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Abstract
Opportunistic networking protocols have recently started
to emerge in different contexts, ranging from vehicular
communications and remote populations connectivity to
wildlife monitoring. These protocols are mainly based on
the ability to exploit asynchronous communication among
hosts who can act as carriers for the messages which are
first stored and transported, and then delivered when the
destination is reached. At the heart of these protocols is
the concept of hosts colocation and connectivity patterns.
Often, however, the protocols are evaluated using mobility
models which tend not to mirror the connectivity patterns
of the domain in which the protocol needs to be applied,
failing to give insight into the performance of the protocols
in realistic settings.

In this paper we propose a different approach: based on
the assumption that opportunistic networking protocols are
based on colocation (and connectivity), we present a model
for connectivity patterns, which can be extracted from real
data. To validate our approach, we show how we used
the Dartmouth Campus traces as one of the inputs of our
framework to generate connectivity traces with a similar be-
haviour.

1 Introduction
The recent years have seen a growing interest towards op-
portunistic networking protocols [7]. The applications of
these protocols range from pure delay tolerant network-
ing scenarios for the provision of connectivity in presence
of intermittent disconnections or network partitions [24],
to information dissemination algorithms for specific sce-
narios, including vehicular ones [4] and wildlife monitor-
ing [16]. At the heart of many of these protocols is the idea
that hosts colocation1 can be exploited to transfer messages
from senders to intermediate nodes, such as mobile carri-
ers, and then, from carriers to final receivers, possibly with
some delay. Therefore, connectivity, more than mobility,
is one of the pre-eminent aspects to be considered in the

1For the purposes of this work, we speak indistinctly of colocation,
contact and connectivity, as they are equivalent in our model.

design and performance evaluation studies of this class of
systems and protocols2.

Existing mobility models generate random movement
traces like the Random Way Point model [11], with no
insight into realistic connectivity patterns. However, there
is a stringent need of more realistic and sound connectivity
patterns for testing mobile systems in the community: for
this reason, many research groups have started projects
with the aim of collecting traces for different application
scenarios, including students patterns in campuses [8, 27],
people attending conferences [10] and cities and streets
circulation [22]. Repositories have also been created to col-
lect all these measurements (e.g., CRAWDAD Project [12]
at Dartmouth College).

No matter how many traces can be collected, this will al-
ways look like a small amount, in many case insufficient,
with respect to the variation needed for a thorough analy-
sis of the performance of a system. In addition, a sensi-
tivity analysis simply cannot be performed using a single
set of traces. A number of pioneering works [1, 2, 8, 28]
have studied traces in order to gain a better understanding
of the real mobility patterns. A key study in this area is
the work on connectivity patterns presented by Chaintreau
et alii in [6] which illustrates the fundamental insight that
contacts duration and inter-contacts time between individ-
uals are distributed according to power-law distributions3

and that these patterns may be used to develop more effi-
cient opportunistic protocols.

What we have seen until now is that traces are gener-
ally used a posteriori to validate the model and not for a
priori study of the connectivity properties. For example in
a previous work [21], we developed a model based on so-
cial networks able to reproduce patterns observable in real
traces, especially in terms of colocation duration and inter-

2Clearly, mobility models generating geographical coordinates are nec-
essary to test location-based systems and geo-routing protocols.

3Power-law distributions are characterised by the following form:

P (x) = x−k

with k ≥ 0.
A power-law distribution is also called scale-free since it remains un-

changed to within a multiplicative factor under a re-scaling of the indepen-
dent variable x [23].
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contacts time. However, the real traces are used to validate
emergent properties of the synthetic movements and not as
input of the model itself. Many research projects focused on
the problem of studying the transition between different ge-
ographical areas like the models presented in [14,29]. Yoon
et alii [31] presented a model extracted from real traces
of probability of transitions between locations of the Dart-
mouth College campus. Connectivity patterns are, again,
emergent properties of the model, rather than inputs of the
simulation. Moreover, the evaluation of the model is based
on the matching of the geographical movements and den-
sity of users, rather than on the analysis of the patterns of
the hosts connectivity.

In this paper we present a novel model of connectivity.
This mathematical model is then used to build a trace gen-
erator for the analysis and design of opportunistic systems.
Probability distributions describing the patterns of coloca-
tion of mobile users are exploited for the first time as di-
rect inputs of the generator. The distribution of the average
number of people that an individual meets during a certain
period of time (e.g., a day) is also an input of the model. All
these distributions can be extracted by measurement of con-
nectivity on real traces, or can be defined by researchers to
study interesting or limit cases (e.g., scenarios characterised
by long disconnections).

In addition to these contributions we note that, despite
the model having been applied to human contacts, it is gen-
eral enough to be applied beyond human patterns. Wildlife
traces could be incorporated in the model, once their gen-
eral distributions are studied and understood. We expect
that, for some animals, the complete approach presented in
this paper would be applicable out of the box, while for
some others, e.g., for animal moving in large groups, differ-
ent connectivity distributions need to be used.

The rest of the paper is organised as follows: Section 2
contains a brief description of the key steps of our approach.
Section 3 describes the connectivity model; Section 4 illus-
trates the application of the model to the Dartmouth traces;
Section 5 shows how we automatically generate synthetic
connectivity traces which mirror the connectivity patterns
of the original traces. Section 6 contains a comparison of
our work with the state of the art in this research area, dis-
cussing the main contribution of this work and its possible
applications. Finally, Section 7 concludes the paper, illus-
trating possible future work.

2 The Approach at a Glance
In this section we briefly outline the various steps of our
approach.

• Connectivity Model. We have firstly defined and
studied a mathematical model of host connectivity.
This aims at representing the properties of the colo-

cation of two users as a function of the probability
for a user of being at a certain place for a given time.
We will refer to this duration as residence time in the
reminder of this paper. The model is described in
Section 3.

• Derivation of Connectivity Distributions from Real
Traces. In order to determine the inputs of the model
we have studied the log session traces of the campus
WLAN of Dartmouth College [13], to obtain empir-
ical distributions for residence time, colocation (i.e.,
contact time) and other variables. The traces were col-
lected by researchers at Dartmouth College from April
2001 to June 2004. The network is composed of 450
access points over an area of about 200 acres. The total
number of users logged in these traces is 13889. We
have used the measured distributions in the connec-
tivity model to determine the relationship between the
distribution of user residence time and user colocation.
This analysis is presented in Section 4.

• Synthetic Trace Generation. Once the analysis of the
real traces is completed we have all the necessary in-
formation to start the process of generating synthetic
traces. More specifically, we use the parameters of the
contacts duration and inter-contact time and the graph
of human contacts, which are extracted from the traces,
to generate the synthetic traces.

The process of generation is based on the selection of
the desired number of hosts for the synthetic traces and
on the construction of a connectivity graph of all the
potential contacts of each host. In other words, we map
each host to a node of the graph and we link a pair of
nodes with an edge if the two hosts have a potential of
becoming in contact: the distribution of all potential
contacts is another input of the model and is also ex-
tracted from the traces. The connectivity graph is then
used to unfold a number of connection links between
users for each time instant. In other words, we use the
connectivity graph as a basis for a time-varying graph
of instant connectivity for each instant t. In this time-
varying graph, each link is either active if the two hosts
are colocated, or is not present if the two are not.

A description of our implementation is presented in
Section 5.

A possible objection to our approach is that the traces we
have used are collected from an infrastructure-based net-
work and not by pure connectivity-oriented technologies
such as Bluetooth or 802.11 ad hoc. In response to this,
we notice that our analysis is perfectly valid on both types
of traces as we only use information related to the simul-
taneous presence of two hosts in the same location. In
our analysis, we assume that colocation implies connectiv-
ity. We have used these traces simply because they were
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many and very complete, but the model is totally indepen-
dent from which traces are chosen. In addition, we note
that all the available human traces show the same kind of
distributions [6, 10, 19, 27].

3 The Connectivity Model
In this section we present the details of a methodology to
compute the probability distribution of colocation (i.e., con-
nectivity) times between two users, starting from a minimal
data set (see below). The definition of our model is based
on some simplifying assumptions:

• users’ behaviours are independent; this means that we
assume the behaviour of a user does not depend on
other users’ behaviours.

• users’ behaviours are uniform: all users have the same
behaviour.

These assumptions are sufficient to capture the real con-
nectivity patterns with great accuracy (see Section 5). A
refined model could take into account users’ degree of cor-
relation in order to model non-uniform or non-independent
users’ behaviour.

We denote with X and Y two random variables for the
duration of the sessions of two generic users a and b, re-
spectively. The probability that a user a will remain in a
given location for a time t (i.e., the residence time) is given,
under our assumptions, by a probability density function
pX(t); all users’ behaviour is described by the same distri-
bution pX(t). pX(t) is interpreted as the probability that
the residence time will last t seconds.

In addition to the distribution pX(t), we assume that a
probability density function pR(t) is available, representing
the probability that the temporal distance between the be-
ginning of two sessions of two colocated users is t (see Fig-
ure 1: t represents the “delay” of one session with respect
to another).

Our aim is to compute a probability density function
pC(t), representing the probability that the colocation (i.e.,
contact) between any two users a and b lasts t. Without loss
of generality, we assume that a’s session starts before b’s
session (the other case is symmetrical). If a and b are colo-
cated (i.e., in contact), then only two cases can occur (see
Figure 1):

1) b starts with a delay R and terminates after a (i.e., the
two sessions overlap),

2) b starts with a delay R and terminates before a (i.e., b’s
session is contained in a’s session).

The probability of occurrence of case 1) is given by the
probability that Y is more than X − R, which we write as
p(Y > X−R). Analogously, the probability of occurrence
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Figure 1: Connectivity cases.

of case 2) is given by the probability that Y is less than
X − R, written as p(Y ≤ X − R). Overall, case 1) and 2)
contribute to pC(t) as follows:

pC(t) = p(Y > X −R)pX−R(t) + p(Y ≤ X −R)pY (t)
(1)

where pX−R(t) represents the probability that X −R lasts
t. As mentioned above, under our assumptions users are
characterised by the same behaviour, therefore, for all t, we
have pX(t) = pY (t), and X and R are two independent
random variables; thus, we can write

pX−R(t) =

+∞∫
0

pX(t + r)pR(r)dr (2)

Intuitively, Equation (2) states that X −R lasts t if X lasts
t+r and R lasts r, integrated over all possible delays r from
0 to +∞.

We evaluate now the term p(Y > X−R) = p(X−R <
Y ). Notice that this is a number and represents the weight
of pX−R in Equation (1). For a fixed y, we have

p(X −R < y) =

y∫
0

pX−R(k)dk (3)

and therefore

p(X −R < Y ) =

+∞∫
0

 y∫
0

pX−R(k)dk

 dy (4)

Taking into account Equations (1) and (2), we can rewrite
pC(t) in terms of the known functions pX(t) and pR(t), as
follows:

pC(t) = χ

+∞∫
0

pX(t + r)pR(r)dr + (1− χ)pX(t) (5)
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Figure 2: Distribution of residence time in Academic Build-
ing 22, log-log scale (all users over 4 years).

where χ = p(X −R < Y ) is defined by Equation (4).
To summarise, we have obtained a formula that allows

us to calculate the probability distribution of the colocation
(i.e., contact) duration of users in a place as a function of
their residence time in that location and the arrival delay.
We provide a concrete example of the computation of these
functions in the next section, where we instantiate all the
parameters using data obtained from real traces for human
connectivity.

4 Computing the connectivity distri-
bution from real traces

In the next subsection we analyse traces from [13] to de-
rive pX(t) and pR(t). In Section 4.2 we compute pC(t) us-
ing the process presented above; in Section 4.3 we compare
the computed pC(t) with the observed values of colocation
from the real traces. We note that our purpose is the gen-
eration of traces with probabilities similar to the average
probabilities over the Datmouth traces across the whole pe-
riod of time. A similar approach can however be applied for
the generation of traces of just a specific month period (e.g.,
April).

4.1 Analysis of real traces
We consider a selection of traces from [13], from
01/04/2001 until 30/06/2004. These traces record connec-
tions and disconnections of users at a number of access
points in the Dartmouth campus; in particular, the data
available include MAC addresses, locations of access,
and timestamps. In the traces analysed we found 13889
different users and 178 different locations.

As an example, Figure 2 reports the cumulative distribu-
tion of residence times for all users in Academic Building
22 in a log-log scale. For any given duration t, the value

on the y axis gives the probability that the session of a user
lasts t or more seconds.

As previously observed in a number of works (see for in-
stance [6]), the distribution of the residence time at a given
access point follows a power law in a range of values4, de-
noted by [tmin, tmax] in our paper (points between the ver-
tical bars x = tmin and x = tmax in Figure 2). In the traces
analysed we found tmin = 60 and tmax = 13397. Figure 2
also reports the interpolated curve to obtain the coefficient
for the cumulative distribution PX(t), from which the ac-
tual coefficient kX of pX(t) can be computed (see the the
straight line in Figure 2).

For the purposes of our automatic trace generation (see
Section 5), we extract another parameter: the distribution
of the time elapsed between two contacts of the same pair
of users. This is called the inter-contact time and its dis-
tribution is denoted by pIC(t). We proceeded similarly to
PX(t) and, as expected [6], we found a power law distri-
bution with coefficient kIC . Analogously, we evaluated the
distribution pR(t) and we found a power law distribution
with coefficient kR. The interpolated coefficients for the
sample location are: −kX = −1.448, −kIC = −1.745,
and −kR = −1.062. Due to space limitations, we do not
include graphs and coefficients for all locations; these are
available from the authors upon request.

4.2 Computing the probability distribution
for colocation

We now compute pC(t) using the model presented in Sec-
tion 3, in terms of its cumulation PC(t). We start from the
distributions PX(t) and PR(t) obtained in the previous sec-
tion and we compute a (theoretical) PC(t), as defined by
Equation (5); finally, we compare this distribution with the
experimental results obtained.

We assume that PX(t) and PR(t) are defined in the range
(tmin, tmax) by the following power law distributions:

PX(t) = t−kX

PR(t) = t−kR

We substitute these distributions in Equation (2) to obtain

PX−R(t) =

tmax∫
tmin

(t + r)−kX r−kRdr (6)

Equation (6) can be resolved analytically using, for in-
stance, the software tool Mathematica, obtaining

PX−R(t) ≈
(
− r−kR(t + r)−(kX+1)

(r

t
+ 1

)kX+1

·(7)

·2F1

(
−kR, kX + 1, 1− kR,−r

t

) )
|r=tmax
r=60

4Notice that if a probability density function is a power law of the form
f(x) = x−α, then its cumulative distribution is a power law with coeffi-
cient −(α− 1).
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Figure 3: Distribution of colocation time in Academic
Building 22, log-log scale (all users over 4 years).

where 2F1 is the hyper-geometric function. Using the rep-
resentation of 2F1 in terms of a convergent series (see Ap-
pendix A), we can evaluate the behaviour of the previous
integral, namely

PX−R(t) ≈ O(t−1)|r=tmax
r=60 . (8)

Mathematica can be used to compute the exact value of
χ, as defined in Equation (4). This value, together with
the result of Equation (8), imply that Equation (5) can be
approximated by

pC(t) ≈ χO(t−1) + (1− χ)t−kX ≈ t−kX (9)

for our values of kX and for values of t greater than 1
second (which is clearly the case in our scenario where
tmin = 60).

Therefore, by using the distributions pX(t) and pR(t)
from [13], our theoretical model forecasts a distribution of
the colocation with the same behaviour of pX(t). Notice,
however, that this particular result only applies to power law
distributions whose coefficient are within a specific range
of values, as in the case of the traces analysed here. In the
generic case, it might be that the distribution of colocation
follows a distribution different from pX(t). Nevertheless,
in this scenario, our result is validated by the analysis of the
traces, as described in the next section.

4.3 Colocation results from real traces
We then computed the actual distribution of colocation time
for two generic users. The distribution pC(t) of the duration
of colocation obtained form the traces follows a power law.
As in Section 4.1, we interpolate the distribution to obtain
the coefficient of the power law. An example location is
reported in Figure 3. The coefficients for the location de-
scribed (Academic building 22) is −kC = −1.551 and the
average coefficient over all locations is −kC = −1.327

Since the results presented above are averaged over four
years, we repeated the process of computing pC(t) but for a
time window of 8 hours only (from 9am to 5pm), averaged
over a period of one month in the middle of an academic
term (from 19/04/2004 to 19/04/2004). We performed these
measures to rule out the possibility that, at a smaller time
scale, the behaviour of the distribution of colocation could
be different.

Additionally, we interpolated the distribution of inter-
contact time for the same time windows, and, again, we
obtained a power law. The interpolated values for coloca-
tion and inter-contact coefficients for Academic Building
18 are −kC = −1.430 and −kIC = −1.420

5 Synthetic Trace Generation

We now show how the connectivity model presented
in Section 3 can be used to implement a generic trace
generator able to produce traces characterised by given
connectivity properties and network of potential contacts.
The traces generated by our tool abstract away from spatial
movements and only concentrate on connectivity and
inter-contact times: in this sense, the tool differs from
generators like the setdest tool (which implements the
Random Way Point mobility model for ns-2 [18]).

The basic idea is to allow the generation of traces of
arbitrary time length with connectivity patterns mirroring
the ones of the original traces (in our specific example, the
Dartmouth traces) and involving a user-defined number of
nodes. Below, we give an example of trace generation. In
Figures 4, 5, and 6 we show how this mirrors the various
patterns of the original traces.

Figure 4: Comparison between synthetic trace (lighter) and
real power-law distribution using Dartmouth potential con-
tact coefficient (darker).
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5.1 Generation of the Potential Contacts
Graph

The first step is the generation of the Potential Contacts
Graph. Let us assume that we want to generate traces for a
simulation time of 8 hours and for 200 users, mirroring the
behaviour of Dartmouth traces in the period 19 April to 19
May 2004, a period without holiday days, considering the
hours from 9am to 5pm. Each of the 200 hosts is mapped
to a vertex of this graph. An edge between two vertexes
exists if a potential contact is possible during the total de-
sired simulation time. This means that, in the case of our
example, an edge between two vertexes A and B exists if
and only if the individuals have a chance of being colocated
at least once during the period of the eight hours.

In the real traces for the period considered, we found
1892 users and a maximum number of potential contacts for
an individual equal to 42 (i.e., the individual with the max-
imum number of potential contacts had 42 contacts). The
distribution of the number of contacts is the distribution of
the degrees of the vertexes in the Potential Contact Graph.
In order to calculate that in an appropriate manner, we have
interpolated the distribution of the degrees for the traces,
and obtained a power law in the range up to 42 individu-
als. We denote this distribution by ppc(n) = n−kpc : ppc(n)
gives the probability that a node has degree n. The mea-
sured value for −kpc is −1.484. In order to be able to gen-
erate traces with similar patterns, which may be used in the
evaluation of opportunistic protocols, we need to obtain a
distribution for the 200 users, instead of 1892. This is done
through geometric similarity over the frequency graph of
the degrees of vertexes. Intuitively, the maximum number
of contacts scales up or down proportionally to the square
root of the ratio of the total number of vertexes in the graph.
Thus, the maximum number of contacts for a single user
when 200 users are present is computed to be 13, and we
take the same coefficient for the power law distribution.
This enable us to generate a sequence of random degrees
following the desired distribution.

We have implemented a procedure to generate a graph
given its number of vertexes and their degree distribution,
within a certain approximation. Intuitively, the procedures
non-deterministically tries to build a graph with the desired
properties, and iteratively refines the solution up to the de-
sired approximation level. We set the approximation to in
the range [2.5%, 4%] depending on the connectivity coeffi-
cients of the graph (with a higher connectivity we selected
a larger margin of error). Figure 4 shows a comparison be-
tween the theoretical degree distribution (dark line) and the
generated degree distribution using our tool (lighter marks).

Figure 5: Comparison between synthetic trace (lighter) and
real power-law distribution using Dartmouth colocation co-
efficient (darker).

Figure 6: Comparison between synthetic trace (lighter) and
real power-law distribution using Dartmouth inter-contact
coefficient (darker).

5.2 Generation of the Instant Snapshot Con-
tact Graphs

Once the potential contact graph is generated, the actual
connectivity traces can be produced as a sequence of in-
stant snapshot contact graphs, one for each instant of time.
A connectivity graph for time t represents the network of
connected vertexes at time t. The instant snapshot con-
tact graphs are generated as follows: The first connectivity
graph is generated from the potential contact graph assum-
ing that each potential edge is non active (i.e., no vertexes
are connected and the edge is in an “off” state). Then, the
distribution of inter-contact times pIC(t) is used to assign
a duration to the “off” time of each edge. When this time
has elapsed, the distribution of connectivity time pC(t) is
used to assign a duration to the “on” time of each edge.
Thus, for each edge there is a sequence of durations off/on,
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distributed following pIC(t) and pC(t). A sequence of in-
stant snapshot contact graphs is obtained by looking at each
edge. Finally, the instant snapshot contact graphs are appro-
priately parsed to generate input traces for Omnet++.This
last step provides the desired synthetic traces following the
input distributions ppc(t), pC(t), and pIC(t).

Figure 5 and 6 show a comparison between the cu-
mulative functions for colocation and inter-contact time:
the darker lines are the theoretical distributions, while
the lighter marks are the distributions obtained from the
synthetic traces.

6 Related Work and Discussion
Our approach highlights connectivity over mobility and lo-
cation in the definition of models. A lot of work has been
carried out in the area of novel and realistic mobility models
in recent years. There has also been work in terms of anal-
ysis of properties of the traces, which have concentrated
on determining characteristics of human connectivity and
which are seminal to this work.

A comprehensive review of the most popular mobility
models used by the research community can be found
in [5]. Existing models generate movements in the simu-
lation space towards randomly selected goals [3, 11]. In
recent years, many researchers have tried to refine existing
models in order to make them more realistic by studying
the available mobility traces [12]. Various measurement
studies have been conducted both in infrastructure-based
and infrastructure-less environments. Extensive measure-
ments about the usage of a WLANs have been conducted,
for instance, by Tang and Baker in [28], Balachandran et
alii in [1] and by Balazinska and Castro in [2]. A detailed
analysis of the usage of the WLAN of the Dartmouth
Campus College is presented in [8].

Existing mobility models based on real traces are based
on the concept on the probability of transitions between
different geographical points. Tuduce and Gross in [29]
present a model based on real data from the campus wire-
less LAN at ETH in Zurich. Similarly to what we observed,
in their case, too, the session duration data follows a power
law distribution. This approach can be seen as a refined ver-
sion of the Weighted Way-Point Mobility Model [9], based
on the probability of moving between different areas of a
campus using a Markov model. In [17], the authors try to
reproduce the movements of pedestrians in downtown Os-
aka by analysing the characteristics of the crowd in subse-
quent instants of time and maps of the city using an empiri-
cal methodology. In general, the main goal of these works is
to try to reproduce the specific scenarios with a high degree
of accuracy.

In a previous work [21], we presented a mobility model
based on social networks theory that is able to reproduce the
typical power-law distribution, similar to the ones observed

in real traces. However, in that model, the probabilities of
transitions between different areas of the simulation space
are based on a pre-defined synthetic social network of the
individuals carrying the mobile devices. Additionally, these
distributions are not inputs of the model, rather, they are
emergent characteristics. In other words, the observed pat-
terns are confirmed by real measurements, but are not de-
rived from them, as it is the case in the proposed model
implemented by this paper.

Lelescu et alii in [14] proposed Model T++, based on
a study on the correlation between the number of sessions
per access point and the time spent at each location. Sim-
ilarly to ours, their model is extracted and validated using
the traces of movements inside the Dartmouth College cam-
pus. However, in this study the focus is on the probability of
transitions between different locations and not on the char-
acteristics of the connectivity of the hosts over time that are
central for the design of opportunistic protocols.

Yoon et alii [31] present a model extracted from real
traces based on the study of probability of transitions be-
tween different locations. Connectivity is one of the emer-
gent properties of the model, rather than an input of the pat-
terns generator.

In terms of more analytical work, a key study in the field
is [6] by Chaintreau et alii, where the authors analyse the
distribution of inter-contacts time and the duration of con-
tacts considering different data sets from various measure-
ments exercises. All of these exhibit a similar heavy tail
distribution that can be approximated using a power-law
function over a large range of values. The work confirms
the results from other studies conducted at Dartmouth [8],
UCSD [19], the University of Toronto [27] and the National
University of Singapore [26]. At the same time, these ob-
served patterns are at odds with the ones that can be ex-
tracted from random mobility models that show an expo-
nential decay [25]. In a previous work [10], similar connec-
tivity patterns have also been observed among the partici-
pants of INFOCOM’05.

7 Conclusions
In this paper we have presented a connectivity model based
on probability distributions for residence time of individuals
(pX(t)), the distribution of time intervals between connec-
tions (pIC(t)), and a distributions of delays in overlapping
connections (pR(t)). These distributions can be easily ob-
tained from real traces, and we have presented an example
of this in Section 4, where human mobility traces from the
Dartmouth College have been analysed. These parameters
allow for the concrete computation of the connectivity dis-
tribution pC(t) using our theoretical model. In parallel, we
extracted the same distribution from the traces, and we have
been able to validate the model against the measured distri-
bution of connectivity.
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Building upon the characteristics of these distributions, a
tool for the generation of traces has been presented, which
uses the properties of real traces and generates synthetic
traces with similar connectivity patters. The generator
can be used for testing opportunistic protocols such as
PRoPHET [15] abd CAR [20], using network simulators
like ns-2 [18] or Omnet++ [30].
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