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Abstract

Denial-of-Service attacks continue to grow despite the fact
that a large number of solutions have been proposed in
the literature. The problem is that few are actually practi-
cal for real-world deployment and have incentives for early
adopters. We presentTerminus, a simple, effective and de-
ployable network-layer architecture against DoS attacks that
allows receivers to request that undesired traffic be filtered
close to its source. In addition, we describe our implemen-
tation of each of the architecture’s elements using inexpen-
sive off-the-shelf-hardware, and show that we can filter very
large attacks in a matter of seconds while still sustaining a
high forwarding rate even for minimum-sized packets. We
conclude by discussing initial deployment incentives.

1 Introduction
For the last few years, distributed denial of service (DDoS)
attacks have been a significant problem for the operators of
high-profile network servers and for Internet providers pro-
viding connectivity for them. There have been a number
of well-publicized attacks, but also a huge number of less
known attacks, such as those on many organizations dedi-
cated to fighting spam and phishing.

Currently there is no automatic way to shut down traffic
from the zombie hosts involved in such attacks, even though
the actual IP addresses of these compromised machines are
usually known. What is needed is a simple, practical and
robust way to request from the ISP where attack traffic orig-
inates that this traffic is blocked.

Many solutions have been proposed to DDoS attacks, but
few are actually practical for real-world deployment with in-
centives aligned appropriately so that deployment is likely.
Often proposed solutions have fixated on solving all the cor-
ner cases of the problem, but the resulting solutions end up
requiring too much change to the Internet for deployment
to be likely. For example, Internet transit providers do not
usually suffer during DDoS attacks - they have sufficient ca-
pacity, so they have no incentive to address the issue. Any
solution therefore that requires changing routers in the net-
work core would impose costs on players that do not receive
any significant benefit. Thus, short of preventing hosts being
compromised in the first place, viable solutions will primar-
ily involve significant changes only at customer-facing ISPs
or on the end-systems themselves.

There is a fundamental debate between anti-DDoS re-
searchers about whether it is possible to distinguish good

traffic from bad traffic. The people actually defending
against such attacks find this debate futile - current attacks
are obvious, and there is frustration at the lack of mecha-
nisms to deal with them. For these people, the perfect is the
enemy of the good [?], and has resulted in no progress in
deploying mechanisms to tackleanyof this problem space.

In this paper we describe simple and deployable mech-
anisms that would significantlyraise the barfor DDoS at-
tackers. Our belief is that there is great benefit in having a
mechanism that can filter traffic from an attacking host close
to its source. This would allow today’s brute force attacks
to be shut down with little effort. Likely this is not a com-
plete solution; in response attackers will need to mimic flash-
crowds, but this requires much larger botnets to inflict dam-
age and moves the problem into the space where higher level
solutions such as captchas[?] or similar mechanisms become
viable.

2 Terminus Architecture

Possible DDoS solutions divide into proactive[?, ?] and
reactive[?, ?] classes. While proactive solutions might in
principle provide better defenses, our conclusion is that to be
incrementally deployable without significant core-network
changes, reactive mechanisms are most viable as general
purpose solutions. Our architecture, Terminus, is just such
a reactive system, in that it enables a victim to request that
specified traffic be stopped close to its sources, before it has
had a chance to aggregate.

We start from the assumption that the victim of an attack
can tell with reasonable accuracy which traffic is bad. For
the purpose of this paper, we refer to the detector as an intru-
sion detection system (IDS), but in many cases it may be the
server itself. We then deploy filtering boxes near sources of
traffic, since the size of botnets being reported [?] means it
is not possible to defend against large flooding attacks near
to the destination, even if the victim is connected to well-
provisioned links. For the system as described so far to be
viable, the following issues must be addressed:

• How to find the right filtering box to request a filter?
• How to validate filtering requests to ensure spoofed re-

quests cannot become a channel for attack?
• How to avoid a spoofed traffic flood triggering a filter

request that blocks legitimate traffic?
• How to provide incentives for early adopters, and es-

pecially how to provide incentives to deploy filtering
boxes?
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Figure 1:Terminus architecture showing the location of its elements. C stands for client, R for router and S for server.

From a deployment point of view, it is critical that the
mechanisms will work even though the ISP of the bot and
the ISP of the victim may be remote from each other, and
have no prior business relationship. The only form of con-
tractual arrangement that seems viable is that of pairwise ser-
vice level agreements (SLAs) between neighbouring ISPs.
Thus any architecture must assume that this is the contrac-
tual mechanism from which end-to-end filtering services are
built. We primarily use such SLAs to distinguish spoofed
traffic to avoid the second issue listed above. The rest of this
section explains the architecture in greater detail, including
solutions to all of these issues.

2.1 Edge Filtering

Terminus places special control points calledborder patrols
(BPs) in ISPs, as close to the sources of traffic as possible
(see Figure 1). An ISP deploying Terminus (a “Terminus
ISP” in this paper) configures its network so that traffic from
these sources is forced through border patrols. In this way,
each BP can later be asked to install filters for traffic going
through it, and, since it is close to the sources, the total ag-
gregate throughput it forwards should be manageable.

With this mechanism in place, the victim of an attack
would have to know which BP the traffic came through. In
a perfect world, this would be as simple as looking at the
source IP address of the malicious traffic and deriving a map-
ping between this and the correct BP. Unfortunately, because
of spoofing, this information cannot be trusted.

The problem is not that most of the sources on the In-
ternet spoof, but that a receiver cannot tell the differencebe-
tween a spoofed packet and a non-spoofed one. All is not lost
however, and we can use the border patrols mentioned above
along with some added mechanism to combat this problem.

The idea is to use a “true source” bit in the IP header to
mark whether the source IP address field in a packet is in
fact the address of the host that originated the packet. As
the packet travels from source to destination, Terminus ISPs
have their ingress edge routers set or unset this bit depend-
ing on whether the packet came from a peering link to a Ter-
minus or legacy ISP; the routers would know this through
pairwise contractual agreements. In this way, if a packet tra-
verses only Terminus ISPs on its way from source to desti-
nation, it will arrive with its true source bit set, and its source

IP address can be trusted1. Of course, Terminus ISPs are as-
sumed to perform ingress filtering, either at their routers or
their border patrols.

Figure 2 gives a couple of different scenarios illustrating
this mechanism. Packets originating at ISP A and going to
the server hosted by ISP G will arrive with the true source
bit set. Packets from ISP B, on the other hand, will have this
bit unset by router E2, since it knows that its link connects
to a legacy ISP. Finally, any packet from ISPs C and D will
arrive with the bit unset, since router G2 knows ISP F to be
a legacy ISP.

Thanks to the border patrols and the true source bit, a vic-
tim can now know whether the source IP address in a packet
is valid or not. Naturally, the server will only be able to trust
the source IP address field for packets that traversed a Ter-
minus ISP-only path, but as deployment progresses this will
become the common case.

2.2 Filtering Requests
We now have control points (border patrols) deployed on
outgoing paths to the rest of the Internet, and a way for a
victim to determine where a packet came from (the combi-
nation of the true source bit and the IP source address field).
When an attack is detected, the next step is to send filtering
requests.

Although the IDS or server acting as the detector knows
what it wants to filter, it does not know where to send the
request. To avoid burdening an already busy system, we of-
fload this to another box, which we will call afilter manager
(FM). The IDS is simply configured with the address of its
local FM, and sends all its filtering requests there (Figure 1).

An FM needs to map an IP address to be filtered to the
address of the border patrol handling traffic from that IP ad-
dress. There are many ways to do this, but our preferred so-
lution is to use a peer-to-peer flooding protocol to distribute
digitally signed bindings to all FMs worldwide. This is es-
sentially the same robust flooding mechanism as was pro-
posed for Push DNS[?], and is extremely resilient to attack.

The size of this “routing” table would certainly be man-
ageable: only one entry would be required per AS, or about
20,000 entries in the current Internet. Each entry could con-

1Our earlier work[?] used a similar concept to the true source bit; how-
ever the rest of the Terminus architecture is completely different and con-
siderably simpler.
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Figure 2:True source bit scenarios.

sist of an IP address and a set of prefixes, aggregated as much
as possible, representing the clients of the ISP that sit behind
border patrols.

Using this mapping table, the FM determines the address
of the host at the remote ISP from which it needs to request
a filter. Such a host, called aborder manager(BM), needs
to forward the filtering request to the appropriate border pa-
trol (in a small deployment, the BM could be the same host
as the BP; the architecture places no requirements on how
this should be implemented). To accomplish this, the ISP
could install the necessary mappings of source IP addresses
to border patrols, and update them should these change.

Once filters are installed we also need a way of removing
them. Simplest is to include, along with the filtering request,
information about how a filter should expire. The BP then
removes the filter when the criteria are met; the expiration
could be time-based or even rate-based. When filters are in-
stalled and attack traffic subsides the victim has no obvious
way to know if the attack has actually ceased or if it is the
filtering mechanism that is being effective. The IDS could of
course request the filter be removed and measure the effects,
but perhaps a better solution is to provide a way to retrieve
filter traffic statistics from BPs. This allows the IDS to ex-
plicitly remove unneeded filters, and provides a more flexi-
ble tool for the IDS to use as it sees fit. The filtering protocol
described in Section 4.2 supports all these approaches.

We now have all the basic elements needed to filter a
DDoS attack. Traffic from sources traverses border patrols
and arrives at the server, where a nearby IDS detects the at-
tack, determines the malicious sources, and sends a filtering
request to its local filter manager. The FM, in turn, uses the
mapping of source IP address to border manager obtained
via the peer-to-peer network to send the necessary filtering
requests to the appropriate border managers. These, in turn,
ensure that the requests arrive at the appropriate border pa-
trols that the traffic is actually going through, where the ma-
licious traffic is finally filtered.

2.3 Defending Against Bots at Legacy ISPs

If Terminus were fully deployed, it would be possible to filter
large DoS attacks even if there still remained a few legacy
ISPs. However, during initial deployment the story is likely
to be different, with legacy ISPs being the norm rather than

the exception. As a result, we need to provide some level of
protection for a victim being attacked by sources hosted by
legacy ISPs.

To this end, we can make use of the true source bit al-
ready described. This bit not only denotes that the IP source
address is valid, but it also says that the packet originatedat
and has traversed Terminus ISPs. It makes sense for a Termi-
nus ISP to reward other Terminus ISPs, and so we can install
diffserv classifiers at the edge routers of the destination ISP
(or indeed other Terminus ISPs on the path if they wish to
do so), sending packets that have the true source bit set to a
higher priority queue. As a result, packets from legacy ISPs
will always get lower priority and, during an attack, poten-
tially little or no service.

3 Protecting the Architecture

With such a powerful mechanism in place, care must taken
to make sure that the architecture is not used as a DoS tool
in its own right; protecting it from such misuse and dealing
with other forms of attacks is the topic of this section.

3.1 Validating Filtering Requests

As described so far, an attacker could contact a border man-
ager and request a malicious filter. A nonce exchange suf-
fices to avoid this: on receipt of a filter request, the border
manager sends a random nonce back to the filter manager,
and only installs the filter when it gets the nonce echoed
back. This serves to validate that the IP address of the FM
is not spoofed (of course this is not strictly necessary if the
true source bit is set in the request, but as Internet paths are
asymmetric we cannot count on this being the case, and the
extra validation is cheap in any event).

Validating the FM’s IP address is not sufficient though:
it is also necessary to validate that this particular FM is au-
thorized to request a filter for this particular destinationIP
address. In essence we need the reverse mapping table from
that by which the FM discovers the BM’s address, and the
same peer-to-peer distribution of digitally signed mappings
can be used to distribute it. Likely the CAs for these sig-
natures will be the RIRs, as they already handle IP address
allocations to ISPs. It is worth noting that nonce exchange
will not stop an attacker on the path between the border man-
ager and the filter manager; however the additional risks are
minimal as a compromised router can already filter the traffic
by simply dropping it.

With this in place, upon receiving a filtering request the
border manager will inspect its source IP address. If the map-
ping between this address and the destination address of the
actual filter exists in the set of mappings distributed usingthe
peer-to-peer network, then the BM will issue a nonce. This
nonce will reach the FM, which will echo it if it had, in fact,
issued a filtering request. Finally, the BM will contact the
appropriate border patrols to block the unwanted traffic.
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3.2 Triggering Requests Through Spoofing
Although the architecture ensures that filter requests come
from legitimate parties, it might still be possible for an at-
tacker to spoof client traffic to trigger a filter against traffic
from an unsuspecting legitimate client. The list of possible
attack scenarios have to do with the location of the attacker
with regards to the victim. Only five such scenarios exist:

1. The attacker is in a legacy ISP that permits spoofing.
2. The attacker is in a legacy ISP that performs ingress

filtering.
3. The attacker is in a different Terminus ISP from the le-

gitimate client.
4. The attacker is in the same Terminus ISP as the legiti-

mate client but behind a different BP.
5. The attacker is behind the same BP as the legitimate

client.

In the first scenario, the attacker can spoof the client’s ad-
dress. However, the attacker’s packets will arrive with their
true source bit unset and, consequently, the filter manager
will know not to issue a filtering request. The next two sce-
narios are impossible: an attacker from an ISP that performs
ingress filtering simply cannot spoof the address of a client
in a different ISP . The attack described in the fourth sce-
nario is easily preventable by either performing ingress fil-
tering at the border patrols or by ensuring that the ISP uses
the true source bit internally. In the last scenario, the bor-
der patrol cannot tell traffic from the attacker and the victim
apart. In essence, the problem is a local one, and the ISP can
use ingress filtering or other local measures to combat it.

3.3 Protecting BPs, BMs and FMs
For Terminus to be successful, all of its components must be
robust against attack. Attacking border patrols, for instance,
could deny traffic from clients from reaching a server. Un-
der full deployment, there will be a significant number of
BPs, and so DoSing a server by stopping client traffic would
prove very difficult at best. During initial deployment, how-
ever, there might only be a few BPs deployed and the attack
might be effective. The solution is simple: do not advertise
the BPs’ address prefixes externally via BGP. If they are not
externally reachable they are not susceptible to attack.

Border managers, on the other hand, do have to be exter-
nally visible in order to receive filtering requests. However,
these boxes are not on the fast path, and so can devote all
their resources to the control protocol. The BM implemen-
tation described in Section 4.2 can not only service requests
at a fast rate, but also ensures that no state is held for a client
before it has responded to a nonce. In the end, overloading a
BM with requests only prevents filter installation. To allow
a bot behind a BP managed by such a BM to continue an at-
tack requires many bots to DoS the BM; this simply is not a
good return on investment for the attacker.

One final element of the architecture that could be attacked
is the filter manager. Again, this box is not on a fast path, and
so it can devote all its resources to filter requests. More im-

portantly, its traffic is constrained: there are a limited num-
ber of IDS systems from which it should accept requests, and
the path for nonce requests from BM to FM will always be
Terminus-enabled (or we would not have requested the filter
in the first place).

4 Implementation and Results
Ideally we would like the mechanisms described so far to be
implemented in hardware, perhaps as part of a router plat-
form. In reality, however, and especially during the early
deployment stages, it is unlikely that commercial vendors
will adopt the approach without having seen some level of
real-world deployment. Consequently, we have opted to im-
plement the solution using off-the-shelf hardware to show its
feasibility.

As with any performance evaluation, repeatability is key,
and so using a controlled network testbed is a logical step.
However, creating realistic attack scenarios in a testbed is
problematic, since whatever scenarios are chosen, they could
never be general enough to reflect real-world diversity. De-
spite this, it is possible to test each of the components of the
architecture individually to see how they behave under heavy
load and pathological cases, and thus provide some level of
confidence with regards to the architecture’s overall perfor-
mance.

The following sections describe the implementation and
performance results of the various components of the archi-
tecture. Section 4.1 discusses the testbed, including the hard-
ware and software used to derive the results; section 4.2 il-
lustrates the implementation of the control plane elements,
giving figures for how quickly filters can be installed; sec-
tion 4.3 discusses baseline as well as forwarding and filter-
ing figures for the border patrol; finally, section 4.4 discusses
the effects on performance of combining the control and for-
warding planes at the border patrol.

4.1 Setup
The computers used to obtain the results were inexpensive
1U servers with two dual-core Intel Xeon 5150 processors
running at 2.66GHz. These CPUs have 64KB of L1 cache
on each core, with a 4MB L2 cache shared between the two
cores. The systems had two dual-port Intel Gigabit Ethernet
cards on 8x PCI Express slots2. We implemented the control-
plane elements in C++ and for the forwarding plane we used
Linux 2.6.16.13, version 1.5 of the Click modular router [?]
and version 6 of the e1000 driver with polling extensions.
The kernel used was generally uni-processor, except where
otherwise stated.

4.2 Control Plane Performance
To transmit requests between the components of the control
plane we designed and implemented theInternet Filtering
Protocol (IFP). While the protocol supports various opera-
tions such as filter removal and retrieving attack traffic statis-

2Results on older machines with PCI-X buses turn out to be bus-limited
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Figure 3: Filter installation request using the Internet Filtering
Protocol.

tics, the results presented here focus on the most important
operation, filter installation. To test the worst case, we used
fine-granularity filters consisting of a source and destination
IP address pair (though the protocol supports prefix-based
and destination-only filters), and each IFP packet contained
a request with a single filter.

We tested the performance of each of component individ-
ually. The first of these, the filter manager, listens to requests
from an IDS or server. On receiving a filter install request, it
assigns a random request number to it, looks up the mapping
between the source address of the filter and the appropriate
border manager, and forwards the request to that BM. When
it receives a nonce from the BM, it echoes it along with the
filter spec, and waits for the final installation acknowledge-
ment from the BM (see figure 3). To test the FM’s perfor-
mance, the other components that it communicates with must
not become a bottleneck. To achieve this, we implemented
dummy versions of the IDS client and the BM which do the
bare minimum. With this setup, the FM was able to sustain
a rate of 75,000 requests/second. To put this in perspective,
the largest botnet currently reported in the media contains
around 1.5 million hosts [?], although not all hosts in such
a large botnet may be used in any attack. Even for such a
large botnet and using fine-granularity src/dst IP address fil-
ters, the FM would be able to filter all these bots in only 20
seconds.

The second component to test in the control plane is the
border manager. The BM listens to requests from FMs.
Upon receiving a filter request from one of these, it sends
back a nonce which is generated from the FM’s address, the
request number, the filters and a secret. When it receives
a nonce reply, the BM ensures that the FM has the author-
ity to request filters for the given destination IP addresses
(using mappings distributed by the peer-to-peer mechanism)
and that it knows about a BP that can filter the given source
address. If both of these checks succeed, the BM forwards
the filter install request to the relevant BP(s), waits for an
ack and forwards it to the requesting FM. To test the perfor-
mance of the border manager, we constructed dummy ver-
sions of the filter manager and the border patrol. With this
test framework the real border manager was able to sustain
a rate of 87,000 requests/second. Again, this is sufficient to
filter even the largest botnets in a matter of seconds.

The last control plane element is the border patrol. The BP
simply receives filter installation requests, installs them in
the filtering element of the forwarding plane, and sends and
acknowledgement back to the requesting BM. Once again,
we used a dummy version for this BM which always sends
the same request. It is worth noting that for this experiment
we set up the BP to use an SMP kernel, so that the con-
trol plane process and the process representing the forward-
ing plane were executed on separate processors. No packets
were forwarded for this experiment, since the aim was to test
the performance of the control plane part of the border pa-
trol. Installing filters into the filtering element of the Click
router consists of writing to a ‘/proc‘ entry. To minimize the
impact from this operation we installed filters in batches of
100. With this in place, the BP was able to service 354,000
requests/second. Clearly this is more than sufficient to fil-
ter any malicious sources sitting behind the BP in very little
time.

To sum up, the filter manager, border manager and border
patrol are able to handle requests at rates of 75,000, 87,000
and 345,000 requests per second respectively. While we did
not particularly optimize the performance of any of these
components nor did we take advantage of multiple proces-
sors for the control plane, these results clearly show that the
control plane of the architecture would be able to filter even
the largest botnets in a matter of seconds.

4.3 Forwarding Plane

We implemented the border patrol’s forwarding plane using
Click and added some custom elements of our own. Be-
fore testing our elements, we conducted experiments to es-
tablish baseline performance figures for Click. Through-
out this discussion, it is worth keeping in mind that we fo-
cused on minimum-sized packets, since these put the biggest
strain on forwarding. For reference, the theoretical maxi-
mum throughput for gigabit Ethernet using minimum-sized
packets is 1,488,095 packets per second, or 681 Mbps.

4.3.1 Baseline Performance

Before conducting any filtering tests we had to baseline the
system’s capabilities to have a better understanding of where
the bottlenecks might be. To accomplish this, we ran three
sets of experiments aimed at measuring Click’s performance
when generating, counting and forwarding packets.

In the case of packet generation, the topology consisted of
a single host sending packets out of multiple interfaces, each
connected to a host also using Click to count the packets. Us-
ing minimum-sized packets, we were able to simultaneously
saturate two interfaces, for a combined rate of about 1,362
Mbps. With three interfaces we could not quite saturate the
links, seeing an aggregate of 1,862 Mbps, equivalent to 91%
of the theoretical maximum. Adding a fourth interface re-
sulted only in a minor increase in throughput (1,905 Mbps),
suggesting we were CPU-limited. Using an SMP kernel and
multi-threaded Click with each generating interface assigned
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Figure 4:IngressFilter element performance.

to a separate processor confirmed this: using four interfaces
we were able to generate at a rate of 2,482 Mbps, or 91% of
the maximum.

For the next set of baseline tests we concentrated on packet
counting at the traffic sink. The topology consisted of four
source hosts, each sending to one of the four interfaces on the
counting host. As with sending, using two interfaces Click is
able to count at the maximum rate. Adding a third and fourth
interface did increase this rate, but switching to an SMP ker-
nel and multi-threaded Click with each interface handled by
a separate processor allowed us to count at a rate of 2,724
Mbps, the theoretical maximum.

What about forwarding performance? The border patrol
acts more as a filtering device rather than a router, and so
it will generally have a single outgoing interface connected
to the next-hop router. Taking this into account, and using
one, two and three incoming interfaces with a standards-
compliant IP router Click configuration we were able to satu-
rate the outgoing link even for minimum-sized packets (681
Mbps). Adding more interfaces does not increase the rate;
with two incoming and two outgoing interfaces, the aggre-
gated throughput on the outgoing links was about 680 Mbps,
showing a performance bottleneck on the Click router.

As in the previous experiments, we then switched to an
SMP kernel and multi-threaded Click to see if we were CPU-
limited, and if so, how far we could improve this rate. When
using multi-threaded Click and a router configuration, care
must be taken in the way that threads (essentially CPU cores)
are assigned to portions of the router. Maximizing the uti-
lization of the four CPU cores does not necessarily maximize
throughput; to have good cache performance it is important
to avoid packets switching CPUs as they travel through the
forwarding path. Since, as mentioned earlier, the border pa-
trol acts as a filtering box more than a router, we can force
all traffic arriving at one interface to leave on the same out-
going interface. With this in mind, we assign each of the
two forwarding paths to separate processors. Testing this
configuration and using some of Click’s optimization tools
resulted in a combined rate of 1,362 Mbps for minimum-
sized packets, or 86% of the theoretical maximum. We were
able to forward 100-byte packets at line-rate. Clearly this
shows that adding CPU cores increases the forwarding per-
formance; adding more interfaces to the router and seeing
how these rates continue to increase is future work.

4.3.2 Border Patrol Performance
Besides forwarding packets, the BP has essentially two func-
tions: ingress filtering and filtering based on requests from

filter managers. To this end, we built two Click elements,
IngressFilterandHashFilter, testing their performance indi-
vidually at first and then combining them.

The IngressFilter element is quite simple, dropping any
packets that do not match any of the allowed prefixes and
setting a diffserv code point representing the true-sourcebit
on any packets that do. We implemented the list of prefixes
using a vector, and so we wanted to see how the element
would perform as this list got longer. For these tests we used
a router with a single incoming and single outgoing interface,
where the last entry in the list was the prefix allowing the test
packets to be forwarded so that each packet forced a full list
traversal. As shown in Figure 4, even for a large number
of prefixes (50), we were able to forward packets at 87% of
the theoretical maximum for minimum-sized packets. The
curve of the graph remains relatively flat right until the 70
prefixes mark or so: we hypothesize that before this point
memory accesses are being serviced from the L2 cache, and
so additional prefixes result in a negligible performance hit;
beyond this point, the curve begins to decline, suggesting
having to access main memory more frequently.

Using two incoming and outgoing interfaces and using an
SMP kernel with multi-threaded Click resulted in a com-
bined throughput of 1,017 Mbps, or 75% of the theoreti-
cal maximum. Even though this figure could be improved
upon using some of Click’s optimization tools or by chang-
ing the way that tasks are assigned to CPU cores, it shows
that the border patrol is still able to process over a gigabitof
minimum-sized packets even for a large number of prefixes.

We then tested the performance of the HashFilter element.
As the name suggests, the element uses a hash to store the
filters, and so its performance is essentially bound to that of
the hash. First we decided to see the pathological effect on
forwarding of having long chains in the hash. To do so, we
tweaked the hash function so that all filters were installed
in the same chain, and each packet being forwarded forced
a full traversal of this chain (see Figure 5(a)). Even for a
very long chain of 100 filters, the border patrol was able to
forward at a rate of 571 Mbps for minimum-sized packets, or
84% of the maximum. Adding an incoming and an outgoing
interface and using an SMP kernel with multi-threaded Click
resulted in a rate 946 Mbps, showing that performance scales
well with additional interfaces and processors.

Next we wanted to see the effects that different
source/destination IP pairs in the incoming packets would
have on performance. For this experiment we used a hash
in which all chains were of equal length and each of these
contained different filters. We modified the hash function
so that each incoming packet hit a different chain to force
bad cache locality. Figure 5(b) shows the results. Even for
an over-populated hash table containing chains of 10 filters
each, the border patrol forwarded packets at 586 Mbps, 86%
of the maximum. This shows good performance even in the
face of a poor hash function or a heavily-loaded hash. In the
SMP case and using four interfaces we obtained 976 Mbps,

6



 350

 400

 450

 500

 550

 600

 650

 0  100  200  300  400  500

T
hr

ou
gh

pu
t (

M
bp

s)

Chain Length

(a) Worst-case scenario, filters are in one chain and packetshash to it.

 400
 450
 500
 550
 600
 650
 700
 750
 800

 0  2  4  6  8  10

T
hr

ou
gh

pu
t (

M
bp

s)

Chain Length

(b) All chains are equal length and each packet hashes to a different one.

Figure 5: HashFilter element performance.

showing once again scalability with regards to number of in-
terfaces and processors.

The final set of forwarding tests focused on testing the bor-
der patrol’s performance when using the IngressFilter and
HashFilter elements at the same time. Using a list of 20 pre-
fixes, 10-filter long chains on all of the hash’s buckets and
forcing each incoming packet to hit a different bucket yielded
a rate of 585 Mbps. Even in such an extreme scenario, the
border patrol is able to forward minimum-sized packets at
86% of the theoretical maximum. In the SMP case, we were
able to bump this rate up to 922 Mbps.

These results show that even for a large number of pre-
fixes in the IngressFilter element and a heavily loaded hash
in the HashFilter element, the border patrol is still able to
forward minimum-sized packets at very high rates. Further,
we have shown that these figures scale with the number of
interfaces and processors, giving evidence about the feasi-
bility of building a well-performing border patrol with off-
the-shelf hardware, and demonstrating the ability to utilize
tomorrow’s many-core CPUs effectively.

4.4 Combining the Two Planes
For the final test, we wanted to determine how filter instal-
lation would impact the border patrol’s forwarding perfor-
mance. To do so, we used an SMP kernel but single-threaded
Click. Using batches of 100 filters we were able to install fil-
ters at a rate of about 354,000 filters/second, while sustaining
a forwarding rate of 568 Mbps, 83% of the maximum. This
shows that the control plane has very little impact on the for-
warding plane because they run on separate cores. Indeed,
conducting the same test on a uni-processor kernel causes
the forwarding rates to plummet to 78 Mbps (the filter inser-
tion rate remained the same). These figures clearly show that
the border patrol can install filters at a very high rate while
leaving the forwarding rate largely unaffected.

5 Deployment Incentives
Under full deployment, Terminus would clearly provide sig-
nificant protection against DoS attacks for all hosts. How-

ever, this “common good” argument is not enough on its own
to motivate early adopters to embrace our architecture, since
entities on the Internet generally act only in their own self-
interest. To bring about change, a solution must provide in-
centives even for those early adopters, or it will never see any
important level of deployment.

ISPs hosting potential victims have the clearest incentive,
since they can charge for the protection they provide. Alter-
natively, such an ISP could provide this protection for free,
attracting customers from ISPs that do not provide this ser-
vice. Deploying our solution at the ISP is simple: set up
a box to act as the filter manager, configure it to receive
the source IP prefix-to-BM mappings from the peer-to-peer
network, obtain a certificate from the local RIR to sign its
prefix-to-FM mapping, and install a diffserv rule at the edge
routers so that packets with their true source bit set receive
higher priority. Evidently we would expect ISPs deploying
these mechanisms to also deploy border managers and bor-
der patrols, but it is not required.

A source ISP has less incentive, since it is not directly
affected by attacks. However, deploying Terminus will re-
sult in its customers receiving priority in the destinationISP,
avoiding delays during normal operation and actually receiv-
ing service during an attack. Perhaps more importantly, de-
ployment might reduce technical support costs. Since the
filtering mechanism has no false positives (traffic is only fil-
tered if the receiver does not want it), the ISP can rely on the
automatic filtering mechanism rather than having to handle
this manually, as is currently the case. The actual deploy-
ment would entail installing a border manager and a border
patrol, setting the BM to receive the mappings between desti-
nation address and filter managers, and obtaining a certificate
from the local RIR to sign its prefix-to-BM mapping.

What about transit ISPs? They have the weakest incen-
tive, but may be persuaded to deploy by a client ISP (either a
source or destination ISP) that has deployed Terminus. The
transit ISP’s reputation might also motivate it to implement
the scheme. Fortunately the changes needed are minimal re-
quiring no additional hardware: just configure border routers
to set or unset the true source diffserv code point depending
on whether a packet came from a Terminus or legacy ISP.

6 Related Work

The rise in DoS attack activity in recent years has resulted in
many proposed solutions from the research community. One
type of approach relies on building an overlay of nodes to
protect victims [?, ?, ?]. While they have their merits, these
solutions generally operate above the network layer, and so
other mechanisms are needed to protect this layer. Other ap-
proaches rely on so-calledcapabilities[?, ?, ?], whereby a
host must ask permission to send from the receiver before ac-
tually sending any traffic, and include a token in subsequent
packets. These solutions tend to rely on the network to po-
lice packets so that only those with valid tokens are allowed
through, presenting a difficult deployment hurdle. Pushback

7



[?] aims at filtering aggregates by having routers ask up-
stream ones to filter traffic. However, in order to be effective,
it needs paths where every single router has the scheme de-
ployed, and it can only defend against large attacks if these
deployed routers are close to the sources of malicious traffic.
Traceback solutions [?, ?, ?, ?], as their name suggest, focus
on determining where packets come from. The true-source
bit described in this paper solves this problem with much less
mechanism.

One of the more recent solutions [?] provides application-
layer protection against DoS, and so it would nicely com-
plement the solution we presented. Another proposal called
dFence[?] mitigates DoS attacks at the network layer by dy-
namically inserting middlebox devices in front of a victim
when an attack takes place. However, these boxes are de-
ployed near the victim, and so it is unclear how well they
would be able to cope with large attacks. InPRIMED [?],
the authors present a proactive approach to mitigation based
on communities of interest (COIs), using them to capture
the collective past behavior of remote network entities and
to predict future behavior. Despite its merits, attackers will
eventually outsmart the heuristics used in the solution. In
addition, PRIMED’s analysis may be vulnerable to spoofing
attacks trying to incriminate members of a good COI.

Like the solution presented in this paper, there have been
others put forth that aimed at filtering malicious traffic near
its sources.AITF [?] is one such approach, but it faced de-
ployment hurdles because of changes required to core net-
work nodes: it relies upon the core of the network to perform
the filtering during the initial deployment stages, and usesa
variant of IP route record to mark where packets came from.
In Firebreak [?], the authors also place filtering boxes near
the edges. However, it suffers from several shortcomings, in-
cluding complications arising from the fact that these boxes
use IP anycast to advertise their addresses: not only is large-
scale IP anycast not well understood nor widely deployed,
but advertising in this manner is likely to present scalabil-
ity problems. Another solution [?] aims at filtering traffic
on a per-customer basis, but relies on BGP to relay filtering
requests from AS to AS and focuses on the economic feasi-
bility of its deployment.

In [?] and in previous work [?] a diffserv code point was
used to differentiate traffic originating from well-managed
sites and from sites that supported the proposed filtering
scheme, respectively. The solution we presented in this pa-
per also uses a code point, but to signal the validity of the
source IP address field in the packet.

7 Conclusions

We presented Terminus, a new architecture that can filter
even the largest Denial-of-Service attacks while providing
clear incentives to early adopters. Terminus is well suited
to being implemented in fast routing hardware, but in the
early stages of deployment this is unlikely to be the case. Be-
cause of this, we have shown that these elements can also be

built using inexpensive off-the-shelf hardware while still be-
ing able to cope with the largest attacks, both in terms of filter
installation rates and forwarding rates even for minimum-
sized packets. Optimizing the current implementation and
taking full advantage of all the processors in the hardware
used would improve these figures even further.

Despite the title of this paper, Terminus is actually named
after the Roman god of boundary markers.
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