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Abstract

We describe a method for enabling dependable forwardingesfsages in untrusted networks. Nodes
perform only relatively lightweight operations per messaand only the originator and destination need
to trust each other. Whereas existing protocols for depdadaimmunication rely on establishing a
verifiable identity for every node, our protocol can opeiataetworks with unknown or varying mem-
bership and with no limits on the creation of new identiti&3ur protocol supports the maintenance
of unlinkability: relays cannot tell whether a given origtor and destination are communicating. The
destination of each message generates an unforgeablenrdekigement (U-ACK) that allows relays and
the originator to verify that the message was delivered dified to the destination, but relays do not
need to share keys with the originator or destination, ontmktheir identities. Similarly, the endpoints
do not need to know the identities of the relays. U-ACKs casden as a building block for dependable
communication systems; they enable nodes to measure tiefeservice provided by their neighbours
and optionally to adjust the level of service they providegturn, creating an incentive for nodes to
forward messages. Our work is ongoing.
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1 Introduction

Increasingly, the dependability of a networked commuibcesystem is considered a key issue for the operation of
a larger system as a whole. However, there are a number déobek to achieving dependability, including the
possibility of malicious behaviour that aims to disrupt abgert communication. For a set of nod@s, forming a
communication network, we need some way of assessing whethect forwarding behaviouis being observed.
Here, our definition o€orrect forwarding behaviouis very simple: forwarding behaviour is deemed to be coiirect
the network of nodesy, if a node,n; € N, the originator, can send a message to another node, N, i # j, the
destination, by relying on the message forwarding behawbuv.

Our scenario is a network of node¥, in which we assume that only the originatey, and destination;;, of each
message trust each other, and there is no other trust redatfpwithin the network. This means thatandn; may

not be able to see or verify the identities of any other nodahé network. Nodes that forward a message but are
not the originator or the destination are termethys In our discussion, we assume that any node may act as an
originator of its own messages as well as a destination ay ffer the messages of other nodes.

We assume that nodes communicate using the general unitwhaaication, which we will term anessagewhich

is any self-contained block of data. Depending on the agfitio and the layer of operation in the communication
stack, amessageould be apacket aframe adatagram anapplication data unit (ADUpuch as a block in a file
transfer, etc. Our goal is to enable measurably dependabl@fding of messages in a network of untrusted nodes.

Correct forwarding behaviour can be achieved with high camfce if all the nodes trust each other. Trust may be
established, for example, by the use of a certified or cestdiaentity for each node. Identities or pseudonyms may
also be derived from other information within the netwonkgls as network addresses, but these may be transient or
may not be strongly verifiable. In certain circumstancessnehdentity is available and verifiable to some degree, it
may be possible to detect failed, misbehaving or malicimdes|[1, 2, 3].

However, in many environments, it may not be practical tésiren establishing the identity of every membernbdfo
provide the level of trust required to have confidence ofexrforwarding behaviour. For example, the membership
of the network may be changing constantly, or it may not besipbs to verify or certify the identity of a node,

n € N. Evenifitis possible to verify a node’s identity, that idigyymay be subverted without being detected. In
other cases, users may wish to maintain anonymityrdinkability, meaning that other network nodes should be
unable to determine whether a given pair of nodes are conuatimg. Additionally, maintaining unlinkability helps

to counter some denial of service attacks (DoS) which magetarodes based on their identities. Examples of such
environments include ad hoc wireless networks, peer-&-petworks and some online communities.

Another issue especially relevant to ad hoc networks andtpegeer systems is resource usage. Many protocols
have recently been proposed to address the problem of usercensume more resources than they contribute.
Encouraging these ‘free riders’ to cooperate may have dfignt impact on the performance and even viability
of open membership networks. Free riding also has secumipji¢ations, because denial of service (DoS) attacks
are often based on resource exhaustion. Unfortunatelyy mfathe proposed solutions to the free riding problem
require detailed record-keeping and information-shatirag could undermine the privacy of users [4, 5, 6]. Other
proposals depend on central coordination or identity mamegt, introducing a single point of failure into otherwise
decentralised systems [7, 8, 9].

If pairs of adjacent nodes can measure the level of servaertiteive from one another and use this information to
adjust the level of service they provide in return, then eamthe has an incentive to cooperate in order to continue
receiving cooperation [10]. This local, reciprocal apmtodoes not require central coordination, record-keeping o
information-sharing. Each node must be able to identify amthenticate its neighbours, but these identities can be
local in scope, and a node is free to present a different ityeioteach neighbour. If the level of service offered to
each neighbour is proportional to the level of service nexmbithere is no incentive for a node to present multiple
simultaneous identities to the same neighbour [11].

1.1 Structure of this paper

The next section describes thieACK protoco] which enables nodes in a message-forwarding network tcunea
the level of service provided by their neighbours. By meiagudependability at the message level, a single incentive
mechanism can support a wide range of end-to-end servidesuwtirelays needing to be aware of the details of
higher protocol layers [12].

Our protocol uses end-to-end (originator to destinatioriprgeable acknowledgements (U-ACK®t can be verified
by relays without establishing a security association wither of the endpoints. Unlike a digital signature scheme,
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relays do not need to share any keys with the originator dirdgin, or to know their identities. U-ACKs are a
general mechanism designed to be used in conjunction witipatication-specific dependability metric (ASDM)
that is a function of the messages sent and the U-ACKSs rateive

Sectiont 3 demonstrates that U-ACKs cannot be forged as Ietigeaunderlying cryptographic primitives are secure.
Section 4 considers possible applications of the prot@rml,Section 5 discusses issues that would affect engimgeerin
of the protocol. In Sectidn|6 we review related work, and Bect concludes the paper and gives a brief description
of our ongoing work and thoughts for the future.

2 Unforgeable acknowledgements

The unforgeable acknowledgement (U-ACK) protocol hantileskinds of datamessagesvhich consist of a header
and a data payload, artknowledgementd he originator and destination of each message must stsmeret key
that is not revealed to any other node, and each messageeterteln the same endpoints must contain a unique
serial number or nonce to prevent replay attacks. This numded not be visible to intermediate nodes, and indeed
the protocol does not reveal any information that can be tsetbtermine whether two messages have the same
originator or destination, although such information nilgl revealed by traffic analysis or by other protocol layers.

Our protocol does not rely upon or mandate any particularrkeapagement scheme or key exchange mechanism;
any existing scheme appropriate to the application can éd.Us/e only assume that the originator and destination
have some way of establishing a shared secretikey,

21 Overview

Unforgeable acknowledgements (U-ACKs) make use of twodstahcryptographic primitivesnessage authentica-
tion codes (MACsandcollision-resistant hashingor simply hashing. Any node can generate a correct hash, but
only a node that knows the authentication key can generateract MAC. So, before transmitting a message, the
originator computes a MAC over the message using the segygt kshared with the destination. Instead of attaching
the MAC to the message, the originator attachestigh of the MAGo the message. Relays store a copy of the hash
when they forward the message. If the message reaches fiisaties, the destination computes a MAC over the
received message using the secret keyghared with the originator. If the hash of this MAC matches hash re-
ceived with the message, then the destination has validlatatdessage, and sends WAC as an acknowledgement
which is forwarded back along the path taken by the messagiy&can verify that the acknowledgement hashes
to the same value that was attached to the message sent hyginator, but they cannot forge acknowledgements
for undelivered messages because they lack the secrek kigycompute the correct MAC, and because the hash
function is collision resistant.

2.2 Description of the protocol

More formally, letH (x) denote the hash af, let M AC(y, ) denote a message authentication code computed over
the message using the keyy, and let{a, b} denote the concatenation @fandb. Let k be the secret key shared by
the originator and destination, and {Ebe the data to be sent. The relays between the originatorestohdtion are
denotedr; ...rys.

The operation of the protocol proceeds as follows:

1. The originator first attaches a unique nonce or serial mupafto the data, to produce the paylgad= {s, d}.
2. The originator calculates; = H(M AC(k,p1)) and sendghq,p; } to relayr;.

3. Each relayr,, stores an identifier (e.g. the network address) of the pusvimde under the hagh,,, and
forwards{h,,+1, pm+1} to the next node, where,, ; = h,,, unlessr,,, modifies the header, ang, 1 = pi
unlessr,, modifies the payload.

4. Onreceivinghary1, par+1} fromry,, the destination calculatds(M AC (k, par+1)) and compares the result
to hary1. If the result does not match, then eitthgr 1 # hy Or pary1 # p1 —in other words either the header
or the payload has been modified by one of the relays — and #timdtton does not acknowledge the message.

5. If the message has not been modified, the destinatiomestiie acknowledgemeat; 1 = M AC(k,prr+1)
to relayry.
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6. Each relay-,, calculatesH (a,,+1), and if the result matches a stored hash, forwasggo the previous node
stored under the hash, whetg = a,,+1 unlessr,,, modifies the acknowledgement.

7. When a relay receives an acknowledgement whose hash madtehstored hash of a message it previously
forwarded, it knows that neither the header, the payloadthmacknowledgement was modified by any node
between itself and the destination.

8. When the originator receives an acknowledgement whoserhatches the stored hash of a message it previ-
ously transmitted, it knows that neither the header, théoaaly nor the acknowledgement was modified by any
node between itself and the destination, and that the messgag correctly delivered to the destination, since
only the destination could have generated the acknowledgem

2.3 Malicious nodes

It is important to note that while messages may carry sourcestination addresses, the U-ACK protocol does not
authenticate these addresses. A U-ACK proves one of twgghifo the originator, it proves that the downstream
neighbour delivered the message to its intended destimafio a relay, it proves that the downstream neighbour
delivered the messagde the destination intended by the upstream neighbotltis does not necessarily correspond
to the message’s destination address, if any. The upstredmicavnstream neighbours might collude to produce and
acknowledge messages with spoofed addresses, so U-ACKetdam used to discover reliable routes to particular
addresses. However, in the context of unlinkable commtioitahis limitation becomes a strength: messages need
not carry any information to associate them with one anotiranith any particular originator or destination.

There is nothing to stop an attacker from modifying the headea message, perhaps replacing it with a hash
generated by the attacker for acknowledgement by a dovamsteezcomplice. However, the attacker will then be
unable to provide a suitable acknowledgement to its upstregighbour, and thus from its neighbour’s point of view
the attacker will effectively have dropped the message eatsinitted one of its own instead, albeit one with an
identical payload. The upstream neighbour will not consitle attacker to have delivered the message as requested,
and may reduce its level of service accordingly (this wilbeled on how the application-specific dependability metric

is evaluated and used). Likewise if the attacker modifiepthdoad instead of the header, the destination will not
acknowledge the message and again the attacker will be eit@algrovide an acknowledgement to its upstream
neighbour.

With regard to dependability, any modification to a messagaaknowledgement is equivalent to dropping the
message, and a node that modifies messages or acknowledgésreguivalent to a free rider.

2.4 Lost messages

Messages may be lost, reordered, or modified for a numberagbres, and it may not be possible to determine
whether such events are due to the normal behaviour of teorietor due to the malicious or incorrect behaviour
of relays. For example, in a wireless ad hoc network, losgdering, bit errors and even duplication of messages
may be considered normal behaviour for the network.

In contrast to existing approaches that try to identify tloelen or link responsible for each failure, we take the
pragmatic approach of measuring dependability withownapting to distinguish between malicious, selfish, and
accidental failures. This makes it possible for our protdcmperate in networks with a variable failure rate; with

an unknown, changing, or open membership; and where thétygoélservice (QoS) of network parameters is

dynamically variable.

3 Unforgeability

The strength and scalability of our system comes from itpBaity. Only originators and destinations can generate
a set of check bits for a message, but any node can verify ek bits without needing to know the identity of, or
share state with, the originator or destination. The keyutoppotocol is the unforgeability of acknowledgements, so
in this section we demonstrate that relays cannot forgeadeatgements as long as the underlying cryptographic
primitives are secure. Four specific properties are listeldvib with respect to the behaviour of the underlying
primitives. These properties are commonly accepted andased on the design goals of those primitives:

1. It is not feasible to recover the secret kéyby observing any sequence of authenticated messages
{MAC(k,my),m1}...{MAC(k,my,), my,}.
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2. Itis not feasible to calculat®/ AC(k, m) for a given message: without knowing the secret key.
3. Itis not feasible to find the preimageof a given hastd ().

4. ltis not feasible to find a second preimag¢ « for a given preimage, such that (y) = H(x).

The first two properties are standard requirements and mesigls for MAC functions, and the last two properties
(inversion resistance and second preimage resistance)aar@ard requirements and design goals for cryptographic
hash functions. These properties are not affected by recdigion search attacks on cryptographic hash functions
[13,14]. As long as these properties are true for any spedifi€ and hash function used to implement our protocol,
we consider U-ACKs to be unforgeable.

First we show that the protocol does not reveal the secret Kegn eavesdropper could recover the secret key
from some sequence of messadd$(MAC(k,m1)),m1}...{H(MAC(k,my)), m,} and their acknowledge-
mentsM AC(k,my) ... MAC(k, my,), then the attacker could also recover the key from
{MAC(k,my),m1}...{MAC(k,m,), my}, contradicting the first property above.

Next we show that an attacker cannot forge acknowledgenwveititeut the secret key. Assume that an attacker
succeeds in forging an acknowledgement. Either the forgkda@vledgement is identical to the genuine acknowl-
edgement, or it is different. If it is identical then eithéretattacker has succeeded in calculatdg\C(k, m)
without knowingk, which contradicts the second property above, or the atdeis found a way of inverting the
hash function, which contradicts the third property. Onahieer hand if the forged acknowledgement is different
from the genuine acknowledgement, the attacker has fouadand preimage # « such thatd (y) = H(x), which
contradicts the fourth property.

4 Applicability

This paper does not describe a complete communicationrsytet rather a protocol building block that allows
nodes to measure dependability. The mechanism by whicinatays and destinations exchange secret keys is not
discussed here, because the acknowledgement protocalepeéndent of the key exchange mechanism; similarly,
end-to-end encryption is not discussed, although we wouiee it to be used by parties requiring privacy and
unlinkability. Additionally, an application would need $elect an application-specific dependability metric (ASDM
to use with the U-ACK protocol. The ASDM, which will have apgation-specific semantics, should be a function
of the messages originated and/or relayed and the U-ACHKsvest:

4.1 Generality

Unforgeable acknowledgements can operate in a peer-tosgeday or at the network layer, providing an incentive
for nodes to forward messages as well as transmitting tlair @here are no dependencies between messages other
than between a message and its acknowledgement, so eachgmess be treated as an independent datagram;
retransmission, sequencing and flow control can be hangiéiber protocol layers. This allows a single incentive
mechanism to support a wide range of upper-layer protoaudsservices. In contrast, many existing incentive
mechanisms are limited to file-sharing applications, bseahey require content hashes to be known in advance
[15,/186, 17, 18].

4.2 Reverse path forwarding

We have assumed that the forward path of the message is themtimthat will be followed, in reverse, by the
U-ACK, i.e. reverse path forwarding is being used. This mai/be possible in all networks — for example some
wireless networks may contain unidirectional links. Whéeassumption of reverse path forwarding does not hold,
there are two situations to consider:

e The reverse path haame relay nodes in commuiith the forward path. In this case, there may be some nodes
that receive information about the dependability of theiighbours, while others do not, at least not for all
messages.

e The reverse path ham® relay nodes in commamith the forward path. In this case, only the originator iees
information about the dependability of its neighbours.

In either situation, the U-ACK protocol provides a coarseiged input to the ASDM: simply that the network as a
whole is managing to deliver messages to their intendedhdgisins and that U-ACKs are being returned, i.e. correct
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forwarding behaviour is being maintained for the netwadyk, Nodes that act as relays may build up confidence of
their neighbours’ dependability without having to send sages themselves: whenever a node sees a U-ACK for
a message, it knows that the message was successfullyrddliweithout necessarily having any knowledge of the
path beyond its immediate neighbours. This coarse-graimeasure of dependability may be sufficient for some
applications.

Note that routing asymmetries such as those commonly fautttkilnternet do not prevent reverse path forwarding:
each relay stores the identity of the previous node whendating a message, so the reverse path can be found even
if the relay’s routing tables are asymmetric. Similarlyymsnetric link bandwidth is not a problem as long as it is
possible to return one acknowledgement for each messagindba opposite direction.

Our protocol can therefore operate in situations with digeouting paths; the ASDM chosen should take account of
the nature of the paths and any path information that may aiadle.

4.3 Gateways, proxies and middleboxes

The U-ACK protocol does not require relays to share keys wiiQjinators or destinations, but it can easily be
generalised to situations where the originator wishesrexttraffic through a certain trusted gateway, proxy, oeoth
middlebox: the originator exchanges keys with the gatewal/the gateway exchanges keys with the destination;
the gateway acknowledges messages from the originatoraamerids them to the destination with new headers;
and the destination acknowledges messages from the gat@waykey shared by the originator and the gateway is
independent from the key shared by the gateway and the dtstinso it is possible for the gateway to re-encrypt
the messages before forwarding them. Indeed, onion ro[&Bjgcould be layered on top of our protocol, providing
originator anonymity as well as originator-destinatiofinkability.

4.4 Non-unicast communication

So far, we have implicitly considered unicast communigatidHowever, there may be further considerations if
non-unicast mechanisms are used for message delivery. xaorpée, some protocols in mobile ad hoc networks
(MANETS) use flooding-based or broadcast-based forwardinguch applications, multiple copies of a message
may reach a destination or relay node by different paths. diotain the association between messages and U-ACKs,
a simple extension of the protocol is to return a copy of thACK to every neighbour from which a copy of the
corresponding message was received. However, this maytdeiadreased overhead, so an application may wish
to reduce the number of U-ACKs transmitted and adjust adeglgthe definition and dynamic evaluation of the
ASDM being used.

Another issue is that of one-to-many or many-to-many conmigation, such as network-layer or application-layer

multicast. Here, a single transmission may have many dggiits, and a naive translation of our protocol would

require each of these destinations to send an acknowledgerReliable multicast is an area of ongoing research
[20, 21, 22], but it is known to be impractical to use per-tedton acknowledgements; thus our protocol seems
unlikely to be applicable to large-scale reliable multteaghout modification.

In a tree-based scheme for multicast distribution, oneipitisg would be for key nodes in the tree to act as trusted
gateways, as described in Section 4.3. Each gateway woulespensible for receiving U-ACKs from nodes below
itself in the multicast tree and sending aggregate U-ACKa tmde above itself in the tree. An aggregate U-ACK
would indicate delivery of a message to all intended reaigie

However, although solutions for key management and digfdh in such scenarios have been defined [23], modifi-
cations of this kind would increase the complexity of thetpeol, introduce additional overhead, and could lead to a
weakening of the overall security and dependability of yystem.

Another approach is to look at the way dependability is hadidth other schemes, such as bimodal multicast [21] or
QuickSilver [22]. It may be possible to modify the designdtadse schemes to incorporate U-ACKs and so permit
operation in untrusted environments, but we have not exgdtinis in detail.

We consider the use of U-ACKSs in non-unicast communicatioet a topic for further study.
5 Engineering considerations

5.1 Timeouts

Relays cannot store hashes indefinitely while waiting f&magvledgements — at some point, old hashes must be
discarded to make room for new ones. A relay that receiveslamavledgement after discarding the corresponding
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hash cannot verify or forward the acknowledgement, so there reason for a relay to store a hash for longer
than its upstream or downstream neighbours. The most effis@ution would be for all relays along the path to
discard the hash at the same time, after waiting an appte@mount of time to receive a U-ACK. Using a separate
synchronisation protocol to determine when to discard éssh not practical in an untrusted scenario, and adding
a time-to-live field to messages would undermine unlinkgbby allowing relays to estimate the distance to the
originator.

Fixed timeouts avoid these problems while ensuring thatcadjt relays discard the hash at approximately the same
time, and are simple to implement. The length of the timeeptesents a tradeoff between the maximum end-to-
end latency the network can tolerate, and the number ofandsig hashes each relay must store. The choice of
an appropriate timeout will depend on the application. Aegample, TCP’s maximum segment lifetime (MSL)
represents a conservative estimate of the maximum latesrogsathe Internet: a typical implementation value is 30
seconds, which is much greater than the typical latency umddrip time, and TCP may wait for a period of two
MSLs before allowing re-use of a port number. Thus 60 seceadms to be a reasonable timeout for hashes in an
Internet overlay; shorter timeouts may be appropriate floeioapplications.

5.2 Overhead

The bandwidth and computation overheads of the U-ACK paitace modest. Each message must carry the hash
of its MAC and a unique nonce or serial number, and the ortgimnand destination must each perform one hash
computation in addition to the normal cost of using MACs. lEaelay must perform a single hash computation
and table lookup per acknowledgement, and forward one MAG@enowledgement. Since acknowledgements are
small and there is at most one acknowledgement per messdgevdedgements could be piggybacked on messages
in bidirectional communication to reduce transmissionsos

The originator and each relay must store one hash per odistamessage, so the storage overheads of the protocol
depend on three factors: the data rate of the end-to-end pgilthe message sizé,,,; and the timeout for stored
hashes7}. If Sy, is the size of a hash for a single message, we can approxilragtdrage requirement of a node,
S, as:

5. — Dp.;: Sh,

So, with a 60 second timeout and a minimum message size ofyt25 imcluding headers, a node with an 11 Mb/s
link (e.g. 802.11b wireless LAN) may need to store up to 6680,0utstanding hashes. This would requit&3 MB

of memory for a 160-bit hash function such as SHA-1. Thisesents the worst case, however, when all messages
have the minimum size and all acknowledgements take thermamitime to arrive; in a more realistic scenario with

a mean message size of 500 bytes and an average round-ipftiinseconds, the storage overhead would be just
~275 KB.

A malicious node might attempt to exhaust a relay’s memorylbgding it with messages, forcing it to store a
large number of hashes. This attack could be mitigated logating a separate storage quota to each neighbour; a
neighbour that exceeded its quota would then simply cassmih hashes to expire early.

5.3 Measuring dependability

Unforgeable acknowledgements allow nodes to measure fiendability of their neighbours, but the exact way in
which the application-specific dependability metric (ASP computed and refreshed will depend on the appli-
cation; the behaviour of the ASDM in time (including fresbagdecay and/or expiry of dependability information)
and in space (for a given neighbour, path, or flow) will be aggtion specific, and our protocol places no specific
constraints on the nature of this metric. However, to dermatesthat a fine-grained dependability metric does not
necessarily require information about the identities efdhiginator or destination, we offer the following sketdh o
a flow-based ASDM. This is only intended as an example; othetrios may be appropriate for other applications.

We define a flow as any sequence of messages that have the $gim&tar and destination and that are semantically

related in some way — for example, the sequence of messamesdke up a single file transfer. To enable flow-based
dependability measurement, the originator marks all ngessin a flow with an arbitrarffow identifier The contents

of the flow identifier are not significant — it is just a labeldahis not covered by the message authentication code.
All messages in a flow are marked with the same flow ID.
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Flow IDs have local scope: when a relay forwards a messagefldiv ID used on the downstream link may be
different from the ID on the upstream link. However, messdgdonging to the same flow should still have matching
flow IDs on the downstream link. Each flow traversing a link s assigned a flow ID that distinguishes it from
any other flows currently traversing the same link. Flows/ang at a node from different upstream neighbours must
be treated as distinct, and must be assigned distinct flowoiDsny downstream link, even if they happen to have
matching IDs on their respective upstream links.

The use of flow IDs with local scope is similar to the use of ledveapping in virtual circuits, but there is no
requirement to establish flow ID state in the relays beforta ttansfer begins — flow IDs can be assigned to new
flows on the fly.

Relays can use flow IDs for fine-grained dependability mesment without needing to know the origins or destina-
tions of the flows. For each flow it is currently forwarding edaly stores the identifiers (e.g. network addresses) of the
upstream and downstream nodes, the flow IDs for the upstrednd@vnstream links, and the application-specific
dependability metric for the flow. The ASDM might take therfoof a running average of the fraction of messages
acknowledged (e.g. an exponential moving average, whiohbeastored as a single floating-point number). All
this information is soft state: it does not need to survivess restarts, and information about inactive flows can be
discarded to reclaim space.

6 Reéated work

6.1 Reciprocation

Reciprocation between neighbours is used to encouragarmesoontribution in several deployed peer-to-peer net-
works [15, 16, 17]. These systems differ in how they allocatources among cooperative neighbours, but all of
them provide a higher level of service to contributors than-nontributors. Hash trees [24] are calculated in advance
and used to verify each block of data received, so these nietvame only suitable for distributing static files.

SLIC [25] is an incentive mechanism for message forwardingder-to-peer search overlays. The level of service
received from a neighbour is measured by the number of seasciits it returns, but without a way to verify results
this creates an incentive to return a large number of bogustse In contrast, the U-ACK protocol makes it easy to
detect bogus acknowledgements.

SHARP [26] is a general framework for peer-to-peer resotrexting; digitally signed ‘tickets’ are used to reserve and
claim resources such as storage, bandwidth and comput&tlaims can be delegated, so peers can trade resources
with peers more than one hop away, but the identities of @t the delegation chain must be visible in order to
validate the claim. This makes SHARP unsuitable for unérdiginvironments and unlinkable communication.

6.2 Authenticated acknowl edgements

2HARP [2] is a routing protocol for ad hoc wireless netwonksvhich each node that receives a packet sends an ac-
knowledgement to the previous two nodes, allowing each tmderify that its downstream neighbour forwarded the
packet. Every node has a public/private key pair for sigmitinowledgements; these key pairs must be certified by a
central authority to prevent nodes from generating extygoeérs and using them to create bogus acknowledgements.
This requirement makes 2HARP unsuitable for use in open reeship networks.

IPSec [27] uses message authentication codes for enddtengthentication at the network layer. This makes it
possible to authenticate transport-layer acknowledgésreeshwell as data, but the MACs can only verified by the
endpoints, not by third parties such as relays.

TLS [28] uses MACs at the transport layer. TCP headers arautbenticated, however, so it is possible for relays
to forge TCP acknowledgements. As with IPSec, the MACs ugerLls cannot be verified by relays.

Some robust routing protocols for ad hoc networks use MACactmowledge messages and to detect faulty links
and nodes [29, 30]. This requires a trusted certificate aigtfor key distribution, and rules out unlinkability.

6.3 Authentication using one-way functions

Gennaro and Rohatgi [31] describe two methods for authesintig streams using one-way functions. The first scheme
uses one-time signatures [32, 33]. Each block of the stremtains a public key, and is signed with the private key
corresponding to the public key contained in the previowskl The first block carries a conventional asymmetric
signature. One-time signatures are large, so this scheme ¢t@nsiderable bandwidth overhead. The computational
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cost of verifying a one-time signature is comparable to tfaan asymmetric signature, although signing is more
efficient.

The second scheme uses chained hashes, where each blaakgdme hash of the next block, and the first block
carries an asymmetric signature. The entire stream mustderkto the originator before the first block is sent. This
scheme is similar to the use of hash trees in file-sharingarésy

The Guy Fawkes protocol [34] also uses chained hashes. Tdieaior does not need to know the entire stream in
advance, but each block must be known before the previou idsent. Each block carries a preimage and a hash
that are used to verify the previous block, and a hash thahidtso the contents of the next block. The first block
carries a conventional signature.

Several ad hoc routing protocols use hash chains to redeasutinber of asymmetric signature operations [35, 36,
37, 38]. Others use delayed disclosure, in which a hash apidtimage are sent by the same party at different times,
requiring loose clock synchronisation [36, 39, 40]. In ototpcol the preimage is not sent until the hash is received,
so no clock synchronisation is required.

The schemes described above use similar techniques todteepr described in this paper, but their aims are dif-
ferent. Whereas the aim of a signature scheme is to associstgages with an originator, the aim of our protocol
is to associate an acknowledgement with a message, witthentifying the originator or destination of the message.
The signature schemes mentioned above therefore requiniiahasymmetric signature to identify the originator,
whereas the U-ACK protocol does not require asymmetrictogmaphy.

7 Conclusion and futurework

We have described the U-ACK protocol, which enables nodesnetwork to measure the dependability of their
neighbours in forwarding messages usimdorgeable acknowledgements (U-ACKEBhe protocol does not require
trust between all nodes in the network; the only nodes thedi ne be able to verify one another’s identities are the
originator and destination. The acknowledgements crelayetthe protocol are unforgeable but can be verified by
untrusted third parties. The protocol has broad applittgbit can operate at the network layer or in a peer-to-peer
overlay, and does not require relays to establish a se@sg#yciation with the endpoints, or to be aware of the details
of higher-layer protocols. It can be seen as a building bfocklependable communication systems, allowing nodes
to measure the level of service received from their neighboging anapplication-specific dependability metric
(ASDM)that is a function of the messages sent and the U-ACKs rateive

We are currently investigating specific properties of thet@rol when used in peer-to-peer systems, e.g. the dy-
namics of resource usage that occur with a mixture of freersicaltruists and reciprocators. The investigations will
explore the sensitivity of the U-ACK scheme to various paeters such as the size and structure of the network, the
proportion of free riders, etc.

The U-ACK scheme could also have applicability to systenas tieed to be robust to Byzantine failures, such as
applications for safety-critical systems, civil defenoel anilitary use.
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