Impact Analysis of Database Schema Changes:-

Andy Maule, Wolfgang Emmerich and David S. Rosenblum
London Software Systems
Dept. of Computer Science, University College London
Gower Street, London WC1E 6BT, UK

{a.maule|w.emmerich|d.rosenblum}@cs.ucl.ac.uk

ABSTRACT

We propose a technique for analysing the impact that
changes to relational database schemas have on object-
oriented application programs. Our technique combines slic-
ing and k-CFA data flow analysis in order to extract all
possible insertions, updates, queries and stored procedure
executions that an object-oriented application may make.
We then perform impact analyses using relational programs
over the extracted data. We describe an implementation of
our technique in SUITE, an application built using the Mi-
crosoft Phoenix framework for NET byte code and the BDD
based CrocoPat relational program interpreter. We subject
our implementation to an evaluation with a case-study, a
commercially available content management system written
in C#. We have investigated 62 versions of this application
and its underlying schema and analyse the three versions
of this application that have the most significant schema
changes in detail with SUITE. The largest of these versions
comprises 127,340 lines of C# source code and has about 900
interactions with the underlying relational database, whose
schema has a total of 615 columns and 568 stored proce-
dures. The case study demonstrates that inter-procedural
call graphs need to be taken into account, that it is insuf-
ficient to just consider string-based analyses and moreover
that 0-CFA or 1-CFA based data flow analysis techniques
are not precise enough for this problem. Our implemen-
tation is able to analyse a version in under 2 minutes and
highlight all relevant changes.

1. INTRODUCTION

Enterprise I'T applications usually rely on databases to per-
sist information. The vast majority of applications use re-
lational rather than object-oriented or deductive database
management systems [10]. At the same time the prevailing
programming paradigm for constructing components that
create, update and query data in such enterprise I'T systems

*Research UK under MRL Contract 2005-054. David
Rosenblum holds a Wolfson Research Merit Award from the
Royal Society.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

are written using object-oriented programming languages,
such as C++, Java and increasingly C#. This leads to the so
called impedance mismatch [3] that denotes the significant
conceptual gap between how applications and databases are
structured.

There is a large body of work aimed at bridging that gap.
These include object-relational mappings (ORMs), such as
Persistence or Hibernate, or a Call Level Interface (CLI)
library, such as JDBC or ADO.NET. In the near future,
programming languages will include constructs such as stati-
cally typed queries, as they were defined for .NET 3.0 in the
Language Integrated Native Query framework [17]. Both
ORMs and statically typed query languages support the
detection of violations of inter-language type constraints.
Moreover, there have been a number of advances recently in
the area of analyzing the consistency of queries made using a
CLI in object-oriented programs against relational database
schemas [13]. These have been evaluated using relatively
small applications and have been demonstrated to address
the problem of how type safety between a query string that is
passed to a CLI and the relational database schema against
which the query is formulated.

We are interested in a slightly different, but related prob-
lem that addresses the identification of statements in an
object-oriented application that are affected by, and need to
be changed as a result of, a give relational database schema
change. Whenever a change occurs in a given component, it
may affect other components. The effects of changes ripple
out along the dependencies between the components of the
system. As these dependencies increase in number and com-
plexity, the effects of change can become difficult to trace.
We propose techniques for extracting definition-use relation-
ships across database schemas and CLI or ORM queries that
are embedded in object-oriented programs in order to sup-
port impact analysis of schema change. We also aim to
demonstrate that these techniques are useful and can be ap-
plied to large-scale industrial applications.

This paper discusses an analysis technique for object-
oriented programs in support of analysing the impact of
changes to a relational database schema. We are interested
in impact analyses of changes to relational schemas, includ-
ing table definitions, views, triggers and stored procedures.
The principle contribution of this paper is therefore twofold.
We firstly present our program analysis approach to extract
relationships between where insertions, updates, queries and
stored procedure invocations are made using a CLI/ORM
library call and the definition of the relevant parameters.
We use a combination of program slicing and k-CFA data

flow analysis, that we have implemented using Microsoft’s
Phoenix framework [19] for .NET byte code. Our program
analyzer extracts definition-use relationships and presents
them in RSF to the CrocoPat RML interpreter [4], which we
use to reason about impact for particular types of changes.
The second key contribution is the discussion of a large in-
dustrial case study that we have used to evaluate our tech-
nique. We have considered a version history of about two
years, which had 62 different versions of both schema and
application. We have used the implementation of our tech-
nique to analyse the three versions with the most significant
changes. The largest of these versions had 127,340 lines of
C# code. In each of these versions, we analyzed just un-
der 900 ADO.NET invocations that perform insertions, up-
dates, queries and stored procedure invocations. The case
study shows that 0-CFA or 1-CFA data flow analyses that
were proposed in related work are insufficient and it also
shows that our combination of program slicing with k-CFA
data flow analysis produces useful results in about 2 minutes
for applications of this size.

The paper is further structured as follows. In Section 2,
we give a motivating example for impact analysis of rela-
tional database schemas and describe in more detail the
features of enterprise architecture for which such analyses
are significant. In Section 3, we describe our approach to
change impact analysis and its implementation is described
in Section 4. We then describe related work in the areas
of program analysis, software maintenance and analysis of
embedded queries in Section 5. In Section 6, we present the
results of subjecting a large industrial case study to change
impact analyses and we discuss the findings in Section 7.
We conclude the paper in Section 8.

2. MOTIVATING EXAMPLE

Consider a group of scientists, who are conducting experi-
ments and are storing the resulting data in a database. The
schema defines two database tables, Experiments with four
columns and Readings with three columns. The italicised
column names identify the primary keys of their respective
tables.

Experiments
FExperimentld Date Name Description
VARCHAR(30) | DATE | VARCHAR(30) | TEXT
req. req. not req. not req.
Readings

Readingld | Experimentld Data

INT VARCHAR(30) | BINARY

req. req. req.

There are two classes of stakeholders in our example: ap-
plication developers, whose applications query and update
the database, and database administrators (DBAs), who
maintain the database including the database schema. Con-
sider an application that uses the following queries and up-
dates. In these queries and updates ‘?’ represents parame-
ters supplied at run-time by the application.
SELECT Experiment.Name, Experiment.Id

FROM Experiments
WHERE Experiments.Date=7

// Query Q1

INSERT INTO Experiments
(ExperimentId, Date, Name, Description)
VALUES (7, 7, 7, 7);

//Update Q2

INSERT INTO Readings
(ReadingId, ExperimentId, Data)
VALUES (7, 7, 7);

//Update Q3

SELECT Readings.Readingld, Readings.Data
FROM Readings
WHERE Readings.ExperimentId=7

// Query Q4

Let us now assume that there is a requirements change.
Experiments used to start and finish on the same day,
recorded in Experiments.Date. Now scientists want to con-
duct a new type of experiment that lasts longer than a day
and requires taking readings over several days. The schema
needs to be altered to include a new column, Readings.Date
that allows readings to contain more detailed information
about when they were taken (Change 1). Secondly, the intro-
duction of this new reading date requires Experiments.Date
to be renamed to Experiments.StartDate so that it will not
be confused with the Readings.Date ficld (Change 2). Finally,
the DBA recognises that users of the database have not been
using the Experiments.Name field. They have been relying on
the Experiments.ExperimentId field to give each experiment a
unique name and have been leaving Experiments.Name blank.
The DBA decides that the Experiments.Name column is su-
perfluous and should be deleted (Change 3).

Experiments
Ezperimentld StartDate | Description
VARCHAR(30) | DATE TEXT
req. req. not req.
Readings
Readingld | Date Experimentld Data
INT DATE | VARCHAR(30) | BINARY
req. req. req. req.

2.1 The impacts of schema change

The schema changes will have several impacts on the ap-
plication queries. We define an impact as any location
in the application which will behave differently, or is re-
quired to behave differently as a consequence of the schema
change. The most obvious form of impacts are errors. In
our example change scenario, the following errors will occur:
Q1 | errl | references invalid Experiments.Date column
err2 | references invalid Experiments.Name column
Q2 | err3 | references invalid Experiments.Date column
errd | references invalid Experiments.Name column
err5 | no value for req. field Experiments.StartDate
Q3 | err6 | no value for req. field Readings.Date

These errors are typical of the types of impacts that can
arise from a schema change. They are simply a result of
running queries that are no longer valid.

Not all impacts necessarily cause errors. For example,
Readings.Date is required by our new schema. We make the
distinction that ‘required’ means that no default value is
specified and that null values are not allowed. Suppose the
DBA could decide to remedy err6 by giving this column
a default value of the current date. In this situation it is
very possible that an application developer would overlook
Q3 as being unaffected. When a new reading is inserted the
default date would be used as specified by the DBA. If the
database was in a different time zone or the query reading
was inserted long after it was taken this value could be very
wrong. This may or may not be the desired behaviour. And
we would classify this type of impact as a warning.

Q3 | warnl | Insert semantics changed.
Readings.Date added with default value.
A second type of warning would be where a column has
been added, and it may need to be used in this query. For
example, Change 1 adds the Readings.Date field. This will
not affect the validity of @4, but the application developer
may wish to add the Readings.Date field to the result set
of this query. Intuitively this would be one of the places
where this new data may need to be returned. Q4 will run
without any errors occurring but will not return all of the
available data. The requirements change may mandate that
all readings must now be displayed with their corresponding
date, and therefore Q4 may need to be altered to return the
date information, even though the query is essentially unaf-
fected. This fits our definition of an impact, as although the
query would not behave differently, it is required to behave
differently following the change.
| Q4 [warn2 [New available data. Readings.Date added. ‘
Whilst the impacts are problems that must be reconciled,
the problem we are addressing is not the impacts themselves,
but rather the difficultly of discovering and predicting them.

2.2 The difficulty of schema change

We argue that in two key stages of the schema change pro-
cess, the difficulty of discovering and predicting impacts is
particularly problematic:

Before the schema change is made: The DBA has
to estimate the benefits of each change against the cost of
reconciling the existing application with the new schema.
If the changes have little or no effect upon the application,
then the DBA can make the changes easily. If the changes
could have a large impact, then it might be best to leave the
schema as is, or consider alternative changes. Without an
accurate estimate of these costs, DBAs have to make overly
conservative decisions, avoid change, or use long periods of
integration testing [1]. This is a major cause of difficulty in
the schema change process.

After a change is made: The application developer
needs to locate all affected areas of the application and rec-
oncile them with the changed schema. Again, this is a dif-
ficult problem, and without this information, the schema
change process can cause errors in the application which go
unnoticed. This is the second major cause of difficulty that
we identify.

If we consider the information required by the DBA and
application developers, at these two critical points, we see
that they primarily need to know the same thing. Namely,
every impact location in the application. The goal of our
work is to investigate the feasibility of supplying this missing
information.

2.3 Requirements for change impact analysis

Our example identifies some requirements, which we shall
summarise. The main requirement concerns the level of in-
formation we can obtain about each impact. The impacts
described in our example have very simple error descrip-
tions that are missing information that the developers must
infer for themselves. All the impacts we have mentioned
above, and related work discussed in Section 5, only provide
a minimum level of impact information. For example, if the
developer knew that a renaming schema change (Change 2)
caused errors errl and err3, they could simply rename some
source code or mapping file to rectify the problem. If they

did not know this, they may have to manually trace which
query caused the error, to make sure that it is not a sepa-
rate addition and deletion. We propose that if the developer
knew the semantics of the schema change that caused the
impact, and they were given some advice on remedial ac-
tion, they could make the required alterations in the ORM
far more quickly, with less chance of error, especially when
this procedure must be carried out repeatedly by hand, or
where queries are not easily readable in the source code.

Given the above examples and shortcomings of common
solutions, the goal of this paper is to present a change im-
pact analysis technique for database schema change that
retrieves information to better inform the schema change
process. Firstly, we want to support the DBA to predict
the effects of schema change in order to better inform the
choice between alternative changes. Secondly, we wish to
inform the application developer of all queries and updates
whose behaviour will be altered, or require altering, because
of a schema change. This requires an automated solution
that gives detailed diagnosis for each impact including the
causing change, suggested possible remedial action and an
indication of the cost/severity of reconciliation that may be
available.

2.4 Data access practices

Before describing our approach, we first describe details of
how applications interact with databases in practice. This
informs the choice of program analysis techniques that we
deem viable.

01 class Reading{
02 private int _readingld;
03 private byte[] _data;

04

05 Reading(DBRecord rec){

06 _readingld = rec["ReadingId"];

07 _data = rec["Data"];

08 }

09

10 public static Reading GetReadingById(int id){
11 DBParams params = new DBParams();

12 DBRecordSet queryResult;

13

14 params.Add("@ExpId", ParamType.Integer, id);
15

16 queryResult = QueryRunner.ExecProcedure (

17 "SELECT Readings.Readingld, Readings.Data" +
18 "FROM Readings " +

19 "WHERE Readings.ExperimentId={@ExpId}",
20 params) ;

21

22 return Reading(queryResult[0]);

23 }

24 }

25

26 class QueryRunner{

27 public DBRecordSet ExecProc(string pName, DBParams p){

28 return DBConnection.Exec(pName, p)
29 }
30 }

Figure 1: C# data architecture for Q4

In Figure 1 we show an example of how database access
logic can be implemented. The figure shows how Q4 from
our example scenario, might be executed in practice.

The entry point in this example is the GetReadingById
method on Line 10, which can be called statically to re-

turn a Reading object that matches the supplied parameter.
This method creates a SQL query as a string, and supplies
the missing parameter in the form of a DBParam object!. The
query is then executed by the ExecProc method on Line 28.
Line 28 executes the query against the database, and returns
the results in a DBRecordSet object. On Line 22, the first
row of the result set is used to instantiate a new Reading ob-
ject. This object is then populated by extracting values from
the supplied DBRecord in the constructor of the Reading ob-
ject. Please note that we have omitted many details, such as
checking the number of returned rows or catching database
exceptions, for the sake of clarity.

In this example, all types belonging to the persistence
API begin with DB (DBConnection, DBRecord, DBRecordSet,
DBParams). These classes are typical of those found in the
JDBC and ADO.NET libraries. We therefore argue that
there is a need for our analysis to consider much more
than string based queries. In this example we may need
to know the state of the DBRecord, DBRecordSet and DBParams
objects, to know the exact query that is being executed, and
where/how results are used. This is an important consider-
ation that we discuss in more detail in Section 7.

In Figure 1, the actual execution of the database query
happens in the QueryRunner class. If we were to add a new
class for the Experiments table, assuming we preserved this
architecture, then it would also use the QueryRunner for the
execution of queries. This approach of consolidating exe-
cution of queries to a small selection of methods is typical
of common practice. In fact, many recommended architec-
tural patterns for data access, have several such layers of
abstraction and indirection in order to create composable
and maintainable programs. Such patterns, and the reasons
for using them, are well described, for example Chapters 3
and 10-13 by Fowler [11] are especially descriptive of such
patterns for database access. Several other similar refer-
ences also exist, which discuss architectural patterns, and
the reasons for their use [12, 18, 24]. We argue that such
patterns and architectures are in widespread use, and there-
fore, that any analysis techniques that we develop, should
be able to cope with complex control flow caused by such
layers of indirection and abstraction. This is an important
consideration that we discuss in more detail in Section 7.

3. APPROACH

Given the requirements we have discussed for database
schema change impact analysis, we are faced with two tasks.
Firstly, we need to extract all possible queries from an ap-
plication to discover any dependencies that might exist be-
tween the application and the database schema. Secondly,
we must use this information to predict what could possibly
be affected as the result of a schema change.

3.1 Extracting Queries

In order to extract queries from applications we use a pro-
gram analysis approach. We now give a brief overview of the
process before describing it in more detail in the remainder
of this section.

We have identified the need to analyse programs with
complex control flow, produced as the result of using various

1Supplying parameters in this way is common practice to
promote modularity and help avoid problems such as SQL
injection attacks. The JDBC PreparedStatement object is a
commonly used example.

architectural patterns. This complex control flow requires
a high level of precision in order to produce useful results,
as we shall illustrate with our case study in Section 6. We
refer to the levels of precision defined by Ryder [21]. We
argue that a context sensitive analysis is required, mean-
ing that for every procedure that we analyse, we should
take into account the context in which this procedure is
called. We use k-CFA analysis [22] to this effect. However
as k increases, this technique can become very expensive.
Therefore we take the approach of using inter-procedural
program slicing [25] to limit the parts of the application to
which we apply this potentially expensive analysis. We use
backwards slicing to understand the composition of queries,
and forward slicing to see where and how the results of the
criterion are used.

We start our analysis with a single static assignment
(SSA) [9] representation of our application?. We traverse
the def-use graph provided by the SSA representation, and
mark the definitions and subsequent uses of any interesting
datatypes, which are any type that could potentially be in-
volved in a query. This includes strings and text types, per-
sistent library types that represent or execute queries and
persistent library types that are containers for query results.
We then use this information to build a set of intraprocedu-
ral control flow graphs for query data types, by traversing
the original control flow graph and only adding nodes that
have been marked as interesting.

Reading.GetReadingByld(int) Reading..ctor(DBRecord)

77

Call: LdStr: Param: LdStr:
DBParam..ctor “@Expld” DBRecord rec “Readingld”
Call: LdStr: Call: LdStr:
DBParam.Add “SELECT Readings.... " DBRecord.Getltem “Readingld”

Call:
DBRecord.Getltem

Figure 2: Two example intraprocedural graphs

Figure 2 illustrates two example intraprocedural graphs
that result from analysing the Reading.GetReadingById
method and the Reading class’ constructor shown in Fig-
ure 1. These graphs show that the relevant control flow of
the program has been preserved, but we have abstracted
away all instructions that do not involve interesting data
types and all calls that remain in the intraprocedural graph
either have arguments with interesting data types, or return
values with interesting data types.

Each node has a type, such as Call or Param and the node
stores any further details that may be required. For exam-
ple, in most nodes, we store keys that are used to identify
which items of the program state will be affected by this
node. This extra information is not shown in the diagram
for the sake of clarity. Usually, the type of the node corre-
sponds directly to the opcode of the instruction it represents,
or some kind of explicit control flow operation, for example
we include PHI nodes which preserve PHI control flow from
the initial SSA representation.

2In our case this is provided to us by the Phoenix Framework
as discussed in Section 4

In the next step we ascertain which procedures may po-
tentially be involved in the execution of a query. In order
to know where queries are executed, we must first define
a set of calls to methods found in the persistence libraries,
which are responsible for executing queries. These are the
methods that will be used to create slicing criteria, and we
refer to these known query executing methods as hotspots.
In the example of Figure 1, the method DBConnection.Exec
is a hotspot. The set of hotspots is defined statically, and
will vary, according to the persistence libraries being used.

For each intraprocedural graph, we examine each call node
in turn. If a call node represents a call to a hotspot, then it
is marked for further analysis. A call node is also marked if
it transitively calls a method which has been marked.

The next stage is to create interprocedural program slices
of calls to hotspots. The algorithm proceeds as follows. For
every call node in the intraprocedural graphs, we have es-
tablished whether the call is, or may potentially result in, a
call to a hotspot. For each of these calls, we start creating
a program slice by adding a copy of the last child of this
call, as the leaf of a new slice graph. Note that we do not
start this traversal from the call site itself, as we may be
interested in analysing the data returned from the call.

We traverse from each call node, back up the intrapro-
cedural control flow graph through each parent edge, mak-
ing copies of any interesting nodes we find, and inserting
them into the corresponding position in the new slice graph.
Whenever we reach a call node, we resolve the following
interprocedural effects.

1. For some special methods (such as hotspots or base
library methods), we supply our own ‘known seman-
tics’ nodes, to insert into the slice graph, in place of
the actual calls. In the example graph, the node that
calls DBRecord.GetItem would be replaced with a special
known semantics.

2. If the call returns an interesting data type, then we in-
sert a copy of the called procedure into the slice graph,
before we insert the call node.

3. If the call has any parameters (that have not already
been found in the inserted nodes of the calls return
path) then we also insert the intraprocedural graph of
the last child for each parameter, into the slice graph.
This time these inserted nodes are inserted above the
copy of the current call node in the slice graph.

Whenever we resolve such interprocedural effects of a
call, we are adding nodes to the slice graph that do not
exist in the intraprocedural graph that contains the call,
often as new contextualised copies of other intraprocedu-
ral graphs. We use a well known approach of maintaining
context-sensitivity called k-CFA [22]. Effectively we use a
representation of the call site in order to create a context for
the call, and label any inserted nodes with this context. This
context is important during the evaluation of these program
slice graphs, as it allows any parameters in the call to be
replaced with their actual values.

In order to actually insert such interprocedural effects into
the slice graph at a call site, we stop walking up the current
intraprocedural call graph, and make a note of where we
have stopped. We resume walking at the last node in the
intraprocedural graph for the nodes that we wish to insert,

copying each interesting node, just as before. If we find
another call node, in this latest intraprocedural graph, we
also resolve the interprocedural effects of this call in the
same way. We resolve such sub calls to an arbitrary depth?.
We note that this arbitrary level of context sensitivity is an
important feature of our approach, and its implications are
discussed in Section 7. When we reach a parameter node, or
a node with no parents, then we return to the saved position
in the previous intraprocedural graph, continuing where we
left off. We do this until we reach nodes with no parents in
the intraprocedural graph, and the slice is complete.

g

Call:
QueryRunnerExecProcedure

v

Param: LdStr:
DBRecord rec “Readingld”

%

Known Semantics: LdStr:
DBRecord.GetItem “Readingld”

%

Known Semantics:
DBRecord.GetItem

Call:

Reading ..ctor

—— = Dataflow |:| _ Inserted contextualised
__ _Original intraprocedural edge ~ copies from Reading. .ctor
(illustration only)

_ Next node requiring
~interprocedural evaluation

Node inserted from
|:| = original intraprocedural
graph

Figure 3: Building an interprocedural program slice

We illustrate an example of construction of an interproce-
dural program slice graph in Figure 3. This figure shows the
first stages of this process for the Readings.GetReading graph.
In this case the last interprocedural child of an interesting
call, is the call to Reading. .ctor. The traversal is started for
this graph, and the call node is copied into the interproce-
dural slice, shown at the base of the diagram. Because, this
call does not have a return type that is interesting, no nodes
are inserted below this call site. However, this call does sup-
ply a parameter with an interesting data type, and therefore
we insert a contextualised copy of nodes from the construc-
tor method of the Reading class as shown. At this point
we show how the intraprocedural nodes are added instead
of adding an edge to the call to QueryRunner.ExecProcedure
method. When we reach the Param node, the analysis returns
to the analysing the original intraprocedural graph, adding
the next node of the original call. In this case this is the
node representing a call to the QueryRunner.Execute method.
This node is then the next node that requires evaluation,
and this is the current state in which we see the diagram.
The building of the slice will continue from this highlighted
node, until all path have been exhausted.

3Although in practice this is limited by the memory con-
straints of our implementation, and the size of the stack
datastructure we use to store the context and return site
information.

It is also worth illustrating that, in our example graph, we
have replaced calls to methods for the DBRecord and DBParam
classes, with special known semantics nodes. These nodes
have the effect of noting the state of the program when they
are evaluated in the final stage of our analysis, as described
below.

So far we have avoided the discussion of the problems
caused by resolving correct methods in the presence of vir-
tual dispatch in object oriented languages. We propose the
solution of using an interprocedural points-to analysis [20]
to determine the possible types that a call site may point
to. The details of how such points-to information can be in-
corporated into program slicing, is described by Larson et.
al. [16].

The final stage of this program analysis involves interpret-
ing these graphs to give an approximation of the possible
queries that may result at a given hotspot. For each root
node of the graph we create an object that represents the
program state. This program state is then passed to each
successive node in the graph. Each type of node has a se-
mantics, so that given a program state, it will alter the state
accordingly, allowing us to simulate an approximate seman-
tics for the application. For example, the LdStr nodes shown
in Figure 2 will insert a new string variable into the state.

It is important to note that the semantics of these nodes
allow for approximations, and if a variable has several pos-
sible values at a given point, the semantics operate on all
possible values, sometimes producing numerous permuta-
tions. Also, when two or more branches in the graph merge,
we merge the program states of all incoming edges before
continuing to the next child node. This ensures that for
call sites with multiple parameters, we can approximate the
correct effect.

When we encounter a hotspot, we examine the path that
has been taken to reach this hotspot, and store it alongside
the possible queries that can be executed here. We simi-
larly make note when we find the use of a specific field of a
query result, or the use of an SQL parameter for a stored
procedure.

At this point we have extracted all the required informa-
tion from the source code of the application. We output the
results of this analysis, and use it to perform impact anal-
ysis, as described next. If required, this information can
also be supplemented with information extracted from the
schema. Extracting such data is a trivial programming ex-
ercise, as all major DBMSs provided a facility to examine
meta data. Therefore, we do not describe this process in
any detail, other than to note that this information can be
readily obtained.

3.2 Impact calculation

Once we have extracted the possible queries from an appli-
cation, we use this information to make predictions about
the possible effects of schema change, we call this process
impact calculation.

A good description of the impacts that may arise from a
given schema change, are described in Database Refactor-
ing [1]. This book describes a catalogue of possible changes
that can occur in relational database schemas, and detailed
descriptions about their effects. Schema changes can have a
wide range of effects and this requires a flexible method of
interrogating the extracted query information. To do this,
we store the extracted data as a set of simple binary re-

lations and use a relational language to reason about the
query data. These relational programs are relatively short
and we create one program for each type of impact we would
like to analyze.

Most of the time, we require only simple relational pro-
grams, which can search the possible query strings for a reg-
ular expression term, returning a set of code locations that
might be affected. However, the flexibility to write arbitrar-
ily complex query programs, allows us to provide impact
calculation even for subtle impacts, such as those described
in Section 2.

Q_exec_TXT Q1 "sp_StoredProcedurel"
Q_execAt_LOC Q1 "QueryExecute.cs:123"

Figure 4: Example RSF data

We store this extracted data using the RSF file format [28]
as shown in Figure 4. This example shows two very simple
binary relations. The first line indicates that Q1 is linked to
the value sp_StoredProcedurel by the relationship Q_exec_TXT.
This means that a query, denoted by the id Q1 executes
the following query text, in this case, simply the name of a
stored procedure. The second line similarly notes the same
query, Q1, is executed in the QueryExecute.cs file at line
number 123. This is a very simple example of the results
that we can store, but this representation is useful as it can
be easily extended to include arbitrary relationships, and
can be efficiently analysed as described next.

AffectedQueries(x)
AffectedExecs(x)

Q_exec_TXT(x, $1);
EX(y, AffectedQueries(y) &
Q_execAt_LOC(y, x));

PRINT ["Exec found at: "] AffectedExecs(x);
Figure 5: Example RML program

Figure 5 shows an example relational program. The pro-
gram takes our sample RSF file as input. The first line of
the program creates a set called AffectedQueries. This set
consists of all query identifiers where the text of the query
matches a given parameter $1. We then find all affected ex-
ecutions of this query by executing the second line, where
we select all execution locations where the query id is found
in the set of affected queries. The final line, simply prints
a list of all affected executions locations. In our example,
we would supply the RSF from Figure 4 and the parameter
‘sp_StoredProcedurel’ as inputs. This would result in the
program printing out the line “Exec found at: QueryExe-
cute.cs:123”.

Using similar programs we create more complex queries.
In fact for every warning, or error that can arise, we write an
RML program that takes the required parameters. For every
proposed schema change, we run all the applicable impact
calculation programs against the extracted data. This re-
sults in the prediction of all potential impact sites occurring
in the application.

4. IMPLEMENTATION

During the course of our research we have developed a pro-
totype system that we call SUITE (Schema Update Impact
Tool Environment). The architecture of SUITE is shown
in Figure 6. This diagram shows SUITE’s key constituent

} /" Program Analysis SUITE

App source \ I Phoenix Framework | ‘
[\\ /
I

|
|
|
|
|
|
Database ; ,/ Schema Analysis \\ :
ADO.NET |H RSF model }
> |

|

|

|

|

|

Schema ‘ >

-
‘ -
| J/ Impact Calculation

Impact report (J__J I CrocoPat | ‘(—— RML program
L\ >

E = external library/program

(| =SUITE component
| —

|:| = external file/repository

Figure 6: Tool Architecture

components and the dataflow between them during impact
analysis.

As described in the previous section, we use a file for-
mat called RSF [28] to store the results of the program and
schema analysis. For each possible change we have encoun-
tered, we have created programs to query the RSF model
and perform impact calculation. We write these program in
RML, and use a tool called CrocoPat [4] to execute these
RML programs against the RSF model. The eventual out-
put of this process is a text-based impact report.

We are currently targetting only C+# applications that use
SQL Server databases. We obtain an SSA representation of
compiled .NET binaries by using the Phoenix framework
[19], on top of which we implement the remainder of our
program analysis.

We envisage extending SUITE for many different lan-
guages, persistence technologies and DBMSs in the future.
In fact we have already started investigating the use of the
Soot framework [26] for applying our technique to Java,
as the Soot framework provides the same functionality for
which we currently use Phoenix. This will allow SUITE
to be useful in truly heterogeneous database applications,
which we believe is an important feature that our proposed
technique will offer.

Currently our implementation is still at the functional
prototype stage and, as such, has some limitations. We
currently do not implement the points-to analysis required
for resolving calls in the presence of virtual dispatch, which
we intend to include in future versions of our implementa-
tion. Also, we currently have accuracy issues regarding the
processing of loops, recursion and parameters passed by ref-
erence. These problems have all been solved in related work,
and we are incorporating these solutions into our prototype.
However, these flaws restrict us from making claims that
our analysis is safely conservative. We acknowledge that
this is an important consideration for such a technique, but
we defer this to future work.

S. RELATED WORK

There is a great deal of work related to software change im-
pact analysis [2]. However, we are only aware of one similar
application related to database applications [15]. This ear-

lier work focuses on object-oriented databases whereas we
consider relational databases. We argue that the object-
relational impedance mismatch makes this a significantly
harder problem, however we take inspiration from the ap-
proaches defined here, especially the work on visualisation
of results, which we do not currently address.

There have been a number of recent works investigating
program analysis techniques for extracting database queries
from applications. Amongst these were two important pa-
pers which initially inspired our work. Firstly Christensen
et al. described a string analysis technique [6] for stati-
cally predicting the values of string variables in Java pro-
grams. This work was then built upon by Gould et. al.
in order to perform static type checking of dynamic string
based queries for JDBC [13]. However, Christensen’s pro-
gram analysis was based on a context-insensitive algorithm.
This means that for any data access architectures that use
publicly accessible methods for query execution, the range
of possible queries will become unknown. As shown by our
case study, we found that this was not accurate enough to
perform useful impact analysis, as too many of the queries
became unknown. For example, consider the code sample
shown in Fig 1, on Line 20 a query is executed from the
string parameter pName. This method is public, and in a
context insensitive analysis we would have to consider ev-
ery context in which this method can be called, which is
effectively infinite and would result in an unknown query
value.

An improvement in precision of string analysis was intro-
duced by Choi et. al. [5]. This analysis technique improves
upon previous string analyses by supplying a context sensi-
tive (specifically 1-CFA) analysis, and expanding the scope
of the analysis to include some heap and string types, such as
the Java StringBuffer. We acknowledge that this approach
grealty improves the accuracy of string analysis, however, as
we describe in Section 7, the precision of the analysis needs
to be improved further still, in order to be useful for impact
analysis. This technique was based on abstract interpreta-
tion [8], which is an alternative approach to our data flow
analysis and program slicing. It is not clear how this ab-
stract interpretation based approach would be affected by
increasing the level of context sensitivity, and the scope of
the analysis. However, we are interested in investigating
this approach further, as it may offer potential performance
improvements and a path to formalize our analysis.

Some related work has been in analysing transparent per-
sistence [27] using program analysis, although the focus here
is on providing optimisation of queries. This work is based
on abstract interpretation [8] and bares similarity to other
work on extracting queries from legacy applications [7], how-
ever both of these techniques are tailored to languages where
queries are effectively embedded. This ignores many of the
problems we have dealt with in this paper, but may provide
an insight into how other persistence technologies, such as
transparent persistence could be incorporated into our ap-
proach in the future.

There has also been some related work produced by the
testing community [14]. However, the program analysis used
in this research, suffers from the same precision problems
as the other program analysis techniques mentioned. We
also note that database oriented testing in general, does not
eliminate the requirement for change impact analysis, and
we consider such work to be orthogonal.

6. EVALUATION

In order to evaluate the feasibility of our proposed analysis,
we have conducted an in-depth case study as described by
Yin [29]. Our subject application is the irPublish™ content
management system (CMS), produced by Interesource Ltd.
This application has been in development for five years and
is used by FTSE 100 companies and leading UK not-for-
profit organisations. It is a web-based CMS application
built using Microsoft’s .NET framework, C#, ADO.NET,
and using the SQL Server DBMS. irPublish itself consists of
many different components, of which, we chose to analyse
the core irPublish client project. This currently consists of
127kLoc of C# source code, and uses a primary database
schema of up to 101 tables with 615 columns and 568 stored
procedures.

For our evaluation to be generalisable, the subject appli-
cation had to be representative of real world practice for
database driven applications. irPublish has been developed
using many well-established and commonly used techniques.
For example, we see instances of design and architectural
patterns proposed by Gamma et. al [12], Fowler [11] and Mi-
crosoft’s and Sun’s recommended architectural practice [18,
24]. Tt is also important to note that irPublish has been
developed using established software engineering practices
such as unit testing, source code revision history, continuous
integration and bug tracking. We argue that because these
patterns and practices are in widespread use, this case study
is a good example of recommended real world practice, and
therefore, our findings will also apply to many other similar
applications.

We conducted a historical case study, based upon the ver-
sion history of the irPublish client project. We examined
the source code repository of changes going back two years.
This gave us 62 separate schema versions to examine, each
version having detailed SQL scripts describing the individual
changes that were made. Of these possible schema versions
we chose three interesting versions that had multiple com-
plex schema changes, requiring significant changes to the
application source code. We analysed these three changes
in detail, comparing the actual changes that were made to
the source code with the information obtained using our
analysis technique.

We shall now illustrate the interesting results from one of
these studies in detail. The remaining two versions indicated
very similar results, and are not included here for the sake
of brevity.

The schema version change consisted of eight individual
changes shown below.

ChangeSct | Added a column to a table

ChangeSc2 | Added 3 columns to a table

ChangeSc3 | Altered data type of a column

ChangeSc4 | Added a new constraint to column
ChangeSpl | Added 3 new parameters to a stored proc.
ChangeSp2 | Added new return columns to a stored proc.
ChangeSp3 | Added new return columns to a stored proc.
ChangeSp4 | Added a new parameter in a stored proc.

The actual source code analysed for this version was
78,133 lines of code, across 3 compiled binaries. The schema
version consisted of 88 tables with a total of 536 columns and
476 stored procedures. The analysis resulted in the extrac-
tion of 896 possible queries.

Measured over three timed executions, the source code
program analysis took an average of 62 seconds, whilst the

impact calculation took an average of 58 seconds. This was
executed on a 2.13Ghz Intel Pentium processor, with 1.5GB
of RAM.

We now describe the observed source code changes, giving
each observed change an identifier.

Desc. Cause
oct | Added new parameters ChangeSp1
0c2 | Dynamic sql UPDATE, added column | ChangeSci
0c3 | Dynamic sql UPDATE, added column | ChangeSci
oc4 | New fields read from query results ChangeSp2

There were four change sites where source code was
changed as a direct consequence of the schema changes. In
each case we indicate a description of what was changed
and which schema change was responsible. In the following
table we compare the predicted changes with the observed
changes.

Change | Predicted | Observed | Identified
ChangeScl | 7 warns 4 warns 0C2, 0C3
ChangeSc2 | 5 warns none -
ChangeSc3 | 5 warns none -
ChangeSc4 | 5 warns none -
ChangeSpl | 1 err 1 err 0c1
ChangeSp2 | 3 warns 1 warn 0c4
ChangeSp3 | 1 warn none -
ChangeSp4 | none none -

We consider an observed change to be successfully pre-
dicted if the location that we highlight requires altering as
suggested. In the third column we note which observed
changes the warnings or errors apply to. In some cases we
found multiple warnings or errors that correctly identify one
observed change, this is simply because we create an error or
warning for each possible execution path, and that the ob-
served change may been present on more than one of these
paths.

For ChangeSc2, ChangeSc3 and ChangeSc2 we see predicted
warnings, but no observed changes. This is because many
warnings are often false positives. In the case of these three
changes, tables have been altered, but these alterations will
not directly cause any errors. The warnings highlight the
places where the table is accessed by a query, and warn
the user that the table alteration has been made and may
require action. In many cases no action is required, but
in some cases, like for ChangeSc1, some of the warnings are
acted upon whilst other are not.

It is interesting to note that all changes were indicated by
at least one predicted warning or error message created by
SUITE. It is also worth noting, that SUITE did not predict
any impact for ChangeSp4. This is in-line with our expecta-
tions because the stored procedure ChangeSp4 is never called
by the application. This an interesting result that shows
that our tool is also useful for testing the absence of impact
of changes.

We consider the total evaluation time of 2 minutes to be
very encouraging for 75 thousand lines of code, especially
as our tool is an early prototype with a lot of scope for
optimisation.

There are threats to the validity of our evaluation, mainly
due to the maturity and accuracy of SUITE. There are gaps
in our implementation, however we have identified that most
of these can be rectified using proven techniques that have
been shown to be computationally viable.

All these observations imply that our results could poten-
tially be useful in a real development environment, however

we cannot conclude this solely from a historical case study.
We would need to conduct a different study before we be-
ing able to make any claims about the accuracy level being
useful, or indeed whether the level of false positives is accept-
able. Instead, we argue that we have shown our approach to
be both feasible and promising, and we leave the evaluation
of the usefulness of this approach for future research.

7. SURPRISING RESULTS

The major interesting result of our work is that program
analysis of database queries, may not be as simple as it
would initially seem. The problem of string analysis for
queries has been admirably studied in related work, as dis-
cussed in Section 5. However, as illustrated by our moti-
vating example, and confirmed by our case study, we have
found that these existing analysis techniques require signif-
icant modification to be useful for our purposes. We ar-
gue that real world applications cause problems for program
analysis which are not addressed by the related work that we
have discussed. In particular, the precision of the program
analysis needs to be extended in two key areas; precision of
context sensitivity and analysis scope.

7.1 Context sensitivity

Our example scenario in Section 2 presented an example ar-
chitecture for database access components. This example,
although trivial, identified a requirement for context sensi-
tive program analysis. This was because the architectural
patterns employed result in code where definition and use of
queries are spread across numerous different method calls.

In our case study we confirmed this requirement. How-
ever, perhaps surprisingly, we noted that the standard 1-
CFA analysis was not sufficient for extracting useful results.
Our implementation uses a k-CFA algorithm, and whilst this
high level of context sensitivity may not always be suitable,
we have shown that by limiting the analysis using program
slicing techniques, we can compute useful results in reason-
able time. For other applications, the exact level of context
sensitivity required will vary, dependent upon the number
of nested calls present in the architecture of the application.
However, it is clear that in many real world architectures,
especially where similar architectural patterns are used, a
high level of context sensitivity will be required in order to
conduct useful impact analysis.

7.2 Analysis scope

Many of the previously mentioned related works, constrain
the scope of their analyses to strings. Our example scenario
in Section 2, presents the motivation for wanting to extend
the scope of the analysis significantly beyond strings. In
practice, database interactions require not only the analy-
sis of strings, but the analysis of many data type found in
persistence and other libraries.

Our case study confirms that this scope extension is in-
deed required. However, the extent to which the scope must
be widened, and the increased precision of analysis required,
is surprising. We identify several problems that our imple-
mentation had to address, which require an increase in the
scope and complexity of the program analysis.

The first extension we require, is the use of mutable types.
In languages such as Java and C#, strings are immutable,
therefore cannot be changed once they are created. Alter-
ations occur by creating an entirely new string object. With

such immutable objects, side-effects of methods do not al-
ways have to be considered. This makes the search space
of the program analysis much smaller. If we extend the
analysis to other types, that are mutable, we increase the
complexity of the analysis. Choi et. al. [5] take into account
the state of some mutable type, such as the java StringBuffer
object. However, we require the use many other heap types,
increasing the cost and complexity of the analysis.

As in Kyung goo-Doh’s work, important types for which
source code is not available must be given a semantics.
Whilst they formally define semantics for strings and String-
Buffer types, we informally define semantics for a much
larger set of types. For example we consider types from the
ADO.NET libraries, custom persistence libraries used in our
case study and several types from the NET class libraries.

It is important to note that this extension means that we
do not only consider SQL queries, but also calls to stored
procedures and other interactions with the database. The
extent of different features that an application uses can vary
according to practice, but it is very common to use many of
the more advances features provided by the DBMS [1].

7.3 Schema change

Another interesting result that we take from this case study,
is that the types of schema change that occurred, agrees with
the predictions of a study by Dag Sjoberg [23]. This study
indicates that the types of schema change that are most
likely are additions and deletions. We do not include the
data from our case study that confirms this, however this
observation brings about an important question for future
research. Given that breaking changes are not popular, why
are they not popular? Are schema changes avoided because
they are difficult, or are they simply not often required?
Our case study would seem to circumstantially indicate that
changes are avoided because they are difficult to trace and
manage. In order to answer these questions, we would need
to conduct an experiment to see whether the presence of
good impact analysis does in fact make schema change eas-
ier, and whether this would increase the frequency of making
schema changes which may cause errors.

8. CONCLUSIONS

We have investigated the problem of using program analy-
sis for providing change impact analysis of database schema
changes. We found that current string analysis techniques,
whilst useful in other areas, require significant extension to
be useful for impact analysis. We have motivated, and pro-
vided details of how such extensions can be made. Although
these extensions increase the complexity and cost of the
analysis, we have found that useful results can be extracted
with reasonable cost. We demonstrate this, by applying our
analysis to a representative case study of significant size.

Our case study uses many recommended and widely ac-
cepted architectural patterns and software engineering prac-
tices. We argue that because many similar architectures and
techniques are in widespread use, that our results are gen-
eraliseable to other similar enterprise applications.

We identify several areas for future research including; the
use of other program analysis approaches such as abstract
interpretation, increases in accuracy and performance for
the SUITE prototype, the guarantee of safely conservative
solutions, the use of dynamic analysis where conservative as-
sumptions become expensive or inaccurate, and finally the

investigation of how the availability of impact analysis tech-
niques may affect the development of database applications.

Acknowledgments

We are greatful for the guidance we received from Barbara
Ryder on the relationship between call graph construction
and k-CFA dataflow analysis. We thank Luca Cardelli and
Gavin Bierman for enlightening hints on the directions of
language integrated native queries in C# and James Higgs
and the Interesource team for the provision of our case study.
We thank Andy Ayers, Jim Hogg and John Larc for technical
help with the Microsoft Phoenix Framework.

9.
[

2]

3]

[4]

[6]

[10]

[11]

[12]

REFERENCES

S. W. Ambler and P. J. Sadalage. Refactoring
Databases: Evolutionary Database Design. Addison
Wesley, Apr. 2006.

R. Arnold and S. Bohner. Software Change Impact
Analysis. IEEE Computer Society Press, 1996.

M. P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and S. Zdonik. The Object-Oriented
Database System Manifesto. In W. Kim, J.-M.
Nicholas, and S. Nishio, editors, Proc. of the 1%
International Conference on Deductive and
Object-Oriented Databases, Kyoto, Japan, pages
223-240. North-Holland, 1990.

D. Beyer, A. Noack, and C. Lewerentz. Efficient
Relational Calculation for Software Analysis. I[EEE
TSE, 31(2):137-149, Feb. 2005.

T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A
practical string analyzer by the widening approach. In
N. Kobayashi, editor, APLAS, volume 4279 of LNCS,
pages 374—388. Springer, 2006.

A. S. Christensen, A. Mgller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. 10th
International Static Analysis Symposium, SAS 03,
volume 2694 of LNCS, pages 1-18. Springer-Verlag,
June 2003.

Y. Cohen and Y. A. Feldman. Automatic high-quality
reengineering of database programs by abstraction,
transformation and reimplementation. ACM TOSEM,
12(3):285-316, 2003.

P. Cousot. Abstract interpretation. ACM Comput.
Surv., 28(2):324-328, 1996.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM TOPLAS, 13(4):451-490, Oct 1991.

D. S. Fabrizio Biscotti, Colleen Graham. Market
Share: Database Management Systems Software,
EMEA, 2005. Technical report, Gartner, June 2006.
M. Fowler. Patterns of Enterprise Application
Architecture. Addison Wesley, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Software.
Addison Wesley, 1995.

C. Gould, Z. Su, and P. Devanbu. Static Checking of
Dynamically Generated Queries in Database
Applications. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
pages 645-654, Washington, DC, USA, 2004. IEEE
Computer Society.

(14]

21]

27]

(28]

29]

G. M. Kapthammer and M. L. Soffa. A family of test
adequacy criteria for database-driven applications. In
Proc. of the 9" European software engineering
conference (ESEC/FSE 2003), pages 98-107, New
York, NY, USA, 2003. ACM Press.

A. Karahasanovic. Supporting Application Consistency
in Fvolving Object-Oriented Systems by Impact
Analysis and Visualisation. PhD thesis, Dept. of
Informatics, University of Oslo, 2002.

L. Larsen and M. J. Harrold. Slicing object-oriented
software. In ICSE ’96: Proceedings of the 18th
international conference on Software engineering,
pages 495-505, Washington, DC, USA, 1996. IEEE
Computer Society.

E. Meijer, B. Beckmann, and G. Biermann. LINQ:
Reconciling objects, relations and XML in the .NET
framework. In Proc. of SIGMOD 2006. ACM Press,
2006.

Microsoft Patterns and Practices Developer Center.
http://msdn.microsoft.com/practices/, 2007.

Phoenix Framework.
http://research.microsoft.com/phoenix, 2007.

A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for java using annotated constraints. In
OOPSLA ’01: Proceedings of the 16th ACM
SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 43-55, New York, NY, USA, 2001. ACM Press.
A. Rountev, A. Milanova, and B. G. Ryder. Fragment
class analysis for testing of polymorphism in java
software. In ICSE ’08: Proceedings of the 25th
International Conference on Software Engineering,
pages 210220, Washington, DC, USA, 2003. IEEE
Computer Society.

O. G. Shivers. Control-flow analysis of higher-order
languages or taming lambda. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1991.

D. I. Sjoberg. Quantifying schema evolution. IST,
35(1):35—44, 1993.

J2EE Patterns.
http://java.sun.com/blueprints/patterns/, 2007.

F. Tip. A survey of program slicing techniques.
Technical report, Centre for Mathematics and
Computer Science, Amsterdam, Netherlands, 1994.
R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,

P. Pominville, and V. Sundaresan. Optimizing Java
Bytecode Using the Soot Framework: Is It Feasible?
In D. A. Watt, editor, Proc. of the 9" Int. Conference
on Compiler Construction, Berlin, volume 1781 of
Lecture Notes in Computer Science, pages 18-34.
Springer, 2000.

B. Wiedermann and W. R. Cook. Extracting queries
by static analysis of transparent persistence.
SIGPLAN Not., 42(1):199-210, 2007.

K. Wong. Rigi Users’s manual, Version 5.4.4. Technical
report, University of Victoria, Dept of Computer
Science, ftp://ftp.rigi.csc.uvic.ca/pub/rigi/doc, 1998.
R. K. Yin. Case Study Research: Design and Methods
(Applied Social Research Methods). Sage Publications,
Inc, February 1989.

