
Lightweight Distributed Trust Propagation

Daniele Quercia, Stephen Hailes, Licia Capra

Department of Computer Science, University College London, London, WC1E 6BT, UK
{D.Quercia, S.Hailes, L.Capra}@cs.ucl.ac.uk

Abstract. Ubiquitous devices, such as smart phones, make it possible for people
to create and distribute different types of digital content. The idea of “ubiquitous
digital content” is appealing, but digital content, being easy to create and repli-
cate, may likely swamp users rather than informing them. To avoid that, users
may organise content producers that they know and trust in a web of trust. Users
may then reason about this web of trust to form opinions about content producers
with whom they have never interacted before. These opinions will then deter-
mine whether content is accepted. The process of forming opinions is called trust
propagation. We set out to design a mechanism for ubicomp devices that ef-
fectively propagates trust and that is lightweight and distributed (as opposed to
previous work that focuses on centralized propagation). We evaluate the effec-
tiveness of our propagation scheme against a large data set. We also evaluate the
computational cost of a J2ME implementation on a standard mobile phone.

1 Introduction

Recently, part of ubiquitous computing research has shifted from proactive computing
to proactive people [26]. The goal of proactive computing research is to design devices
that predict what their users are feeling, wanting, or needing at a given time to calm
them by, for example, informing them of what to do and where to go. By contrast, the
goal of proactive people is to design devices that do not calm but rather engage users
and make it possible for individuals to be creative and constructive.

As the idea of proactive people gains ground, researchers are realizing that ubicomp
devices may engage people in many different ways. For example, ubicomp devices al-
low people to organize and share information as never before. They make it possible
for people to create different types of electronic content and distribute it in novel ways.
Using their portable devices, individuals may take photos or shoot videos and distribute
them to their local communities at very low cost. A ubiquitous communication infras-
tructure then leads digital content to viral diffusion. That diffusion may help to engage
people in, for example, urban planning or creative expression [6, 24]. But what happens
if everybody is distributing content? In that case, to paraphrase Italo Calvino, we would
live in an unending rainfall of content [7].

To avoid content overload, we need new ways to decide whether content is of good
quality (whether to accept it). Conventional wisdom holds that one such way is to main-
tain a web of trust [14, 30] of content producers. A web of trust is a network of trust
relationships: we trust (link to) only a handful of other people; these people, in turn,
trust (link to) a limited number of other individuals; overall, these trust relationships

form a network (a web of trust) of individuals linked by trust relationships. Based upon
this web of trust, individuals may form opinions of other individuals (in technical par-
lance, they propagate trust in other individuals) from whom they have never received
content before. Individuals then decide whether to accept content according to these
opinions.

Different research communities use the word ‘trust’ with different meanings.
Roughly, “A trusts B” means that A relies on B [11]. In the case of ubiquitous content,
it means that A pays particular attention to the content produced by B. Hence, the fo-
cus of this work is on designing algorithms that effectively propagate trust as a way of
filtering content.

Section 2.2 will show that existing ways of propagating trust cannot be readily ap-
plied in ubiquitous computing because they are usually meant to work on the whole
web of trust and to run on high-end machines. We thus need a new trust propagation
model specifically targeted to ubicomp scenarios. Such model must satisfy the follow-
ing requirements:

Distributed Propagation. Trust propagation is done by the devices themselves and not
by any central authority.

Predictive Accuracy. The trust propagation algorithm should effectively predict trust,
and it should do so even in the presence of uncooperative users (users who are
not willing to take part in the system). For example, users may well decide not to
exchange their ratings for privacy concerns.

Rating Availability. Given that each device stores its trust ratings, and that devices are
mobile thus not always available, the model should be able to work in condition of
partial knowledge (i.e., knowing a small subset of ratings at any given time).

User Anonymity. A device should not reveal its user identity. To this end, a user’s rep-
utation should be associated with an anonymous token rather than an externally
associated identity (e.g., IP address).

Minimal Overhead. Since most of ubicomp devices are resource-constrained (e.g., smart
phones), the model design should guarantee low computation, storage, and commu-
nication overhead.

Given these requirements, we set out to design a novel way of propagating trust.
Our core contributions include:

– A new trust propagation model that exploits a graph-based semi-supervised learn-
ing scheme [15, 29], carefully adapted to our domain. The key idea of this model is
to create a very small graph from a partial web of trust; then apply machine learn-
ing techniques over such graph to propagate trust. This way of propagating trust
(described in Section 2) has four main desirable properties that distinguish it from
existing propositions:
1. It propagates trust from individual A to individual B even if there is no path

connecting the two. That is useful when a device does not know the whole web
of trust, but only part of it (as is likely in ubicomp settings).

2. It distinguishes between two types of trust: that held in good recommenders
and that held in good (content) providers. This distinction matters whenever an
individual offers high-quality content, but fails to judge others accurately.

Fig. 1. (a) A simple web of trust representing the statement “C rates 2 its trust in D”. (b) A web
of trust of four people connected by their trust relationships.

3. It does not assume trust transitivity (for which if A trusts B and B trusts C,
then it follows that A trusts C). Trust transitivity might be reasonable, but is
certainly debatable: A’s trust in B may have no relation whatsoever to B’s trust
in C [16, 21]. For instance, trust transitivity implies that we have to trust people
that our close friends trust, despite there being “plenty of examples where two
close friends of us do not get along at all” [19].

4. It runs seamlessly on portable devices.

– Evaluation of the accuracy of our proposition on a real and large web of trust (Sec-
tion 4.1).

– Evaluation of its robustness against simulated uncooperative users (Section 4.2).
– Evaluation of its computational overhead of a J2ME implementation on a Nokia

mobile phone (Section 4.3).

2 Overview

We now describe our research problem more formally. We will then demonstrate that
existing solutions are not suitable for ubicomp devices. Finally, we will briefly introduce
our proposed solution.

2.1 Problem Statement

One may represent the statement “C trusts D” as a web-of-trust of two persons and
one trust relationship going from C to D (Fig. 1(a)). The relationship may also be
labeled with a rating representing the extent to which C trusts D in a given range of
trust values (for example, in Fig. 1(a), C rates its trust for D as 2 in a discrete range
[1, 3]). Now, consider the web of trust in Fig. 1(b), where we have four people A, B,
C and D. Not everyone has interacted with everyone else. For example, A and B have
never interacted (no link between them). For the sake of argument, suppose that A now
wishes to interact with B and, as a consequence, it has to form an opinion about B. A
may do so by predicting its trust for B. The goal of this paper is to study how a ubicomp
user A may form an opinion about another user B without prior interaction.

2.2 Existing Solutions: Unfit for Ubicomp

To solve that problem, literature suggests that A may assign a trust rating to B that is
either equal to a constant representing A’s initial disposition to trust [5] or based on
other users’ ratings about B [2]. The first proposition is rather simplistic and can be
applied only in very specific cases. The second may be used more widely and can be
taken one step further: instead of using just the ratings about B, A may create a web
of trust from all known ratings and, based on that, may then set its trust (propagate its
trust) for B.

There is substantial literature on how to propagate trust. That literature breaks
roughly into two camps. In the first, techniques assign a global trust value to each
user. That is, A’s trust in B corresponds to a global trust value in B. By global, we
mean a trust value that is accepted and shared by all users. In peer-to-peer networks,
EigenTrust [17] assigns a global trust rating to each peer similar to how Google’s
PageRank [23] ranks web pages. Global ratings are then used by peers to select peers
from whom to download files. As a consequence, the number of inauthentic files in the
network decreases. In a free software developer community, Advogato [20] assigns a
global trust to each community member. It does so by arranging ratings in a web of
trust and by composing ratings between members using max flow [8]. The idea of max
flow is that between any two nodes, the quantity of trust flowing from one node to an-
other cannot be greater than the weakest rating somewhere on the path between the two
nodes. This way of composing ratings has proved to be attack resistant - it successfully
isolates unreliable members. More recently, Ziegler and Lausen [30] proposed to rank
all users by spreading “activation models” (by arranging ratings in a matrix and finding
the principal eigenvector), while Dell’Amico [9] focused on peer-to-peer networks and
proposed to rank peers by using link-analysis techniques in a fully distributed setting.

By contrast, in the second literature camp, techniques assign a pairwise (local) trust
rating to each pair of users. That is, A assigns a personalized trust rating in B. Person-
alizing trust is beneficial because it makes it possible for two individuals to have dif-
ferent opinions about the trustworthiness of the same person (which may well happen
in reality). In 2003, Golbeck et al. [12] proposed different algorithms for propagating
trust in this way. For example, they proposed a variation of max flow that accounts
for path length. Massa and Avesani [22] used a similar trust propagation algorithm to
make it possible for collaborative filtering systems to increase their coverage (number
of defined predictions) without reducing the accuracy. That is useful whenever a con-
siderable number of predictions is undefined because the set of commonly rated items
between users is sparse. To Domingos et al. [25] and Guha et al. [14] goes the merit
of presenting the first comparative studies of different trust propagation algorithms in
which pairwise ratings are computed. These algorithms have been evaluated against
Epinions [1], a large collection of binary ratings. By binary we mean that each rating
simply expresses whether an individual trusts another individual or not. Despite being
evaluated on binary ratings, these algorithms are general in the sense that they can take
discrete ratings (not necessarily binary).

Most of the work on assigning pairwise trust ratings is based on a simple, yet effec-
tive mechanism: A finds all paths leading to B; for each path, A then concatenates the
ratings along the path; A finally aggregates all path concatenations into a single trust

Fig. 2. Predictive Accuracy. The fraction of correct predictions for naive prediction (random
guess) and direct trust propagation.

rating for B. Algorithmically, this is equivalent to A arranging trust ratings into a matrix
and, over a series of iterations, propagating trust by, for example, direct propagation:
if A trusts C and C trusts B, then trust propagates from A to B. The resulting matrix
values are then rounded into a single trust rating. Unfortunately, this way of propagating
trust suffers from two main limitations:

– Literature has proved direct trust propagation to be extremely effective, but it has
done so only on data sets of binary ratings. There is no published work on how
direct propagation would perform on a large data set of discrete ratings, not nec-
essarily binary. An individual may express whether she trusts another individual
or not, and, if she does, she may then express the extent to which she trusts by a
discrete value. For example, in Advogato [20], users express their trust with 3-level
ratings (ratings in {1,2,3}). One question to ask is how direct trust propagation
would perform against the Advogato data set. Unfortunately, as Fig. 2 shows, the
predictive accuracy (fraction of correct predictions) is low in such a case. More pre-
cisely, considering a large sample of Advogato’s trust ratings (4000 ratings), direct
trust propagation correctly predicts 50.76% of the ratings (as a reference, consider
that a naive prediction (random guess) correctly predicts 31.1% of the ratings1).
Therefore, direct trust propagation does not predict the actual rating in roughly half
of the cases.

– Direct trust propagation does not scale on ubicomp devices. Direct trust propa-
gation is meant for Web applications in which centralized servers store full webs
of trust upon which trust is then propagated by multiplying vectors and matrices
whose dimensions are extremely high. As a consequence, it is computationally ex-
pensive and would not scale well on any existing portable device. Moreover, ubi-
comp devices would only know a partial web of trust at any given time (it is unre-
alistic to assume complete knowledge) because of, for example, network partition,
device (un)availability, and limited resources.

It thus seems that a different way of propagating trust in ubicomp scenarios is
needed. But what sort of method should we use?

1 Its predictive accuracy is 31.1% and not 33% because ratings are not uniformly distributed
across the three possible discrete values.

Fig. 3. (a) A web of trust and (b) the corresponding relationship graph for predicting A → B’s
rating.

2.3 Our Proposal

Our problem is to find a way of propagating trust that is both effective and scalable.
To do so, we propose to use a class of semi-supervised learning techniques that have
been proved to be effective when applied to various problem domains (e.g., to predict
movie reviews [13], to recognize digits [15], to classify text [29]) and that work only
on a small subset of a web of trust’s ratings.

These techniques work on a graph in which: nodes are either rated or unrated; a pair
of nodes is connected if these nodes are related (by definition, two nodes are related
if they are rated alike). Informally, these techniques exploit knowledge already present
in the graph (rated nodes) to determine a function that is capable of predicting unrated
nodes. To choose the most effective function (the function with the highest predictive
accuracy), the techniques impose that: on input of each rated node in the graph, the
chosen function returns the node’s actual rating (this serves to choose a function that
is consistent with existing ratings); given two connected nodes xi and xj , the chosen
function returns f(xi) ∼ f(xj) (this serves to choose a function that rates connected
nodes alike2).

Let us now imagine a graph whose nodes are trust relationships (we call this graph
‘relationship graph’). A node is rated if the corresponding relationship in the web of
trust is known and rated (e.g., in Fig. 3(a), C → B is known and rated, so that in the
relationship graph the node representing this relationship will be rated). By contrast, a
node is unrated if the corresponding relationship is unknown and has to be predicted
(e.g., A → B in Fig. 3(a)). Predicting a trust relationship thus means finding a func-
tion that effectively rates the corresponding node. Finding such a function is exactly
the problem solved by the semi-supervised learning techniques described above. In or-
der to exploit these techniques, we first need to represent (part of) a web of trust as a
relationship graph. We explain how to do so in the following section.

2 That is desirable because, based on the definition of related nodes, the ratings of two connected
nodes must be alike.

3 The Proposed Model

To describe our model, we refer to our running example of how A may propagate its
trust in B given the web of trust shown in Fig. 3(a). The following four steps are re-
quired, each of which is described in the following subsections:

1. A determines the trust relationships relevant for propagating its trust in B (Sec-
tion 3.1).

2. Based on those relationships, A restricts its attention to a small part of the whole
web of trust (Section 3.2).

3. From this partial web of trust, A builds a relationship graph (Section 3.3).
4. A finally applies the machine learning technique to determine a function that pre-

dicts A → B (Section 3.4).

Before describing these steps in details, we spell out our assumptions:

– We opt to target a class of applications in which users may be selfish, but not ma-
licious (e.g., users may decide not to make available their ratings, for example,
for privacy concerns, but they have no incentives to maliciously modify ratings).
An example of these applications consists of users on the move distributing con-
tent through an electronic urban tapestry [18] (a system for accessing and publish-
ing location-specific content through portable devices). This class of applications
shares the same value system (e.g., connecting with other people, creating an online
identity, expressing oneself, etc.) of technologies with which people have recently
driven innovation: Wikipedia, open source software, tagging systems, and many
others reported in a recent book by Tapscott and Williams [27].

– We consider the web of trust to be a network in which the small world phenomenon
holds (i.e., the distance between any two people is short). We argue this is a per-
fectly plausible assumption given that the web of trust is a social network, for which
the small world phenomenon emerges.

3.1 Determine Relevant Trust Relationships

To begin with, A determines the trust relationships relevant for propagating its trust
in B, that is, those relationships related to A → B. As defined in Section 2.3, two
relationships are related if they are rated alike. Hence we consider related any:

– Two relationships with the same rater. For example, A → B and A → D are related
as they have the same rater A . To the determine the extent to which they are related,
let us assume, ab absurdo, that B and D are the same person. In that case, A → B
and A → D are highly related because they express the same rating. They do so
because the rater (A) is the same and B and D, being the same person, perform
alike. Hence, we can generalize and state that the more alike B and D perform, the
more related A → B and A → D are. We call this kind of relation performing
relation, and denote it as relp(B,D). More formally, the weight between the ith

trust relationship “A trusts B” and the jth trust relationship “A trusts D” is

wij = c · relp(B,D), (1)

where c is the weight given to performing relations. How do we quantify the per-
forming relation between B and D? We may do so by considering that the more
alike B and D perform, the closer the ratings about them. Along these lines, we:
(1) take all people who have rated both B and D. In our example (Fig. 3(a)), this
is only C. (2) For each such person, compute the absolute difference between her
rating in B and that in D. In our example, the absolute difference between C → D
and C → B is 3 − 2 = 1. (3) Normalize those differences in [0, 1], and ag-
gregate them. We will shortly see two ways of aggregating differences. For the
time being, consider that, in our example, there is only one person who has rated
both B and D, thus only one difference (so no need for any aggregation). Given
that ratings are given in a discrete scale [1, 3], the normalised difference value is
(3−2)/(3−1) = 1/2. Having the aggregated value, we may then say that the big-
ger this is, the less alike B and D perform (the lower relp(B,D)). For this reason,
we define relp(B, D) = 1 − v, where v is the aggregated value. In our example,
we had only one difference so we did not need any aggregation at the third step.
In general, we may have more than one person who has rated both B and D, thus
more than one difference (for example, let us assume we have two normalised dif-
ferences 1/2 and 2/2). In that case, we need to aggregate those differences. The
simplest way to do so is to compute the average difference (in our example, that is
1/2+2/2

2 = 3/4). However, whether the average is any good depends on the num-
ber of the differences across which we average and their variance. The average is
good when there are many differences whose variance is very low. But that is not
necessarily true. Therefore, along the average, we consider a second way of aggre-
gating that accounts for both number of differences and their variance: we compute
the confidence interval of the average (with 95% of confidence) and take one of its
extremes. That way, we allow for a more conservative measure. We will evaluate
which aggregation leads to the highest predictive accuracy in Section 4.1.

– Two relationships in which the same person is rated. A → B and C → B are an
example, as they both rate B. People may differ in the way they rate. We thus have
to compute a judging relation for which, the more alike two raters (A and C) have
judged the same person (B), the higher their relation. We denote this as relg(A,C).
The corresponding weight between the two relationships is

wij = d · relg(A,C), (2)

where d is the weight given to judging relations. To compute relg(A,C), we take
all persons who have been rated by both A and C; for each person, we compute the
difference between A’s and C’s ratings; finally, we aggregate all differences. Again,
we aggregate by computing the average difference and its confidence interval.

3.2 Take Part of the Web of Trust

To propagate its trust for B, A needs to know part of the web of trust. To see which part
is needed, we must consider the two steps through which A propagates its trust for B.
In so doing, we will refer to Fig. 4(a) and consider the following sets: S1, that is, the set

(a) (b)

Fig. 4. (a) A’s partial view of the web of trust. (b) A schematic representation of a relationship
graph. On that graph, our algorithm predicts xi’s rating.

of ratings of the A’s outgoing relationships; S2, that is, the set of ratings of the outgoing
relationships of B’s incoming neighbors.

Step 1. A determines the trust relationships related to A → B. Those relationships
take the form A → X and Y → B (where X and Y are generic persons different
from A and B). To determine those relationships, A needs the ratings of its outgoing
relationships (set S1) plus the ratings of B’s incoming relationships (relationships
in S2 going into B).

Step 2. A determines the extent to which each pair of those edges are related. More
specifically:

– A determines the extent to which any pair of edges A → X and A → B are
related. This requires to quantify the (performing) relation between B and X -
to quantify how alike B and X perform. To do so, A needs the ratings of the
relationships in S2 plus those in S1.

– A determines the extent to which any pair of edges Y → B to A → B are
related. This requires to quantify the (judging) relation between Y and A - to
quantify how alike Y and A rate. Again, to do so, A needs the ratings of the
relationships in S2 plus those in S1.

Overall, to propagate its trust for B, A needs the ratings of the relationships in S1

and in S2. The former are ready available, as we can assume that A stores locally the
ratings it has produced. For the latter, we assume A receives them from B. In fact, those
ratings have been generated by the people who have rated B; therefore, B may have all
the ratings of the relationships in S2, as it has received them from its raters. In general,
we thus assume each user stores the ratings she generates, plus she also receives and
stores the ratings generated by her raters.

3.3 Building the Relationship Graph

At this point, A knows which trust relationships are related to the one that has to be
propagated, and the extent to which they are so; A can then build a relationship graph.
The key idea is to create a graph whose nodes include the trust relationship to be pre-
dicted plus related relationships. Fig. 3(b) shows one such graph whose nodes are:

A → B (trust relationship to be predicted), A → C, A → D, and C → B (related
relationships). Nodes are linked and the label on a link expresses the extent to which
the two linked nodes are related.

The problem can be generalized as follows. There are n trust relationships x1, . . . , xn,
of which r are rated (x1, y1), . . . , (xr, yr) and u are unrated xr+1, . . . , xr+u (an ‘un-
rated’ relationship is a relationship that has no rating on the web of trust). The numerical
ratings are defined as being y1, . . . , yr ∈ L, where L = {l1, . . . , lp} with l1 < . . . < lp.
For example, a system with p = 3 possible rating levels may have L = {1, 2, 3}. Our
problem is now to build a connected graph G = (V, E) with nodes V corresponding to
the n trust relationships. We do so step by step with reference to an example (Fig. 3(b))
and to a general representation (Fig. 4(b)). To understand the rationale behind this con-
struction, we must remember our end goal of finding a predictive function f : V → R
on G capable of assigning ratings to unrated nodes (note that f assigns a real value to a
trust relationship; this value will then be mapped to the nearest discrete rating in L). In
particular, let xi be the trust relationship we wish to predict (e.g., A → B in Fig. 3(b))
among the unrated ones.

– The node xi is connected to its k most related nodes that are rated. We call these
nodes xi’s rated neighbors. Connecting xi to those nodes serves to impose that the
function f rates xi and its rated neighbors alike. Let xj denote one of xi’s rated
neighbors. The weight of the edge between xi and xj is a ·wij . The coefficient a is
the weighting factor for rated neighbors, and wij is determined as per formula (1)
or (2) (depending on whether the relation between xi and xj is performing or judg-
ing relation). For example, in Fig. 3(b), A → B is connected to A → D and to
C → B and the corresponding weights are 0.5 and 1, respectively.

– The node xi is also connected to the k′ most related nodes that are unrated (e.g.,
in Fig. 3(b), A → B is connected to A → C). We call these nodes xi’s unrated
neighbors. Connecting xi to those nodes serves to impose that the function f rates
xi and its unrated neighbors alike. Let xh denote one of those unrated nodes. The
weight of the edge between xh and xi is b · whi. The coefficient b is the weighting
factor for unrated neighbors, and whi is determined as per formula (1) or (2).

– Each rated node xj is connected to an “observed node” (dark circles in both refer-
ence figures) whose value is the rating yj . The observed node is a ‘dongle’ because
it connects only xj . The edge weight is a large number M . Setting M to a large
number serves to pull f(xj) towards the true rating yj (in particular, if M → ∞
then f(xj) = yj). That corresponds to the first condition for choosing an effective
function f (Section 2.3): making the function consistent with existing ratings.

The coefficients in a relationship graph are thus M , a, b, k, and k′. M is set to an
arbitrary large number (106). The remaining coefficients will be set by cross validation
(Section 4.1).

3.4 Finding a predictive function on the graph

Having the relationship graph, A now has to find a function that predicts all unrated
nodes in that graph, including that of interest (e.g., A → B).

Fig. 5. A relationship graph and corresponding matrices. In the relationship graph, there are two
rated nodes x1 : A → D and x2 : C → B; and two unrated nodes x3 : A → C and x4 : A → B.
The prediction algorithm populates the rating matrix y, the diagonal dongle matrix C, and the
weight matrix W̄ . Then, it computes the predictive function f.

Let us formalise the problem and the construction of its solution. We have a graph G
of n nodes xi, i ∈ [1, n], r of which have ratings yi, and the reaming u (xr+1, . . . , xr+u)
are unrated. The set R contains the indices of the rated nodes and U those of unrated
nodes. Our problem is to seek a function f that rates each of the unrated nodes (the
nodes whose indices are in U). Section 2.3 mentioned that to choose a function that
rates effectively, one has to impose that: on input of each rated node in the graph, the
chosen function returns the node’s actual rating (that has been done in the previous
Section 3.3 by setting the coefficient M to a large number); on input of either of two
connected nodes, the chosen function’s outputs do not differ.

The latter condition is equivalent to saying that (refer to Fig. 4(b)): for any pair of
related nodes xi and xj , the difference of their ratings f(xi) and f(xj) should be mini-
mum. In other words, (f(xi)−f(xj))2 should be minimum. This expression represents
the rating difference over one edge. One may compute the difference over the graph by
summing the rating differences of all edges. We denote this difference as L(f) and
compute it in Appendix A. We will see that such a difference depends on the chosen
function f . Our problem is to find the function f for which the difference over the graph
is minimum. We tackle this problem by analytically solving the optimization problem
minfL(f) in Appendix A. From that solution, we now propose an algorithm that solves
the optimization problem in terms of matrix multiplications (refer to Fig. 5).

1. Populate 3 matrices:

– The rating matrix y = (y1, . . . , yr, 0, . . . , 0)>. This is an n × 1 matrix whose
first r rows contain the ratings of the rated nodes, and any remaining row con-
tains zero. For example, Fig. 5 shows a relationship graph and the correspond-
ing rating matrix.

– The diagonal dongle weight matrix C. The elements that correspond to rated
nodes contain M (otherwise 0):

Cii =
{

M, i ∈ R
0, i ∈ U

In Fig. 5, the first two nodes are rated.

– The n× n weight matrix W̄ :

W̄ij =

0, i ∈ R
awij , j ∈ RN(i)
bwij , j ∈ UN(i)

R: set of indices of rated nodes;
U : set of indices of unrated nodes;
RN(i): set of indices of i’s rated neighbors;
UN(i): set of indices of i’s unrated neighbors.

2. Compute: the symmetrized version of W̄ : W = max(W̄ , W̄>); the diagonal de-
gree matrix Dii =

∑n
j=1 Wij (we consider a node’s degree to be the sum of its

edge weights); and the combinatorial Laplacian matrix L = D −W .

3. Finally, compute f =
(
C + L

)−1

Cy. This has the form f = (f(x1), . . . , f(xn))>,
and its last u elements are the predicted ratings for the nodes in U . Appendix A
shows that the so computed f minimizes the rating difference over the relationship
graph. For example, in the relationship graph of Fig. 5, A → B’s rating is predicted
to be f4 = 2.7.

That concludes the description of our model. In the next section, we turn to evalu-
ating it.

4 Evaluation

The goal of our algorithm is to predict trust ratings on portable devices. To ascertain the
effectiveness of our algorithm at meeting this goal, our evaluation ought to answer at
least three questions: (1) (Predictive Accuracy) How accurate is our algorithm in pre-
dicting trust ratings? (2) (Prediction Robustness) What is the impact of uncooperative
users upon the algorithm’s accuracy? (3) (Overheads) What time, storage, and commu-
nication overheads does our algorithm impose on a mobile phone?

To see whether our algorithm effectively predicts trust and whether it is usable on
portable devices, we need a large-scale deployment. Only so can we separate statistical
significant answers from plausible insights gained by a small-scale deployment. Plus,
a deployment needs to be evaluated in the long-term to see whether our algorithm is
robust against, for example, uncooperative users.

Unfortunately, we do not have a long-term evaluation of a large-scale ubicomp de-
ployment. We do, however, have a large rating data set that has been around for more
than a decade. Using this data set (described next), we evaluate whether our algorithm
is effective in predicting real trust ratings (Section 4.1). Then, to evaluate how robust
our algorithm is, we emulate how users may rationally turn to be uncooperative (Sec-
tion 4.2). Finally, we implement our algorithm to assess whether it is usable on a stan-
dard mobile phone (Section 4.3).

Factor Description Tuning Range
fr = k

|R| Fraction of rated nodes used as neighbors. {0.05, 0.1, 0.15, 0.2, 0.3 }
fu = k′

|U| Fraction of unrated nodes used as neighbors. {0.1, 0.15, 0.2, 0.25, 0.3}
β = b

a
Relative weight between rated and unrated nodes. {10−3, 10−2, 10−1, 1, 10}

γ = d
c

Relative weight between judging and performing relations. {10−3, 10−2, 10−1, 1, 10}
α How to compute rel(A, B), i.e., the extent to which A and B

perform or judge alike.
Two ways: average difference
or confidence interval

Table 1. Parameters of our prediction algorithm. To find the optimal values, we tune the parame-
ters in the reported ranges.

Advogato data set. Advogato is a community discussion board for free software de-
velopers. Using the Advogato’s trust metric [20], each user has a single (global) trust
value computed by composing other users ratings. There are three possible ratings: ap-
prentice, journeyer, and master. Global trust is used to control access to the discussion
board: ‘apprentices’ can only post comments, whereas ‘journeyers’ and ‘masters’ are
able to post both stories and comments. Our data set consists of 7328 users.

4.1 Predictive Accuracy

We evaluate the predictive accuracy of our algorithm by using leave-one-out cross val-
idation.

Validation Execution. The cross validation unfolds as follows. We take Advogato’s
web of trust. We mask one trust relationship and then predict the relationship’s rating
in four different ways. We repeat this on 4000 relationships chosen at random. In doing
this, we measure the predictive accuracy, i.e., the fraction of correct predictions.

The four ways of predicting the rating of a masked relationship A → B that we
have compared are: naive prediction (random guess); median of ratings about B; direct
trust propagation (as described in Section 2.2); and our algorithm.

Our propagation algorithm has five parameters. We tune each parameter in the range
shown in Table 1. This leads to 1250 possible combinations. For each combination, we
compute the predictive accuracy. We then choose the optimal parameters that corre-
spond to the combination for which the accuracy is highest.

Validation Results. For our algorithm, we first computed the optimal parameters as
described above: they turn out to be γ = 1, α =“confidence interval”, fr = 0.1,
fu = 0.2, and β = 0.1. We expect that these values will apply in other domains; that
is because they informally specify reasonable and intuitive choices. More specifically,
they indicate that to predict the rating of a trust relationship, the learning algorithm has:
to consider relevant those relationships that include people who perform or rate alike
(γ = 1); to estimate relevance by aggregating ratings using the confidence interval of
their average (α =“confidence interval”); to consider a small fraction of those relevant
relationships (fr = 0.1, fu = 0.2); to weight the actual ratings more than the ratings

(a)

(b)

Fig. 6. (a) Predictive accuracy of four algorithms. (b) Fraction of unknown predictions as a func-
tion of uncooperative users (users who are not willing to make their ratings available).

it predicts during the learning process (β = 0.1). During our experiments, we also
learned that the maximum number of nodes in a relationship graph that corresponds
to the optimal parameters k and k′ is 20. In other words, a relationship graph should
contain at most 20 edges.

Having completed this preliminary analysis, and having thus defined the optimal
values of our model parameters, the next question is: how would the predictive accu-
racy of our algorithm compare to that of any of the algorithms previously mentioned.
Fig. 6(a) shows that direct trust propagation performs better than naive prediction, but
is comparable to a median of ratings. It also shows that our algorithm’s accuracy is as
high as 82.9%. In all cases in which our algorithm failed to predict (17.1%), the actual
rating and the predicted rating differed by one only (with L = {1, 2, 3}).

4.2 Prediction Robustness

All trust propagation techniques rely on knowing ratings. In ubicomp, this translates
into users making available their ratings. For privacy reasons, some users may well
decide not to do so. Being this plausible, we now evaluate how our algorithm would
cope if different fractions of users did not disclose their ratings. Again, we measure
predictive accuracy by cross validation: we mask one trust relationship and then predict

its rating; we do so for 4000 relationships randomly chosen among those linking any
pair of cooperative users. We do so because we consider that users willing to be subject
to prediction are also willing to make their ratings available.

Fig. 6(b) shows the fraction of predictions for which a relationship graph is not
defined (percentage of unknown predictions) as a function of the fraction of uncooper-
ative users. If at most 60% of the users are not willing to make their ratings available,
the remaining users can still propagate their trust, and they do so with a high predictive
accuracy (82.9%). However, as Fig. 6(b) shows, if the number of uncooperative users
reaches a critical point (if it is higher than 60%), the remaining users are abruptly un-
able to form a relationship graph. In other words, if at least 40% of the users make their
ratings available, those users can still effectively propagate trust. For one possible ex-
planation of this result, consider that the web of trust is a social network and that social
networks are robust because they are scale-free. Albert et al. [3] studied the fraction of
nodes that must be removed at random from a scale-free network to break it into pieces:
they “removed as many as 80% of all nodes and the remaining 20% still hung together,
forming a highly interlinked cluster” [4].

4.3 Overheads

Communication and Storage Overheads. Both communication and storage over-
heads are minimal. As described in Section 3.2, any device stores the ratings of its
outgoing relationships plus those of its incoming neighbors in a table. Each tuple of
this table corresponds to a trust relationship, i.e., to two identifiers (of the connected
persons) and one rating. Hence, say that the size of a tuple is roughly 10B. Even with
50 incoming and 50 outgoing edges (which is pessimistically high), the table size is
30KB. Also, for a single trust propagation, the data to be sent is less than 30KB.

Computational Overhead. We ran a J2ME implementation of our algorithm on a
Nokia 3230 mobile phone whose features include: Symbian operating system 7.0, 32
MB of memory, 32-bit RISC CPU (123 MHz). In Section 4.1, we evaluated that a
relationship graph should contain 20 nodes at most. We run our algorithm in this worst
case scenario. We minimized background activities by shutting down all applications
other than our algorithm. The computation overhead, given as the mean of 10 runs, is
as low as 2.8 milliseconds.

5 Discussion

Based on the previous results, we now discuss some open questions.
Privacy Concerns. By exchanging their web of trust, users reveal their social ties

(people with whom they have interacted), and some users may not feel comfortable do-
ing so for privacy concerns. Our design alleviates these concerns for two reasons. First,
users are identified by anonymous tokens. Second, one inherent property of distributed
trust propagation is that users’ ratings are not made available on public servers, but each
user discloses her ratings only to the users she trusts. Moreover, during our evaluation,

we found that if at least 40% of the users make available their ratings, those users can
still propagate their trust without relying on any other user (Section 4.2).

Sybil Users. Given that users’ identifiers correspond to anonymous tokens, one may
rightly point out that user-token bindings need to be certified to avoid sybil attacks [10],
in which a malicious user takes on multiple identities and pretends to be multiple, dis-
tinct users. In ubicomp, user-token bindings cannot be certified by a central author-
ity. However, those bindings may be statistically guaranteed by mechanisms similar to
SybilGuard [28]. If those mechanisms will prove ineffective, one might be interested in
knowing whether our model is robust against sybil attacks. We evaluate the predictive
accuracy of our algorithm as follows: we mask one trust relationship A → B; we create
n sybil identities who highly rate B; we then predict A → B’s rating. We do so for 4000
randomly chosen trust relationships. Regardless of n, the prediction accuracy remains
unchanged (82.9%). The reason for this result is that sybil users are not connected in
the same way as real users are and, as a consequence, their ratings do not influence trust
propagation.

Distrust. Previous work has shown that introducing distrust may be beneficial to
trust propagation [14]. Despite not explicitly modeling distrust, we may introduce it by
simply adding an additional rating level. For example, if we have 3 possible ratings, we
may simply add a fourth rating representing distrust.

Dynamic Ratings. Since ratings may change over time, we have allowed for rating
tables to be updated either reactively or proactively and the storage and communication
overheads of doing so are minimal (Section 4.3).

6 Conclusion

We proposed a model that makes it possible for ubicomp users to predict their trust
for content producers from whom they have never received content before. The model
scales (it entails minimal storage and communication overhead) and is effective (its
predictive accuracy on a large data set is as high as 82.9%). That accuracy remains
unchanged even if most of the users were not to make available their ratings. The model
also runs seamlessly on portable devices (a J2ME implementation spends at most 2.8ms
for one propagation on a Nokia phone). To further evaluate our model, we are currently
designing controlled experiments to be run in a large-scale deployment.

References

1. http://www.epinions.com/.
2. A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual Communities. In Proc. of

the 33rd IEEE Hawaii International Conference on System Sciences, volume 6, page 6007,
Washington, USA, January 2000.

3. R. Albert, H. Jeong, and A. L. Barabasi. Error and attack tolerance of complex networks.
Nature, 406(6794):378–382, July 2000.

4. A. L. Barabasi. Linked: How Everything Is Connected to Everything Else and What It Means.
Penguin, 2003.

5. S. Buchegger and J.-Y. L. Boudec. A robust reputation system for P2P and mobile ad-
hoc networks. In Proc. of the 2nd Workshop on the Economics of Peer-to-Peer Systems,
Cambridge, USA, June 2004.

6. J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivas-
tava. Participatory sensing. In Proc. of the ast ACM Workshop on World Sensor Web (ACM
Sensys), pages 117–134, Boulder, USA, October 2006.

7. I. Calvino. Six Memos for the Next Millennium. Harvad University Press, 1996.
8. T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press, 2001.
9. M. Dell’Amico. Neighbourhood Maps: Decentralised Ranking in Small-World P2P Net-

works. In Proc. of the 3rd International Workshop on Hot Topics in Peer-to-Peer Systems,
Rhodes Island, Greece, April 2006.

10. J. R. Douceur. The Sybil Attack. In Proc. of the 1st International Workshop on Peer-to-Peer
Systems, pages 251–260, Cambridge, USA, 2002.

11. D. Gambetta. Can we trust trust? In D. Gambetta, editor, Trust, Making and Breaking
Cooperative Relations, pages 213–237, 1998.

12. J. Golbeck, B. Parsia, and J. Hendler. Trust Networks on the Semantic Web. In Proc. of
the International Conference on Cooperative Intelligent Agents (CoopIS), Helsinki, Finland,
August 2003.

13. A. Goldberg and X. Zhu. Seeing stars when there aren’t many stars: Graph-based semi-
supervised learning for sentiment categorization. In Proc. of the International Workshop on
Graph-based Algorithms for Natural Language Processing, New York, USA, June 2006.

14. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In
Proceedings of the 13th International Conference on World Wide Web, pages 403–412, New
York, USA, May 2004.

15. M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In Proc. of the 22nd

International Conference on Machine Learning (ICML), Bonn, Germany, August 2005.
16. A. Josang. The right type of trust for distributed systems. In Proc. of the ACM Workshop on

New Security Paradigms, Lake Arrowhead, USA, September 1996.
17. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm for reputa-

tion management in P2P networks. In Proc. of the 12th ACM International Conference on
World Wide Web (WWW), pages 640–651, Budapest, Hungary, May 2003.

18. G. Lane. Urban Tapestries: Wireless networking, public authoring and social knowledge.
Personal Ubiquitous Computing Journal, 7(3-4):169–175, 2003.

19. M. Langheinrich. When Trust Does Not Compute – The Role of Trust in Ubiquitous Com-
puting. In Proc. of the 1st International Workshop on Privacy (at Ubicomp), Seattle, USA,
October 2003. LNCS.

20. R. Levien and A. Aiken. Attack-resistant trust metrics for public key certification. In Proc.
of the 7th USENIX Security Symposium, pages 229–241, Berkeley, USA, January 1998.

21. S. Marsh. Formalising Trust as a Computational Concept. Ph.D. Thesis. Department of
Mathematics and Computer Science, University of Stirling, 1994.

22. P. Massa and P. Avesani. Trust-aware Collaborative Filtering for Recommender Systems. In
Proc. of the International Conference on Cooperative Information Systems (CoopIS), Lar-
naca, Cyprus, October 2004.

23. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing
Order to the Web. Technical report, Stanford University Technical Report, 1998.

24. H. Rheingold. Smart Mobs: The Next Social Revolution. Perseus Books Group, 2002.
25. M. Richardson, R. Agrawal, and P. Domingos. Trust Management for the Semantic Web.

In Proc. of the 2nd International Semantic Web Conference, Sanibel Island, USA, October
2003.

26. Y. Rogers. Moving on from weiser’s vision of calm computing: Engaging ubicomp ex-
periences. In Proc. of the 6th International Conference on Ubiquitous Computing, pages
404–421, Orange County, USA, September 2006. LNCS.

27. D. Tapscott and A. D. Williams. Wikinomics: How Mass Collaboration Changes Everything.
Portfolio, Penguin, 2006.

28. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. SybilGuard: defending against sybil
attacks via social networks. In Proc. of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pages 267–278,
Pisa, Italy, May 2006.

29. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In Proc. of the 20th International Conference on Machine Learning
(ICML), Washington, USA, August 2003.

30. C.-N. Ziegler and G. Lausen. Spreading activation models for trust propagation. In Proc.
of the IEEE Conference on e-Technology, e-Commerce and e-Service (EEE), pages 83–97,
Taipei, Taiwan, March 2004.

Appendix A

Given the graph described in Section 2 and showed in Fig. 4(b), the loss L(f) over the
whole graph is

L(f) =
∑

j∈R

M · (f(xj)− yj)2 +
∑

i∈U

∑

j∈RN(i)

a · wij · (f(xi)− f(xi))2 +

+
∑

i∈U

∑

h∈UN(i)

b · whi · (f(xh)− f(xi))2. (3)

where:
R: set of indices of rated nodes;
U : set of indices of unrated nodes;
RN(i): set of indices of i’s rated neighbors;
UN(i): set of indices of i’s unrated neighbors.

Expression (3) can be written as:

L(f) = (f− y)>C(f− y) + f>Lf (4)

Being C and L symmetric, the gradient is:

δL(f)
δf

= 2C(f− y) + 2Lf. (5)

To solve the optimization problem minfL(f), we set the gradient to zero, δL(f)

δf = 0,
and obtain:

f =
(
C + L

)−1

Cy (6)

