other words, we are measuring how well the algorithm has adhered to
the assumptions we put forward when generating predicted ratings, that is, the
extent to which the algorithm promotes the formation of temporal relationships
with recommenders. For each rating we can derive a level of confidence in the
prediction we provided:

confidence(a, i,Nk,i, t) =
1

|Nk,i|
Σk∈Nk,i

interactions(k, t) (7)

19

The confidence for the prediction of item i for user a, based on a set of k
neighbours in Nk,i (who provided opinions about i) at time t is the weighted
mean proportion of the time that each neighbour has contributed to a prediction
prior to the last update. The reason why this is a weighted mean is due to the
fact that we change the value of interactions according to both the amount
of information available to derive similarity, and historical participation, by
incorporating the overlap (or intersection) of the profiles of users a and k, Ra,t

and Rk,t, at time t:

interactions(a, k, t) = participation(a, k, t) ∗ |Ra,t ∩Rk,t|
|Ra,t|

(8)

participation(a, k, t) = Σi∈Ra,t
1 if k ∈ Nk,i, else 0 (9)

In other words, if a neighbour has perfect profile overlap but can not partic-
ipate in the prediction, then this neighbour is not part of Nk,i and does not
influence the confidence in that prediction. Similarly, if a neighbour constantly
participates in a prediction but has no profile overlap (there is no measurable
similarity), then the confidence in that neighbour’s contribution is zero. The
highest degree of confidence will come from the top-k neighbours who have
historically participated and have a highly reliable measure of similarity.

Our confidence measure does not include the degree of similarity the users
are deemed to be to their recommenders, but instead incorporates how much
information was used to create the similarity measure. This is due to the fact
that different similarity measures will disagree and return different values when
input with the same pair of user profiles [5]. Therefore, in order to not a priori
favour one measure over another, we incorporated the feature that is common
to all measures: that a greater amount of profile information should return
more reliable results [6]. Considerations on the actual value of similarity can be
discarded since we are only dealing with the top-k recommenders, and therefore
we are only dealing with those who have been selected as the most similar
to the current user. Our confidence measure therefore captures the fact that
confident predictions come from neighbours who have consistently been part of
our neighbourhood, reflecting the similarity and participation qualities that we
are looking for.

When the system can not find any useful information about a particular
item, a state that would lead to an “uncovered” prediction, we say that the
system makes a zero-confidence prediction. Similarly, if at the last update user
Alice had not provided any rating information to the system, then the system
can not make confident predictions for her; confidence will be built over time as
she interacts with the neighbours that are provided to her by the CF algorithm.

Given this definition of confidence, we now proceed to measure two char-
acteristics of the system. First, we compute what proportion of the evolving
dataset has predictions that were based on any confidence at all. In the case of
multiple predictions being made for the same user-item, we only consider the
latest prediction before the user inputs the rating, since this is the last value

20

Figure 6: Developing Confidence Example

that will determine whether to recommend the item prior to the user rating it.
Following this, we compare the level of accuracy that different similarity mea-
sures and methods of generating predictions achieve when making confident
predictions.

7.1 An Example

To clarify what we mean by confident predictions we can use a small example.
Let’s pretend that our CF recommender system has a large number of users,
which include Alice, Bob, Cristina, and Dave. We decide, for the sake of sim-
plicity, that each user’s neighbourhood should be of size 1, and are interested
in finding the best neighbour for Dave. There is no oracle that we can consult
to know what the right answer is, but the assumption of like-mindedness tells
us that Dave will be more similar to some users than to others.

In the first time interval Dave has no profile; there is no way to make a
decision about who his neighbour should be, and he finds himself in the cold-
start region of recommender systems. No predictions can be made for him, or,
in other words, any prediction that is made for him has zero confidence. At
the end of the first time interval, he has rated 10 items, and the algorithm
finds that he is most similar to Alice, who becomes his neighbour. In the
next interval, she contributes to Dave’s predicted ratings 3 times, but since
Dave has not interacted with Alice in any previous interval, he still doesn’t
know whether she is the best neighbour for him, and thus cannot have any
confidence in the predictions she contributes to. He also shares only 4 of his
10 ratings with her, and therefore the fact that she is the most similar to him
may not be extremely reliable. By the end of the second interval, he has rated
15 items. Alice’s profile has grown too, and he now shares 10 of his 15 ratings
with her. The algorithm confirms that she will be his neighbour in the next
round as well. The third round begins, and now that Dave knows that Alice
has already been his neighbour before; predicted ratings that are made for him
with her contributions are made with confidence. The value of the confidence
will be based on Alice’s historical participation (3), and the previous reliability
of her presence in his top-k (4/10). If every subsequent round reconfirmed Alice
as the best neighbour, and she continuously contributes to Dave’s predicted

21

Figure 7: Effect of CF Parameters on Prediction Confidence

ratings, then at each round the level of confidence will increase, as will the
overall proportion of confident predictions made for Dave. This interaction is
reflected in Figure 6.

However, let’s pretend that, in the fourth round, Bob suddenly becomes
Dave’s neighbour. Dave has never interacted with Bob before and so he cannot
have any confidence in Bob’s contributions. Building any confidence in Bob’s
opinions will take time. However, if the first few rounds were simply mistakes
due to inaccurate information, or Bob’s profile had a later entry into the sys-
tem and then grew much faster than Alice’s (to then overtake her in terms of
similarity with Dave), then Bob will be the new best neighbour and he will
persist over time in Dave’s top-k. The main point here is that if we assume
like-mindedness, then if at every round Dave receives a new neighbour (thus
making neighbour selection seem like an arbitrary choice), confidence will never
blossom. Of course, this is a toy example, but it highlights that like-mindedness
should lead to a clustering of users over time.

8 Re-Evaluating Similarity Measures

8.1 Effect of Algorithm Parameters

We can begin evaluating the temporal performance of the CF algorithm by
observing the effect of the different parameters on the amount of confident
predictions that can be made. The two parameters are the neighbourhood size
k and the frequency of updates. In order to consider these parameters separately,
in the first experiment we kept the update frequency constant (at daily updates),
and varied the neighbourhood size k from 1 to 100. In the second experiment, k
was kept constant at 100 and the frequency of updates was changed, from daily
to fortnightly, weekly, and monthly. The results are shown in Figure 7.

The results reflect changes we would have expected in the proportion of the
dataset that confident predictions are made on as the parameters are tuned.

22

Table 6: Number of Recommenders Participating in Predictions, k = 10
Similarity 0 1-3 4-6 7-9 10
Co-rated 86,086 8,708 3,566 1,451 189

PCC 90,262 8,525 1,105 106 2
Weighted-PCC 79,094 11,891 6,570 2,263 182

Vector 91,348 7,634 900 118 0

Widening the breadth of each user’s neighbourhood, by incrementing the value
of k, allows the user to have historical interactions with a greater proportion
of the community, thus boosting confidence. Similarly, since only historical
interactions are considered, and thus only interactions prior to the last update
are included, then less frequent updates will reduce the amount of predictions
we are confident about. It is important to note that if k was the size of the
entire community (in this case 943), then the confidence would be the same
for all experiments, regardless of the similarity measure that was used. This is
because each user would be allowed to interact with everybody else, and thus
the role of the similarity measure in deciding which other community members
should be neighbours is removed. However, in large-scale deployments of CF
systems, it is unreasonable to assume that neighbourhood sizes will be the size
of the entire community, as this would mean scaling the system to accodomate
for hundreds of thousands of users in each predicted rating.

The results therefore highlight differences between the similarity measures
that were explored in Section 2. In particular, both the weighted-PCC and
co-rated methods of deriving similarity achieve higher proportions of confident
ratings in this dataset, reconfirming their podium positions as succesful similar-
ity measures [6, 5].

The disappointing aspect of these results is the range of values they take.
In the best cases, we make just over 120 confident predictions; nowhere close to
the proportion of ratings that are made outside of the cold-start region (as was
shown in Table 4). Why are confidence levels so low? This must imply that the
vision we set of how relationships within a community of recommenders should
evolve are not being met. For there to be any confidence at all, we required
participating recommenders to persist in a user’s top-k from one update to
the next. However, in this case, at every update the system is assigning each
user a new set of neighbours, and very few persist over time. Therefore, it
becomes nearly impossible to form long-standing implicit relationships with any
recommenders.

We can take a closer look at these results by only considering recommender
participation. If we revisit the 100, 000 ratings that are within this dataset,
using daily updates and a neighbourhood of size 10, we can count how many
neighbours provided an opinion in a prediction. As we show in Table 6, different
methods of similarity will result in surprisingly disparate results.

The huge proportion of ratings that fall within “0 participating recom-

23

Table 7: Confident Predictions (Daily Updates)
Neighbours Co-Rated PCC Weighted-PCC VS

1 4 0 2 0
10 114 18 112 16
30 150 83 140 112
50 152 126 143 130
100 156 137 150 141

Table 8: Accuracy of Confident Predictions (Daily Updates)
Neighbours Co-Rated PCC Weighted-PCC VS

1 0.627±0.220 N/A 0.514±0.500 N/A
10 0.807±0.614 1.209±0.786 0.866±0.631 1.072±0.728
30 0.912±0.643 0.963±0.663 0.886±0.621 0.968±0.669
50 0.897±0.597 0.915±0.668 0.906±0.642 0.945±0.620
100 0.927±0.604 0.907±0.626 0.914±0.613 0.937±0.607

menders” reflects what we have already explored in Section 5.2, due to the
cold-start problem. The table also shows that of the 100, 000 ratings, there
are 26 that are made using opinions from the full neighbourhood when the
weighted-PCC is implemented. Otherwise, not all of the top-k can provide in-
formation for the current item; in other words, they cannot participate in the
prediction. The low levels of confidence achieved when using the VS sure are
reflected in the fact that a neighbourhood of size 10 never incorporates more
information than a neighbourhood of size up to 6 would have. This implies that
the vector method does not find neighbours who can contribute to predictions
as succesfully as the weighted-PCC and co-rated similarity measures can. If
the number of contributing recommenders diminishes, then the ability to cre-
ate a long-standing interaction relationships decreases as well, and so overall
confidence in the predictions we are making falls towards zero.

8.2 Confident Performance

Our confidence measure defines a means of observing extend to which the CF
algorithm is promoting predictions based on a history of reliably-measured,
participating neighbours. However, when the system does make confident pre-
dictions, how well is it making them? To what extent is the system allowing
users to build temporal relationships with recommenders who are like-minded?

We can begin by looking at the number of confident predictions that are
made, shown in Table 7. Again, the influence of the neighbourhood size k
emerges; by allowing users to build relationships with a larger subset of the
community, there is a greater chance that repeated interactions occur. The
accuracy of each number of predictions, shown in Table 8, falls within the same
range of values we observed in Table 5. In other words, when we are confident

24

about our predictions, our accuracy is high, and there is a basis for comparison
across different neighbourhood sizes and similarity measures. In particular,
when k = 10, the co-rated and weighted-PCC similarity measures achieve both a
higher proportion of confident predictions and improved accuracy. In this work,
we only considered confidence on a binary scale, looking at when there was any
confidence vs. none at all. It will be interesting to observe how confidence grows
over time, and the underlying relationship between different levels of confidence
and accuracy.

8.3 Benchmark Results

Now that we have seen the effect of various similarity measures on the kNN CF
algorithm, a natural question to ask is: how much confidence is possible within
this dataset? In other words, how would other methods, designed to boost
prediction confidence, perform on the same dataset? In this work we consider
three separate benchmark results:

• k Nearest Recommenders (kNR): Rather than limiting users to their
top-k neighbours, allow them to search for the top-k users who can pro-
vide information about the current item, thus widening the breadth of
recommenders that each user is allowed to interact with.

• Oracle Recommenders (OR): Equation 8 weights the value of inter-
actions according to the overlap between profiles that is shared with each
neighbour. This measurement could also be used as a similarity measure
itself. Furthermore, we can skip forward in time and pick the top-k neigh-
bours that will be selected with each user’s full profile; this benchmark
result thus assigns each user a fixed group of recommenders, in order to
maximise recommender participation.

• Oracle Recommenders with Constant Update (ORCU): One of
the problems we noticed while measuring confidence is that a neighbour’s
participation is only defined in terms of how many ratings were contributed
in previous time intervals. This benchmark result computes confidence
based on any previous participation, regardless of whether it was in the
same time interval or not.

The results are shown in Table 9. Confidence is boosted by not limiting
users to interactions with their top-k neighbours, although the gain is not very
drastic. Allowing users to only interact with their oracle top-k shows little im-
provement, highlighting the importance of the temporal state of the data in
forming confident relations: confidence can not be built if the neighbours that
each user must interact with can not participate in recommendations, even if
they are computed based on “perfect” information. The largest gain is the
oracle with constant update; in this case the confidence does reach the propor-
tions of the dataset that are not in the cold-start region of users. This gain
is achieved since confidence is no longer built upon interactions within specific

25

Table 9: Confident Predictions (Daily Updates)
kNR Oracle

Neighbours Co-Rated PCC Weighted-PCC VS OR ORCU
1 83 51 43 78 83 11,918
10 157 155 158 157 107 21,093
30 158 158 158 157 118 23,183
50 158 158 158 158 126 23,880
100 158 158 158 158 148 24,524

time intervals. Therefore, if after one update a recommender can participate 5
times, then 4 of those predictions will have confidence. Although this deviates
from our original definition of confidence, it provides us with a clear upper limit
that we can aim to achieve.

9 Discussion

The term confidence has been used before in recommender system research, from
the point of view of quantifying the number of ratings that were used to make a
prediction, a useful piece of information that can be presented to the users [27].
The main idea is that CF recommenders are decision-support systems, and when
the information that is presented to users is augmented from simple predicted
ratings to include a confidence metric, then user satisfaction will improve as
well. Similar work aims at pushing recommender systems away from a black-
box model [28], and in doing so, recognises that if users can understand where
their recommendations are coming from they will trust the system more.

The work we did here pushes similar concepts down to the algorithmic level.
In fact, CF algorithms mimic how people search for recommendations; by ask-
ing others who they trust will have similar opinions to them. CF algorithms
thus extend this search by broadening it away from the limitations of a person’s
social network, to include all the system’s participating users. Our definition of
confidence is built upon the fact that asking an arbitrary person for a recommen-
dation is not useful, but the utility of the information received will be reflected
by the relationship with the (k-limited) subset of neighbours each user interacts
with. In fact, this kind of measurement could be pushed back up to the inter-
face level, by, for example, allowing users to see the profiles of the neighbours
contributing to their predicted ratings and providing them with a “reputation”
value that reflects how often these neighbours have historically contributed to
predictions. Although we imagine that this would have a positive effect on the
user experience, performing experiments to confirm this point is beyond the
scope of our work.

The idea of confidence has also been used in trust management systems
research [29, 27, 30]. The use of confidence is similar to that which we apply
here; agents (operating, perhaps, in pervasive network scenarios) must make

26

decisions to interact with others based on trust. Computational trust, however,
is a value that carries a wide range of uncertainty, and only becomes more
reliable as the number of interactions with, and thus the confidence in, the
trusted agent increases. Our use of confidence is very similar to this. However,
we use confidence as a measurable emergent property of CF algorithms that
can be used to evaluate its adherence to predefined assumptions, rather than a
subjective value that is used as part of a decision making process.

10 Conclusion

In this work, we have taken a first step toward temporal evaluations of CF
datasets. Decomposing the problem of generating predictions into neighbour-
hood formation, opinion aggregation, and recommendation and feedback allowed
us to outline the assumptions that CF algorithms have been built on. Revisit-
ing current evaluation methods, based on mean errors and coverage statistics,
highlighted that evaluations of CF algorithms are not only uninformative and
insufficient, but they do not capture the emergent relationships between users
that we had required from the outset in our assumptions or reflect the actual
experience of participating users. We therefore explored the temporal charac-
teristics of the MovieLens dataset, and, drawing from the behaviour that we
expected of our algorithm, were able to define a measure of confidence that can
be used to evaluate CF algorithms.

Our work with confidence thus far leaves a number of open questions, which
can be used by the research community to identify future directions of research.
In particular:

• What is the relationship between confidence and accuracy? This work
has treated confidence as a binary value, although it was defined on a
continuous scale, and therefore the precise relationship between confidence
and accuracy was not considered. Understanding the relationship between
confidence and accuracy will allow us to gain insight into the original
assumptions that we made about CF algorithms.

• How does similarity evolve over time? Understanding how similarity
evolves over time will allow us to refine our definition of confidence, by
including an understanding of how communities of like-minded individuals
form and change as profiles grow.

Although CF algorithms have been previously modelled as “missing value es-
timation” problems [4], observing the system from the temporal perspective
extends previous work that models a CF algorithm as a network of interacting
recommenders [31, 5]. CF algorithms are born from the possibility for a com-
munity of users to collaborate by sharing their experiences with each other, and
thus the emergent properties of the algorithm can be visualised as a graph that
links users to each other. The network model has been used to study a variety
of scenarios, ranging from spreading of diseases, to human cells and social inter-
actions [32]; in this case we are applying it to the interactions forced upon users

27

by a filtering algorithm. The subjective opinion data that is available from the
hundreds of MovieLens users, and indeed all user-rating datasets, holds within
it the implicit relationships between items, between users, and the communities
that are involuntarily formed by the participants who provide their feedback.
The network model has yet much to reveal about the temporal formation of and
changes to online communities, and will be the focus of our future work.

References

[1] J.B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-
commerce. In Proceedings of the ACM Conference on Electronic Commerce.
ACM, 1999.

[2] G. Linden, B. Smith, and Y. York. Amazon.com recommendations: Item-
to-item collaborative filtering. In IEEE Internet Computing, pages 76–80,
2003.

[3] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple
scales to improve accuracy of large recommender systems. In Proceedings
of the 13th ACM Int. Conference on Knowledge Discovery and Data Mining
(KDD’07). ACM, 2007.

[4] R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived
neighborhood interpolation weights. In IEEE International Conference on
Data Mining (ICDM’07). IEEE, 2007.

[5] N. Lathia, S. Hailes, and L. Capra. The effect of correlation coefficients
on communities of recommenders. In To Appear in ACM SAC TRECK,
Fortaleza, Brazil, March 2008.

[6] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An Algorith-
mic Framework for Performing Collaborative Filtering. In Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 230–237, 1999.

[7] R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and
evaluation metric that accurately model the user experience. In Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 329–336, 2004.

[8] A. Agresti. Analysis of Ordinal Categorical Data. John Wiley and Sons,
1984.

[9] A. Agresti and L. Winner. Evaluating agreement and disagreement among
movie reviewers. In Chance, 1997.

28

[10] A. Nguyen, N. Denos, and C. Berrut. Improving new user recommendations
with rule-based induction on cold user data. In Proceedings of the 2007
ACM Conference on Recommender Systems (RecSys), 2007.

[11] P. Massa and B. Bhattacharjee. Using trust in recommender systems: An
experimental analysis. In iTrust International Conference, 2004.

[12] Y. Matsuo and H. Yamamoto. Diffusion of recommendation through a trust
network. In Proceedings of ICWSM2007 Boulder, Colorado, USA, 2007.

[13] J. O’Donovan and B. Smyth. Trust in recommender systems. In IUI ’05:
Proceedings of the 10th international conference on Intelligent user inter-
faces, pages 167–174. ACM Press, 2005.

[14] G. Pitsilis and L. Marshall. A model of trust derivation from evidence for
use in recommendation systems. In Technical Report Series, CS-TR-874.
University of Newcastle Upon Tyne, 2004.

[15] F. M. Harper and Y. Chen J. A. Konstan, X. Li. User motivations and
incentive structures in an online recommender system. In Incentive Mech-
anisms in Online Systems, Group 2005 Workshop, 2005.

[16] F. Wu and B. A. Huberman. Follow the trend or make a difference: The
evolution of collective opinions. In Information Dynamics Laboratory. HP
Labs, 2007.

[17] N. Glance, D. Arregui, and M. Dardenne. Knowledge pump: Community-
centered collaborative filtering. In Fifth DELOS Workshop, 1997.

[18] P. Pu and L. Chen. Trust building with explanation interfaces. In Proceed-
ings of the 2006 International Conference on Intelligent User Interfaces.
ACM, 2006.

[19] S. Berkvosky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing privacy and
preserving accuracy of a distributed collaborative filter. In Proceedings of
the 2007 ACM Conference on Recommender Systems (RecSys), 2007.

[20] A.M. Rashid, I. Albert, D. Cosley, S.K. Lam, S.M. McNee, J.A. Konstan,
and J. Riedl. Getting to know you: learning new user preferences in recom-
mender systems. In International Conference on Intelligent User Interfaces
(IUI 2002), 2002.

[21] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collabora-
tive filtering recommender systems. In ACM Transactions on Information
Systems, volume 22, pages 5–53. ACM Press, 2004.

[22] S.M. McNee, J. Riedl, and J.A. Konstan. Being accurate is not enough:
How accuracy metrics have hurt recommender systems. In Extended Ab-
stracts of the 2006 ACM Conference on Human Factors in Computing Sys-
tems. ACM Press, 2006.

29

[23] P. Massa and P. Avesani. Trust-aware recommender systems. In Proceed-
ings of Recommender Systems (RecSys), 2007.

[24] N. Lathia, S. Hailes, and L. Capra. Trust-based collaborative filtering. In
Submitted to IFIPTM, Trondheim, Norway, June 2008.

[25] K. Ling, G. Beenen, and P. Ludford et al. Using social psychology to
motivate contributions to online communities. In Journal of Computer-
Mediated Communication, 2005.

[26] K. Crammer and Y. Singer. Pranking with ranking. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS), 2001.

[27] S.M. McNee, S.K. Lam, C. Guetzlaff, J.A. Konstan, and J. Riedl. Confi-
dence displays and training in recommender systems. In Proceedings of IN-
TERACT ’03 IFIP TC13 International Conference on Human-Computer
Interaction, 2003.

[28] J. Herlocker, J.A. Konstan, and J. Riedl. Explaining collaborative filtering
recommendations. In In proceedings of ACM 2000 Conference on Computer
Supported Cooperative Work, 2000.

[29] L. Capra. Engineering human trust in mobile system collaborations. In
Proceedings of the 12th International Symposium on the Foundations of
Software Engineering (SIGSOFT 2004/FSE-12), pages 107–116, Newport
Beach, California, USA, November 2004.

[30] S. D. Ramchurn, C. Sierra, L. Godo, and N.R. Jennings. Devising a trust
model for multi-agent interactions using confidence and reputation. Inter-
national Journal of Applied Artificial Intelligence, pages 833–852, 2004.

[31] F. E. Walter, S. Battiston, and F. Schweitzer. A model of a trust-based rec-
ommendation system on a social network. Autonomous Agents and Multi-
Agent Systems, 2007.

[32] C. Christensen and R. Albert. Using graph concepts to understand the
organization of complex systems. International Journal of Bifurcation and
Chaos, 17(7):2201–2214, July 2007.

30

