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Summary. We present a method for learning sparse representations shared
across multiple tasks. This method is a generalization of the well-known single-
task 1-norm regularization. It is based on a novel non-convex regularizer which
controls the number of learned features common across the tasks. We prove
that the method is equivalent to solving a convex optimization problem for
which there is an iterative algorithm which, as we prove, converges to an
optimal solution. The algorithm has a simple interpretation: it alternately
performs a supervised and an unsupervised step, where in the former step it
learns task-specific functions and in the latter step it learns common-across-
tasks sparse representations for these functions. We also provide an extension
of the algorithm which learns sparse nonlinear representations using kernels.
We report experiments on simulated and real data sets which demonstrate that
the proposed method can both improve the performance relative to learning
each task independently and lead to a few learned features common across
related tasks. Our algorithm can also be used, as a special case, to simply
select – not learn – a few common variables across the tasks3.

Key words: Multi-Task Learning, Kernels, Regularization, Vector-
Valued Functions.

3 This is a journal version of the NIPS conference paper [4]. It includes new theo-
retical and experimental results.
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1 Introduction

We study the problem of learning data representations that are com-
mon across multiple related supervised learning tasks. This is a problem
of interest in many research areas. For example, in computer vision the
problem of detecting a specific object in images is treated as a sin-
gle supervised learning task. Images of different objects may share a
number of features that are different from the pixel representation of
images [21, 30, 32]. In modeling users/consumers’ preferences [1, 23],
there may be common product features (e.g., for cars, books, web-
pages, consumer electronics etc.) that are considered to be important
by a number of people (we consider modeling an individual’s prefer-
ences to be a single supervised learning task). These features may be
different from standard, possibly many, product attributes (e.g., size,
color, price) considered a priori, much like features used for percep-
tual maps, a technique for visualizing peoples’ perception of products
[1]. Learning common sparse representations across multiple tasks or
datasets may also be of interest, for example, for data compression.

While the problem of learning (or selecting) sparse representations
has been extensively studied either for single-task supervised learning
(e.g., using 1-norm regularization) or for unsupervised learning (e.g.,
using principal component analysis (PCA) or independent component
analysis (ICA)), there has been only limited work [3, 8, 22, 35] in the
multi-task supervised learning setting. In this paper, we present a novel
method for learning sparse representations common across many su-
pervised learning tasks. In particular, we develop a novel non-convex
multi-task generalization of the 1-norm regularization, known to pro-
vide sparse variable selection in the single-task case [14, 20, 29]. Our
method learns a few features common across the tasks using a novel
regularizer which both couples the tasks and enforces sparsity. These
features are orthogonal functions in a prescribed reproducing kernel
Hilbert space. The number of common features learned is controlled,
as we empirically show, by a regularization parameter, much like spar-
sity is controlled in the case of single-task 1-norm regularization. More-
over, the method can be used, as a special case, for variable selection.
We call “learning features” to be the estimation of new features which
are functions of the input variables, like the features learned in the
unsupervised setting using methods such as PCA. We call “selecting
variables” to be simply the selection of some of the input variables.

Although the novel regularized problem is non-convex, a first key
result of this paper is that it is equivalent to another optimization prob-
lem which is convex. To solve the latter we use an iterative algorithm
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which is similar to the one developed in [16]. The algorithm simulta-
neously learns both the features and the task functions through two
alternating steps. The first step consists in independently learning the
parameters of the tasks’ regression or classification functions. The sec-
ond step consists in learning, in an unsupervised way, a low-dimensional
representation for these task parameters. A second key result of this pa-
per is that this alternating algorithm converges to an optimal solution
of the convex and the (equivalent) original non-convex problem.

Hence the main theoretical contributions of this paper are:

• We develop a novel non-convex multi-task generalization of the well-
known 1-norm single task regularization that can be used to learn
a few features common across multiple tasks.

• We prove that the proposed non-convex problem is equivalent to
a convex one which can be solved using an iterative alternating
algorithm.

• We prove that this algorithm converges to an optimal solution of
the non-convex problem we initially develop.

• Finally, we develop a novel computationally efficient nonlinear gen-
eralization of the proposed method using kernels.

Furthermore, we present experiments with both simulated (where
we know what the underlying features used in all tasks are) and
real datasets, also using our nonlinear generalization of the proposed
method. The results show that in agreement with previous work
[3, 7, 8, 9, 15, 22, 27, 32, 34, 35] multi-task learning improves per-
formance relative to single-task learning when the tasks are related.
More importantly, the results confirm that when the tasks are related
in the way we define in this paper, our algorithm learns a small number
of features which are common across the tasks.

The paper is organized as follows. In Section 2, we develop the novel
multi-task regularization method, in the spirit of 1-norm regulariza-
tion for single-task learning. In Section 3, we prove that the proposed
regularization method is equivalent to solving a convex optimization
problem. In Section 4, we present an alternating algorithm and prove
that it converges to an optimal solution. In Section 5, we extend our
approach to learning features which are nonlinear functions of the input
variables, using a kernel function. In Section 6, we report experiments
on simulated and real data sets. Finally, in Section 7, we discuss rela-
tions of our approach with other multi-task learning methods as well
as conclusions and future work.
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2 Learning Sparse Multi-Task Representations

In this section, we present our formulation for multi-task feature learn-
ing. We begin by introducing our notation.

2.1 Notation

We let R be the set of real numbers and R+ (R++) the subset of non-
negative (positive) ones. For every n ∈ N, we let Nn := {1, 2, . . . , n}. If

w, u ∈ R
d, we define 〈w, u〉 :=

∑d
i=1 wiui, the standard inner prod-

uct in R
d. For every p ≥ 1, we define the p-norm of vector w as

‖w‖p := (
∑d

i=1 |wi|p)
1

p . In particular, ‖w‖2 =
√
〈w, w〉. If A is a d × T

matrix we denote by ai ∈ R
T and at ∈ R

d the i-th row and the t-th
column of A respectively. For every r, p ≥ 1 we define the (r, p)-norm

of A as ‖A‖r,p :=
(∑d

i=1 ‖ai‖p
r

) 1

p .

We denote by Sd the set of d × d real symmetric matrices, by Sd
+

(Sd
++) the subset of positive semidefinite (positive definite) ones and

by Sd
− the subset of negative semidefinite ones. If D is a d × d matrix,

we define trace(D) :=
∑d

i=1 Dii. If w ∈ R
d, we denote by Diag(w) or

Diag (wi)
d
i=1 the diagonal matrix having the components of vector w

on the diagonal. If X is a p × q real matrix, range(X) denotes the set
{x ∈ R

p : x = Xz, for some z ∈ R
q}. Moreover, null(X) denotes the set

{x ∈ R
q : Xx = 0}. We let Od be the set of d× d orthogonal matrices.

Finally, if D is a d × d matrix we denote by D+ its pseudoinverse. In
particular, if a ∈ R, a+ = 1

a
for a 6= 0 and a+ = 0 otherwise.

2.2 Problem Formulation

We are given T supervised learning tasks. For every t ∈ NT , the corre-
sponding task is identified by a function ft : R

d → R (e.g., a regressor
or margin classifier). For each task, we are given a dataset of m in-
put/output data examples4 (xt1, yt1), . . . , (xtm, ytm) ∈ R

d × R.
We wish to design an algorithm which, based on the data above,

computes all the functions ft, t ∈ NT . We would also like such an
algorithm to be able to uncover particular relationships across the tasks.
Specifically, we study the case that the tasks are related in the sense
that they all share a small set of features. Formally, our hypothesis is
that the functions ft can be represented as

4 For simplicity, we assume that each dataset contains the same number of exam-
ples; however, our discussion below can be straightforwardly extended to the case
that the number of data per task varies.
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ft(x) =
I∑

i=1

aithi(x), t ∈ NT , (1)

where hi : R
d → R, i ∈ NI , are the features and ait ∈ R, i ∈ NI , t ∈ Nt,

the regression parameters.
Our goal is to learn the features hi, the parameters ait and the

number of features I from the data. For simplicity, we first consider
the case that the features are linear functions, that is, they are of the
form hi(x) = 〈ui, x〉, where ui ∈ R

d. In Section 5, we will extend our
formulation to the case that the hi are elements of a reproducing kernel
Hilbert space, hence in general nonlinear.

We make only one assumption about the features, namely that the
vectors ui are orthogonal. Hence, we consider only up to d of those
vectors for the linear case. This assumption, which is similar in spirit
to that of unsupervised methods such as PCA, will enable us to develop
a convex learning method in the next section. We leave extensions to
other cases for future research.

Thus, if we denote by U ∈ Od the matrix whose columns are the
vectors ui, the task functions can be written as

ft(x) =
d∑

i=1

ait〈ui, x〉 = 〈at, U
>x〉.

Our assumption that the tasks share a “small” set of features I ≤ d
means that the matrix A has “many” rows which are identically equal
to zero and, so, the corresponding features (columns of matrix U) will
not be used by any task. Rather than learning the number of features
I directly, we introduce a regularization which favors a small number
of nonzero rows in the matrix A.

Specifically, we introduce the regularization error function

E(A, U) =
T∑

t=1

m∑

i=1

L(yti, 〈at, U
>xti〉) + γ‖A‖2

2,1, (2)

where γ > 0 is a regularization parameter.5 The first term in (2) is the
average of the error across the tasks, measured according to a prescribed
loss function L : R × R → R+ which is convex in the second argument

5 A similar regularization function, but without matrix U, was also independently
developed by [28] for the purpose of multi-task feature selection – see problem
(5) below.
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Fig. 1. Values of the (2, 1)-norm of a matrix containing only T nonzero entries,
equal to 1. When the norm increases, the level of sparsity across the rows
decreases.

(for example, the square loss defined for every y, z ∈ R as L(y, z) =
(y− z)2). The second term is a regularization term which penalizes the
(2, 1)-norm of matrix A. It is obtained by first computing the 2-norms
of the (across the tasks) rows ai (corresponding to features i) and then
the 1-norm of the vector b(A) = (‖a1‖2, . . . , ‖ad‖2). The components
of the vector b(A) indicate how important each feature is.

The (2, 1)-norm favors a small number of nonzero rows in the matrix
A, thereby ensuring that common features will be selected across the
tasks. This point is further illustrated in Figure 1, where we consider
the case that the entries of matrix A take binary values and that there
are only T entries which equal 1. The minimum value of the (2, 1)-norm
equals

√
T and is obtained when the “1” entries are all aligned along

one row. Instead, the maximum value equals T and is obtained when
each “1” entry is placed in a different row (we assume here that d ≥ T ).

When the feature matrix U is prescribed and Â minimizes the con-
vex function E(·, U) the number of nonzero components of the vector

b(Â) will typically be nonincreasing with γ. This sparsity property can
be better understood by considering the case that there is only one
task, say task t. In this case, function (2) is given by

m∑

i=1

L(yti, 〈at, U
>xti〉) + γ‖at‖2

1. (3)

It is well known that using the 1-norm leads to sparse solutions, that
is, many components of the learned vector at are zero, see [14] and
references therein. Moreover, the number of nonzero components of a
solution of problem (3) is typically a nonincreasing function of γ [26].

Since we do not simply want to select the features but also learn
them, we further minimize the function E over U . Therefore, our ap-
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proach for multi-task feature learning is to solve the optimization prob-
lem

min
{
E(A, U) : U ∈ Od, A ∈ R

d×T
}

. (4)

This method learns a low-dimensional representation which is shared
across the tasks. As in the single-task case, the number of features
learned will be typically nonincreasing with the regularization param-
eter – we will present experimental evidence of this in Section 6.

We note that solving problem (4) is challenging for two main rea-
sons. First, it is a non-convex problem, although it is separately convex
in each of the variables A and U . Secondly, the regularizer ‖A‖2

2,1 is
not smooth, which makes the optimization problem more difficult. In
the next two sections, we will show how to find a global optimal solu-
tion of this problem through solving an equivalent convex optimization
problem. From this point on we assume that A = 0 does not minimize
problem (4), which would be clearly a case of no practical interest.

We conclude this section by noting that when matrix U is not
learned and we set U = Id×d, problem (4) selects a small set of vari-
ables, common across the tasks. In this case, we have the following
convex optimization problem

min

{
T∑

t=1

m∑

i=1

L(yti, 〈at, xti〉) + γ‖A‖2
2,1 : A ∈ R

d×T

}
. (5)

We shall return to problem (5) in Sections 3 and 4 where we present
an algorithm for solving it.

3 Equivalent Convex Optimization Problem

In this section, we present a central result of this paper. We show that
the non-convex and nonsmooth problem (4) can be transformed into
an equivalent convex problem. To this end, for every W ∈ R

d×T with
columns wt and D ∈ Sd

+, we define the function

R(W, D) =
T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ
T∑

t=1

〈wt, D
+wt〉. (6)

Under certain constraints, this objective function gives rise to a convex
optimization problem, as we will show in the following. Furthermore,
even though the regularizer in R is still nonsmooth, in Section 4 we
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will show that partial minimization with respect to D has a closed-
form solution and this fact leads naturally to a globally convergent
optimization algorithm.

We begin with the main result of this section.

Theorem 1. Problem (4) is equivalent to the problem

min
{
R(W, D) : W ∈ R

d×T , D ∈ Sd
+, trace(D) ≤ 1,

range(W ) ⊆ range(D)
}
. (7)

In particular, if (Â, Û) is an optimal solution of (4) then

(Ŵ , D̂) =


Û Â , Û Diag

(
‖âi‖2

‖Â‖2,1

)d

i=1

Û>




is an optimal solution of problem (7); conversely, if (Ŵ , D̂) is an opti-

mal solution of problem (7) then any (Â, Û), such that the columns of

Û form an orthonormal basis of eigenvectors of D̂ and Â = Û>Ŵ , is
an optimal solution of problem (4).

To prove the theorem, we first introduce the following lemma which
will be useful in our analysis.

Lemma 1. For any b = (b1, . . . , bd) ∈ R
d such that bi 6= 0, i ∈ Nd, we

have that

min

{
d∑

i=1

b2
i

λi
: λi > 0,

d∑

i=1

λi ≤ 1

}
= ‖b‖2

1 (8)

and the minimizer is λ̂i = |bi|
‖b‖1

, i ∈ Nd.

Proof. From the Cauchy-Schwarz inequality we have that

‖b‖1 =
d∑

i=1

λ
1

2

i λ
− 1

2

i |bi| ≤
(

d∑

i=1

λi

) 1

2
(

d∑

i=1

λ−1
i b2

i

) 1

2

≤
(

d∑

i=1

λ−1
i b2

i

) 1

2

.

The minimum is attained if and only if
λ

1
2

i

λ
−

1
2

i |bi|
=

λ
1
2

j

λ
−

1
2

j |bj |
for all i, j ∈ Nd

and
∑d

i=1 λi = 1. Hence the minimizer satisfies λi = |bi|
‖b‖1

. ut

We can now prove Theorem 1.
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Proof of Theorem 1. First suppose that (A, U) belongs to the feasible

set of problem (4). Let W = UA and D = U Diag
(

‖ai‖2

‖A‖2,1

)d

i=1
U>.

Then

T∑

t=1

〈wt, D
+wt〉 = trace(W>D+W )

= trace
(
A>U>U Diag

(
‖A‖2,1 ‖ai‖+

2

)d
i=1

U>UA
)

= ‖A‖2,1 trace
(
Diag

(
‖ai‖+

2

)d
i=1

AA>

)

= ‖A‖2,1

d∑

i=1

‖ai‖+
2 ‖ai‖2

2 = ‖A‖2
2,1.

Therefore, R(W, D) = E(A, U). Moreover, notice that W is a multiple
of the submatrix of U which corresponds to the nonzero ai and hence
to the nonzero eigenvalues of D. Thus, we obtain the range constraint
in problem (7). Therefore, the infimum (7) does not exceed the mini-
mum (4). Conversely, suppose that (W, D) belongs to the feasible set

of problem (7). Let D = UDiag (λi)
d
i=1 U> be an eigendecomposition

and A = U>W . Then

T∑

t=1

〈wt, D
+wt〉 = trace

(
Diag

(
λ+

i

)d
i=1

AA>

)
=

d∑

i=1

λ+
i ‖ai‖2

2.

If λi = 0 for some i ∈ Nd, then ui ∈ null(D) and using the range
constraint and W = UA we deduce that ai = 0. Consequently,

d∑

i=1

λ+
i ‖ai‖2

2 =
∑

ai 6=0

‖ai‖2
2

λi
≥


∑

ai 6=0

‖ai‖2




2

= ‖A‖2
2,1,

where we have used Lemma 1. Therefore, E(A, U) ≤ R(W, D) and the
minimum (4) does not exceed the infimum (7). Because of the above
application of Lemma 1, we see that the infimum (7) is attained. Finally,
the condition for the minimizer in Lemma 1 yields the relationship
between the optimal solutions of problems (4) and (7). ut

In problem (7) we have bounded the trace of matrix D from above,
because otherwise the optimal solution would be to simply set D = ∞
and only minimize the empirical error term in the right hand side of
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equation (6). Similarly, we have imposed the range constraint to ensure
that the penalty term is bounded below and away from zero. Indeed,
without this constraint, it may be possible that DW = 0 when W
does not have full rank, in which case there is a matrix D for which∑T

t=1 〈wt, D
+wt〉 = trace(W>D+W ) = 0.

In fact, the presence of the range constraint in problem (7) is due
to the presence of the pseudoinverse in R. As the following corollary
shows, it is possible to eliminate this constraint and obtain the smooth
regularizer 〈wt, D

−1wt〉 at the expense of not always attaining the min-
imum.

Corollary 1. Problem (7) is equivalent to the problem

inf
{
R(W, D) : W ∈ R

d×T , D ∈ Sd
++, trace(D) ≤ 1

}
. (9)

In particular, any minimizing sequence of problem (9) converges to a
minimizer of problem (7).

Proof. The theorem follows immediately from Theorem 1 and the
equality of the min and inf problems in Appendix A. ut

Returning to the discussion of Section 2 on the (2, 1)-norm, we note

that the rank of the optimal matrix D̂ indicates how many common
relevant features the tasks share. Indeed, it is clear from Theorem 1 that
the rank of matrix D̂ equals the number of nonzero rows of matrix Â.

We also note that problem (7) is similar to that in [16], where the

regularizer is
∑T

t=1 〈(wt−w0), D
+(wt−w0)〉 instead of

∑T
t=1 〈wt, D

+wt〉
– that is, in our formulation we do not penalize deviations from a
common “mean” w0.

The next proposition establishes that problem (7) is convex.

Proposition 1. Problem (7) is a convex optimization problem.

Proof. Let us define the function f : R
d × Sd → R ∪ {+∞} as

f(w, D) :=

{
w>D+w if D ∈ Sd

+ and w ∈ range(D)

+∞ otherwise
.

It clearly suffices to show that f is convex since L is convex in the
second argument and the trace constraint on D is convex. To prove
that f is convex, we show that f can be expressed as a supremum of
convex functions, specifically that
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f(w, D) = sup{w>v + trace(ED) : E ∈ Sd, v ∈ R
d, 4E + vv> ∈ Sd

−},
w ∈ R

d, D ∈ Sd.

To prove this equation, we first consider the case D /∈ Sd
+. We let u

be an eigenvector of D corresponding to a negative eigenvalue and set
E = auu>, a ≤ 0, v = 0 to obtain that the supremum on the right
equals +∞. Next, we consider the case that w /∈ range(D). We can
write w = Dz + n, where z, n ∈ R

d, n 6= 0 and n ∈ null(D). Thus,

w>v + trace(ED) = z>Dv + n>v + trace(ED)

and setting E = − 1
4vv>, v = an, a ∈ R+, we obtain +∞ as the supre-

mum. Finally, we assume that D ∈ Sd
+ and w ∈ range(D). Combining

with E + 1
4vv> ∈ Sd

− we get that trace((E + 1
4vv>)D) ≤ 0. Therefore

w>v + trace(ED) ≤ w>v − 1

4
v>Dv

and the expression on the right is maximized for w = 1
2Dv and obtains

the maximal value

1

2
v>Dv − 1

4
v>Dv =

1

4
v>Dv =

1

4
v>DD+Dv = w>D+w.

ut

We conclude this section by noting that when matrix D in problem
(7) is additionally constrained to be diagonal, we obtain a problem
equivalent to (5). Formally, we have the following corollary.

Corollary 2. Problem (5) is equivalent to the problem

min

{
R(W, Diag(λ)) : W ∈ R

d×T , λ ∈ R
d
+,

d∑

i=1

λi ≤ 1,

λi 6= 0 whenever wi 6= 0

}
(10)

and the optimal λ̂ is given by

λ̂i =
‖ŵi‖2

‖Ŵ‖2,1

, i ∈ Nd. (11)
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4 Alternating Minimization Algorithm

In this section, we discuss an algorithm for solving the convex optimiza-
tion problem (7) which, as we prove, converges to an optimal solution.
The proof of convergence is a key technical result of this paper. By
Theorem 1 above this algorithm will also provide us with a solution for
the multi-task feature learning problem (4).

The algorithm is a technical modification of the one developed in
[16], where a variation of problem (7) was solved by alternately mini-
mizing function R with respect to D and W . It minimizes a perturba-
tion of the objective function (6) with a small parameter ε > 0. This
allows us to prove convergence to an optimal solution of problem (7)
by letting ε → 0 as shown below. We also have observed that, in prac-
tice, alternating minimization of the unperturbed objective function
(6) converges to an optimal solution of (7), although this may not be
true in theory.

The algorithm we now present minimizes the function Rε : R
d×T ×

Sd
++ → R, given by

Rε(W, D) =

T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ trace(D−1(WW> + εId)),

which keeps D nonsingular. The regularizer in this function is smooth
and, as we show in Appendix B (Proposition 3), Rε has a unique min-
imizer.

We now describe the two steps of Algorithm 1 for minimizing Rε. In
the first step, we keep D fixed and minimize over W , that is we solve
the problem

min

{
T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ
T∑

t=1

〈wt, D
−1wt〉 : W ∈ R

d×T

}
,

where, recall, wt are the columns of matrix W . This minimization can
be carried out independently across the tasks since the regularizer de-
couples when D is fixed. More specifically, introducing new variables

for D− 1

2 wt yields a standard 2-norm regularization problem for each
task with the same kernel K(x, x′) = x>Dx′.

In the second step, we keep matrix W fixed, and minimize Rε with
respect to D. To this end, we solve the problem

min

{
T∑

t=1

〈wt, D
−1wt〉 + ε trace(D−1) : D ∈ Sd

++, trace(D) ≤ 1

}
. (12)
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Algorithm 1 (Multi-Task Feature Learning)

Input: training sets {(xti, yti)}m
i=1, t ∈ NT

Parameters: regularization parameter γ, tolerances ε, tol

Output: d × d matrix D, d × T regression matrix W = [w1, . . . , wT ]

Initialization: set D = Id

d

while ‖W − Wprev‖ > tol do

for t = 1, . . . , T do

compute wt = argmin
{∑m

i=1 L(yti, 〈w, xti〉) + γ〈w,D−1w〉 : w ∈ R
d
}

end for

set D = (WW>+εId)
1

2

trace(WW>+εId)
1

2

end while

The term trace(D−1) keeps the D-iterates of the algorithm at a certain
distance from the boundary of Sd

+ and plays a role similar to that of
the barrier used in interior-point methods. In Appendix A, we provide
a proof that the optimal solution of problem (12) is given by

Dε(W ) =
(WW> + εId)

1

2

trace(WW> + εId)
1

2

(13)

and the optimal value equals
(
trace(WW> + εId)

1

2

)2
. In the same

appendix, we also show that for ε = 0, equation (13) gives the minimizer
of the function R(W, ·) subject to the constraints in problem (7).

Algorithm 1 can be interpreted as alternately performing a super-
vised and an unsupervised step. In the former step we learn task-specific
functions (namely the vectors wt) using a common representation across
the tasks. This is because D encapsulates the features ui and thus the
feature representation is kept fixed. In the unsupervised step, the re-
gression functions are fixed and we learn the common representation. In
effect, the (2, 1)-norm criterion favors the most concise representation
which “models” the regression functions through W = UA.

We now present some convergence properties of Algorithm 1. We
state here only the main results and postpone their proofs to Appendix
B. Let us denote the value of W at the n-th iteration by W (n). First,
we observe that, by construction, the values of the objective are non-
increasing, that is,
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Rε(W
(n+1), Dε(W

(n+1))) ≤ min{Rε(V, Dε(W
(n))) : V ∈ R

d×T } ≤
Rε(W

(n), Dε(W
(n))) .

These values are also bounded, since L is bounded from below, and thus
the iterates of the objective function converge. Moreover, the iterates
W (n) also converge as stated in the following theorem.

Theorem 2. For every ε > 0, the sequence {(W (n), Dε(W
(n)) : n ∈ N}

converges to the minimizer of Rε subject to the constraints in (12).

Algorithm 1 minimizes the perturbed objective Rε. In order to ob-
tain a minimizer of the original objective R, we can employ a modified
algorithm in which ε is reduced towards zero whenever W (n) has sta-
bilized near a value. Our next theorem shows that the limiting points
of such an algorithm are optimal.

Theorem 3. Consider a sequence of functions {Rε`
: ` ∈ N} such that

ε` → 0 as ` → ∞. Any limiting point of the minimizers of this sequence
(subject to the constraints in (12)) is an optimal solution to (7).

We proceed with a few remarks on an alternative formulation for
problem (7). By substituting equation (13) with ε = 0 in equation (6)
for R, we obtain a regularization problem in W only, which is given by

min

{
T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ‖W‖2
tr : W ∈ R

d×T

}
,

where we have defined ‖W‖tr := trace(WW>)
1

2 .
The expression ‖W‖tr in the regularizer is called the trace norm. It

can also be expressed as the sum of the singular values of W . As shown
in [17], the trace norm is the convex envelope of rank(W ) in the unit
ball, which gives another interpretation of the relationship between the
rank and γ in our experiments. Solving this problem directly is not
easy, since the trace norm is nonsmooth. Thus, we have opted for the
alternating minimization strategy of Algorithm 1, which is simple to
implement and natural to interpret. We should note here that a similar
problem has been studied in [31] for the particular case of an SVM
loss function. It was shown there that the optimization problem can be
solved through an equivalent semidefinite programming problem. We
will further discuss relations with that work as well as other work in
Section 7.

We conclude this section by noting by Corollary 2 that we can make
a simple modification to Algorithm 1 so that it can be used to solve the
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variable selection problem (5). Specifically, we modify the computation
of the matrix D (penultimate line in Algorithm 1) as D = Diag(λ),
where the vector λ = (λ1, . . . , λd) is computed using equation (11).

5 Learning Nonlinear Features

In this section, we consider the case that the features are associated
to a kernel and hence they are in general nonlinear functions of the
input variables. First, in Section 5.1 we use a representer theorem for
an optimal solution of problem (7), in order to obtain an optimization
problem of bounded dimensionality. Then, in Section 5.2 we show how
to solve this problem using a novel algorithm which is a variation of
Algorithm 1. This algorithm differs from the nonlinear one of [16], being
simpler to implement and relying on the representer theorem of Section
5.1.

5.1 A Representer Theorem

We begin by restating our optimization problem when the functions
learned belong to a reproducing kernel Hilbert space, see e.g. [27, 33]
and references therein. Formally, we now wish to learn T regression
functions ft, t ∈ NT of the form

ft(x) = 〈at, U
>ϕ(x)〉 = 〈wt, ϕ(x)〉 , x ∈ R

d,

where ϕ : R
d → R

M denotes the feature map. This map will, in gen-
eral, be nonlinear and its dimensionality M may be large. In fact, the
theoretical and algorithmic results which follow apply to the case of an
infinite dimensionality as well. As typical, we assume that the kernel
function K(x, x′) = 〈ϕ(x), ϕ(x′)〉 is given. As before, in the following we
will use the subscript notation for the columns of a matrix, for example
wt denotes the t-th column of matrix W .

We begin by recalling that Appendix A applied to problem (7) leads
to a problem in W with the trace norm in the regularizer. Modifying
slightly to account for the feature map, we obtain the problem

min

{
T∑

t=1

m∑

i=1

L(yti, 〈wt, ϕ(xti)〉) + γ‖W‖2
tr : W ∈ R

d×T

}
. (14)

This problem can be viewed as a generalization of the standard 2-
norm regularization problem. Indeed, in the case t = 1 the trace norm
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‖W‖tr is simply equal to ‖w1‖2. In this case, it is well known that an
optimal solution w ∈ R

d of such a problem is in the span of the training
data, that is

w =
m∑

i=1

ci ϕ(xi)

for some ci ∈ R, i = 1, . . . , m. This result is known as the representer
theorem – see e.g., [33]. We now extend this result to the more general
form (14). A related representer theorem was first proved in [2]. Here,
we give an alternative proof connected to the theory of operator mono-
tone functions. We also note that this theorem is being extended to a
general family of spectral norms in [6].

Theorem 4. If W is an optimal solution of problem (14) then for every
t ∈ NT there exists a vector ct ∈ R

mT such that

wt =
T∑

s=1

m∑

i=1

(ct)siϕ(xsi). (15)

Proof. Let L = span{ϕ(xsi) : s ∈ NT , i ∈ Nm}. We can write wt =
pt + nt , t ∈ NT where pt ∈ L and nt ∈ L⊥. Hence W = P + N ,
where P is the matrix with columns pt and N the matrix with columns
nt. Moreover we have that P>N = 0. From Lemma 3 in Appendix
C, we obtain that ‖W‖tr ≥ ‖P‖tr. We also have that 〈wt, ϕ(xti)〉 =
〈pt, ϕ(xti)〉. Thus, we conclude that whenever W is optimal, N must
be zero. ut

An alternative way to write (15), using matrix notation, is to express
W as a multiple of the input matrix. The latter is the matrix Φ ∈
R

M×mT whose (t, i)-th column is the vector ϕ(xti) ∈ R
M , t ∈ NT , i ∈

Nm. Hence, denoting with C ∈ R
mT×T the matrix with columns ct,

equation (15) becomes
W = Φ C. (16)

We now apply Theorem 4 to problem (14) in order to obtain an
equivalent optimization problem in a number of variables independent
of M . This theorem implies that we can restrict the feasible set of (14)
only to matrices W ∈ R

d×T satisfying (16) for some C ∈ R
mT×T .

Let L = span{ϕ(xti) : t ∈ NT , i ∈ Nm} as above and let δ its dimen-
sionality. In order to exploit the unitary invariance of the trace norm,
we consider a matrix V ∈ R

M×δ whose columns form an orthogonal
basis of L. Equation (16) implies that there is a matrix Θ ∈ R

δ×T such
that
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W = V Θ . (17)

Substituting equation (17) in the objective of (14) yields the objec-
tive function

T∑

t=1

m∑

i=1

L(yti, 〈V ϑt, ϕ(xti)〉) + γ
(
trace(V ΘΘ>V >)

1

2

)2
=

T∑

t=1

m∑

i=1

L(yti, 〈ϑt, V
>ϕ(xti)〉) + γ

(
trace(ΘΘ>)

1

2

)2
=

T∑

t=1

m∑

i=1

L(yti, 〈ϑt, V
>ϕ(xti)〉) + γ‖Θ‖2

tr .

Thus, we obtain the following proposition.

Proposition 2. Problem (14) is equivalent to

min

{
T∑

t=1

m∑

i=1

L(yti, 〈ϑt, zti〉) + γ‖Θ‖2
tr : Θ ∈ R

δ×T

}
, (18)

where
zti = V >ϕ(xti) , t ∈ NT , i ∈ Nm . (19)

Moreover, there is an one-to-one correspondence between optimal solu-
tions of (14) and those of (18), given by W = V Θ.

Problem (18) is a problem in δT variables, where δT ≤ mT 2, and
hence it can be tractable regardless of the dimensionality M of the
original features.

5.2 An Alternating Algorithm for Nonlinear Features

We now address how to solve problem (18) by applying the same strat-
egy as in Algorithm 1. It is clear from the discussion in Section 4 that
(18) can be solved with an alternating minimization algorithm, which
we present as Algorithm 2.

In the initialization step, Algorithm 2 computes a matrix R ∈ R
δ×δ

which relates the orthogonal basis V of L with a basis {ϕ(xtν iν ) , ν ∈
Nδ, tν ∈ NT , iν ∈ Nm} from the inputs. We can write this relation as

V = Φ̃R (20)

where Φ̃ ∈ R
M×δ is the matrix whose ν-th column is the vector ϕ(xtν iν ).
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Algorithm 2 (Multi-Task Feature Learning with Kernels)

Input: training sets {(xti, yti)}m
i=1, t ∈ NT

Parameters: regularization parameter γ, tolerances ε, tol

Output: δ × T coefficient matrix B = [b1, . . . , bT ], indices {(tν , iν) : ν ∈
Nδ} ⊆ NT × Nm

Initialization: using only the kernel values, find a matrix R ∈ R
δ×δ and in-

dices {(tν , iν)} such that
{∑δ

ν=1 ϕ(xtν iν
)rνµ : µ ∈ Nδ

}
form an orthogonal

basis for the features on the training data

compute the modified inputs zti = R> (K(xtν iν
, xti))

δ
ν=1 , t ∈ NT , i ∈ Nm

set ∆ = Iδ

δ

while ‖Θ − Θprev‖ > tol do

for t = 1, . . . , T do

compute ϑt = argmin
{∑m

i=1 L(yti, 〈ϑ, zti〉) + γ〈ϑ,∆−1ϑ〉 : ϑ ∈ R
δ
}

end for

set ∆ = (ΘΘ>+εIδ)
1

2

trace(ΘΘ>+εIδ)
1

2

end while

return B = RΘ and {(tν , iν) : ν ∈ Nδ}

To compute R using only Gram matrix entries, one approach is
Gram-Schmidt orthogonalization. At each step, we consider an input
xti and determine whether it enlarges the current subspace or not by
computing kernel values with the inputs forming the subspace. How-
ever, Gram-Schmidt orthogonalization is sensitive to round-off errors,
which can affect the accuracy of the solution ([19, Sec. 5.2.8]). A more
stable but computationally less appealing approach is to compute an
eigendecomposition of the mT × mT Gram matrix Φ>Φ. A middle
strategy may be preferable, namely, randomly select a reasonably large
number of inputs and compute an eigendecomposition of their Gram
matrix; obtain the basis coefficients; complete the vector space with a
Gram-Schmidt procedure.

After the computation of R, the algorithm computes the inputs in
(19), which by (20) equal zti = V >ϕ(xti) = R>Φ̃>ϕ(xti) = R>K̃(xti).

We use K̃(x) to denote the δ-vector with entries K(xtν iν , x), ν ∈ Nδ. In
the main loop, the Θ-step solves T independent regularization problems
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using the Gram entries z>

ti∆ztj , i, j ∈ Nm, t ∈ NT . The ∆-step is the
computation of a δ × δ matrix square root.

Finally, the output of the algorithm, matrix B, satisfies that

W = Φ̃B (21)

by combining equations (17) and (20). Thus, a prediction on a new
input x ∈ R

d is computed as

ft(x) = 〈wt, ϕ(x)〉 = 〈bt, Φ̃
>x〉 = 〈bt, K̃(x)〉, t ∈ NT .

One can also express the learned features in terms of the in-
put basis {ϕ(xtν iν ) : ν ∈ Nδ}. To do this, we need to compute an

eigendecomposition of B>K̃B, where K̃ = Φ̃> Φ̃ is the kernel ma-
trix on the basis points. Indeed, we know that W = ŨΣQ>, where
Ũ ∈ R

M×δ′ , Σ ∈ Sδ′

++ diagonal, Q ∈ R
T×δ′ orthogonal, δ′ ≤ δ, and the

columns of Ũ are the significant features learned. From this and (21)
we obtain that

Ũ = Φ̃BQΣ−1 (22)

and Σ, Q can be computed from

QΣ2Q> = W>W = B>Φ̃> Φ̃B .

Finally, the coefficient matrix A can be computed from W = UA, (21)
and (22), yielding

A =


ΣQ>

0


 .

The computational cost of Algorithm 2 depends mainly on the di-
mensionality δ of L. Note that kernel evaluations using K appear only
in the initialization step. There are O(δmT ) kernel computations dur-
ing the orthogonalization process and O(δ2mT ) additional operations
for computing the vectors zti. However, these costs are incurred only
once. Within each iteration, the cost of computing the Gram matrices
in the Θ-step is O(δ2m2T ) and the cost of each learning problem de-
pends on δ. The matrix square root computation in the ∆-step involves
O(δ3) operations. Thus, for most commonly used loss functions, it is
expected that the overall cost of the algorithm is O(δ2m2T ) operations.
In particular, in several cases of interest, such as when all tasks share
the same training inputs, δ can be small and Algorithm 2 can be par-
ticularly efficient. We would also like to note here that experimental
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trials, which are reported in Section 6, showed that usually between 20
and 100 iterations were sufficient for Algorithms 1 and 2 to converge.

As a final remark, we note that an algorithm similar to Algorithm
2 would not work for variable selection. This is true because Theorem
4 does not apply to the optimization problem (10), where matrix D
is constrained to be diagonal. Thus, variable selection – and in par-
ticular 1-norm regularization – with kernels remains an open problem.
Nevertheless, this fact does not seem to be significant in the multi-task
context of this paper. As we will discuss in Section 6, variable selection
was outperformed by feature learning in our experimental trials. How-
ever, variable selection could still be important in a different setting,
when a set including some “good” features is a priori given and the
question is how to select exactly these features.

6 Experiments

In this section, we present numerical experiments with our methods,
both the linear Algorithm 1 and the nonlinear Algorithm 2, on synthetic
and real data sets. In all experiments, we used the square loss function
and automatically tuned the regularization parameter γ with cross-
validation.

6.1 Synthetic Data

We first used synthetic data to test the ability of the algorithms to
learn the common across tasks features. This setting makes it possible
to evaluate the quality of the features learned, as in this case we know
what the common across tasks features are.

Linear Synthetic Data

We consider the case of regression and a number of up to T = 200
tasks. Each of the wt parameters of these tasks was selected from a
5-dimensional Gaussian distribution with zero mean and covariance
Cov = Diag(1, 0.64, 0.49, 0.36, 0.25). To these 5-dimensional wt’s we
kept adding up to 20 irrelevant dimensions which are exactly zero. The
training and test data were generated uniformly from [0, 1]d where d
ranged from 5 to 25. The outputs yti were computed from the wt and xti

as yti = 〈wt, xti〉+ϑ, where ϑ is zero-mean Gaussian noise with standard
deviation equal to 0.1. Thus, the true features 〈ui, x〉 we wish to learn
were in this case just the input variables. However, we did not a priori
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Fig. 2. Linear synthetic data. Left: test error versus the number of variables,
as the number of tasks simultaneously learned changes. Right: Frobenius norm
of the difference of the learned and actual matrices D versus the number of
variables, as the number of tasks simultaneously learned changes. This is a
measure of the quality of the learned features.

assume this and we let our algorithm learn – not select – the features.
That is, we used Algorithm 1 to learn the features, not its variant which
performs variable selection (see our discussion at the end of Section 4).
The desired result is a feature matrix U which is close to the identity
matrix (on 5 columns) and a matrix D approximately proportional to
the covariance Cov used to generate the task parameters (on a 5 × 5
principal submatrix).

We generated 5 and 20 examples per task for training and testing,
respectively. To test the effect of the number of jointly learned tasks
on the test performance and (more importantly) on the quality of the
features learned, we tried our methods with T = 10, 25, 100, 200 tasks.
For T = 10, 25 and 100, we averaged the performance metrics over
randomly selected subsets of the 200 tasks, so that our estimates have
comparable variance. We also estimated each of the 200 tasks indepen-
dently using standard ridge regressions.

We present, in Figure 2, the impact of the number of tasks simul-
taneously learned on the test performance as well as the quality of the
features learned, as the number of irrelevant variables increases. First,
as the left plot shows, in agreement with past empirical and theoretical
evidence – see e.g., [8] – learning multiple tasks together significantly
improves on learning the tasks independently, as the tasks are indeed
related in this case. Moreover, performance improves as the number of
tasks increases. More important, this improvement increases with the
number of irrelevant variables.

The plot on the right of Figure 2 is the most relevant one for our
purposes. It shows the distance of the learned features from the actual
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Fig. 3. Linear synthetic data. Left: number of features learned versus the
regularization parameter γ (see text for description). Right: matrix A learned,
indicating the importance of the learned features – the first 5 rows correspond
to the true features (see text). The color scale ranges from yellow (low values)
to purple (high values).

ones used to generate the data. More specifically, we depict the Frobe-
nius norm of the difference of the learned 5 × 5 principal submatrix
of D and the actual Cov matrix (normalized to have trace 1). We ob-
serve that adding more tasks leads to better estimates of the underlying
features, a key contribution of this paper. Moreover, like for the test
performance, the relative (as the number of tasks increases) quality of
the features learned increases with the number of irrelevant variables.
Similar results were obtained by plotting the residual of the learned U
from the actual one, which is the identity matrix in this case.

We also tested the effect of the regularization parameter γ on the
number of features learned (as measured by rank(D)) for 6 irrelevant
variables. We show the results on the left plot of Figure 3. As ex-
pected, the number of features learned decreases with γ. Finally, the
right plot in Figure 3 shows the absolute values of the elements of ma-
trix A learned using the parameter γ selected by leave-one-out cross-
validation. This is the resulting matrix for 6 irrelevant variables and all
200 simultaneously learned tasks. This plot indicates that our algorithm
learns a matrix A with the expected structure: there are only five im-
portant features. The (normalized) 2-norms of the corresponding rows
are 0.31, 0.21, 0.12, 0.10 and 0.09 respectively, while the true values (di-
agonal elements of Cov scaled to have trace 1) are 0.36, 0.23, 0.18, 0.13
and 0.09 respectively.

Nonlinear Synthetic Data

Next, we tested whether our nonlinear method (Algorithm 2) can out-
perform the linear one when the true underlying features are nonlin-
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Fig. 4. Nonlinear synthetic data. Left: test error versus number of variables
as the number of simultaneously learned tasks changes, using a quadratic +
linear kernel. Right: test error versus number of variables for 200 tasks, using
three different kernels (see text).
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Fig. 5. Matrix A learned in the nonlinear synthetic data experiment. The
first 7 rows correspond to the true features (see text).

ear. For this purpose, we created a new synthetic data set in the same
way as before, but this time we used a feature map φ : R

5 → R
7.

More specifically, we have 6 relevant linear and quadratic features
and a bias term: ϕ(x) =

(
x2

1, x
2
4, x1x2, x3x5, x2, x4, 1

)
. That is, the

outputs were generated as yti = 〈wt, ϕ(xti)〉 + ϑ, with the task pa-
rameters wt corresponding to the features above selected from a 7-
dimensional Gaussian distribution with zero mean and covariance equal
to Diag(0.5, 0.25, 0.1, 0.05, 0.15, 0.1, 0.15). All other components of each
wt were 0. The training and test sets were selected randomly from [0, 1]d

with d ranging from 5 to 10 and each set contained 20 examples per
task. Since there are more task parameters to learn than in the linear
case, we used more data per task for training in this simulation.
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We report the results in Figure 4. As for the linear case, the left plot
in the figure shows the test performance versus the number of tasks si-
multaneously learned, as the number of irrelevant variables increases.
Note that the dimensionality of the feature map scales quadratically
with the input dimensionality shown on the x-axis of the plot. The
kernel used for this plot was Kql(x, x′) := (x>x′ +1)2. This is a “good”
kernel for this data set because the corresponding feature map includes
all of the monomials of ϕ. The results are qualitatively similar to those
in the linear case. Learning multiple tasks together improves on learn-
ing the tasks independently. In this experiment, a certain number of
tasks (greater than 10) is required for improvement over independent
learning.

Next, we tested the effects of using the “wrong” kernel, as well as the
difference between using a nonlinear kernel versus using a linear one.
These are the most relevant to our purpose tests for this experiment. We
used three different kernels. One is the quadratic + linear kernel defined
above, the second is Kq(x, x′) := (x>x′)2 and the third Kl(x, x′) :=
x>x′ + 1. The results are shown on the right plot of Figure 4. First,
notice that since the underlying feature map involves both quadratic
and linear features, it would be expected that the first kernel gives the
best results, and this is indeed true. Second, notice that using a linear
kernel (and the linear Algorithm 1) leads to poorer test performance.
Thus, our nonlinear Algorithm 2 can exploit the higher approximating
power of the most complex kernel in order to obtain better performance.

Finally, Figure 5 contains the plot of matrix A learned for this ex-
periment using kernel Kql, no irrelevant variables and all 200 tasks
simultaneously, as we did in Figure 3 for the linear case. Similarly to
the linear case, our method learns a matrix A with the desired struc-
ture: only the first 7 rows have large entries. Note that the first 7 rows
correspond to the monomials of ϕ, while the remaining 14 rows corre-
spond to the other monomial components of the feature map associated
with the kernel.

6.2 Conjoint Analysis Experiment

Next, we tested our algorithms using a real data set from [23] about
people’s ratings of products.6 The data was taken from a survey of
180 persons who rated the likelihood of purchasing one of 20 differ-
ent personal computers. Here the persons correspond to tasks and the

6 We would like to thank Peter Lenk for kindly sharing this data set with us.



Convex Multi-Task Feature Learning 25

20 40 60 80 100 120 140 160 180
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

Fig. 6. Conjoint experiment with computer survey data: average root mean
square error vs. number of tasks.

computer models to examples. The input is represented by the follow-
ing 13 binary attributes: telephone hot line (TE), amount of memory
(RAM), screen size (SC), CPU speed (CPU), hard disk (HD), CD-
ROM/multimedia (CD), cache (CA), color (CO), availability (AV),
warranty (WA), software (SW), guarantee (GU) and price (PR). We
also added an input component accounting for the bias term. The out-
put is an integer rating on the scale 0 − 10. As in one of the cases in
[23], for this experiment we used the first 8 examples per task as the
training data and the last 4 examples per task as the test data. We
measure the root mean square error of the predicted from the actual
ratings for the test data, averaged across the persons.

We show results for the linear Algorithm 1 in Figure 6. In agreement
with the simulations results above and past empirical and theoretical
evidence – see e.g., [8] – the performance of Algorithm 1 improves as
the number of tasks increases. It also performs better (for all 180 tasks)
– test error is 1.93 – than independent ridge regressions, whose test
error is equal to 3.88. Moreover, as shown in Figure 7, the number of
features learned decreases as the regularization parameter γ increases,
as expected.

This data has been used also in [16]. One of the empirical findings
of [16, 23], a standard one regarding people’s preferences, is that es-
timation improves when one also shrinks the individual wt’s towards
a “mean of the tasks”, for example the mean of all the wt’s. Hence,
it may be more appropriate for this data set to use the regularization∑T

t=1 〈(wt − w0), D
+(wt − w0)〉 as in [16] instead of

∑T
t=1 〈wt, D

+wt〉
which we use here. Indeed, test performance is better with the former
than the latter. The results are summarized in Table 1. We also note
that the hierarchical Bayes method of [23], similar to that of [7], also
shrinks the wt’s towards a mean across the tasks. Algorithm 1 performs
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Fig. 7. Conjoint experiment with computer survey data: number of features
learned (with 180 tasks) versus the regularization parameter γ.
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Fig. 8. Conjoint experiment with computer survey data. Left: matrix A
learned, indicating the importance of features learned for all 180 tasks si-
multaneously. Right: the most important feature learned, common across the
180 people/tasks simultaneously learned.

similarly to hierarchical Bayes (despite not shrinking towars a mean of
the tasks) but worse than the method of [16]. However, we are mainly
interested here in learning the common across people/tasks features.
We discuss this next.

We investigate which features are important to all consumers as well
as how these features weight the 13 computer attributes. We demon-
strate the results in the two adjacent plots of Figure 8, which were
obtained by simultaneously learning all 180 tasks. The plot on the left
shows the absolute values of matrix A of feature coefficients learned for
this experiment. This matrix has only a few large rows, that is, only
a few important features are learned. In addition, the coefficients in
each of these rows do not vary significantly across tasks, which means
that the learned feature representation is shared across the tasks. The
plot on the right shows the weight of each input variable in the most
important feature. This feature seems to weight the technical charac-
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Table 1. Comparison of different methods for the computer survey data.
MTL-FEAT is the method developed here.

Method RMSE

Independent 3.88

Hierarchical Bayes [23] 1.90

RR-Het [16] 1.79

MTL-FEAT (linear kernel) 1.93

MTL-FEAT (Gaussian kernel) 1.85

MTL-FEAT (variable selection) 2.01

teristics of a computer (RAM, CPU and CD-ROM) against its price.
Note that (as mentioned in the introduction) this is different from se-
lecting the most important variables. In particular, in this case the
relative “weights” of the 4 variables used in this feature (RAM, CPU,
CD-ROM and price) are fixed across all tasks/people.

We also tested our multi-task variable selection method, which con-
strains matrix D in Algorithm 1 to be diagonal. This method led to
inferior performance. Specifically, for T = 180, our multi-task variable
selection method had test error equal to 2.01, which is worse than the
1.93 error achieved with our multi-task feature learning method. This
supports the argument that “good” features should combine multiple
attributes in this problem. Finally, we tested Algorithm 2 with a Gaus-
sian kernel, achieving a slight improvement in performance – see Table
1. By considering radial kernels of the form K(x, x′) = e−ω‖x−x′‖2

and
selecting ω through cross-validation, we obtained a test error of 1.85
for all 180 tasks. However, interpreting the features learned is more
complicated in this case, because of the infinite dimensionality of the
feature map for the Gaussian kernel.

6.3 School Data

We have also tested our algorithms on the data from the Inner London
Education Authority, available at the web site of the Center for Multi-
level Modeling7. This data set has been used in previous work on multi-
task learning, for example in [18], [7] and [15]. It consists of examination

7 Available at http://www.mlwin.com/intro/datasets.html.
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scores of 15362 students from 139 secondary schools in London during
the years 1985, 1986, 1987. Thus, there are 139 tasks, corresponding
to predicting student performance in each school. The input consists
of the year of the examination (YR), 4 school-specific and 3 student-
specific attributes. Attributes which are constant in each school in a
certain year are: percentage of students eligible for free school meals,
percentage of students in VR band one (highest band in a verbal rea-
soning test), school gender (S.GN.) and school denomination (S.DN.).
Student-specific attributes are: gender (GEN), VR band (can take the
values 1,2 or 3) and ethnic group (ETH). Following [15], we replaced
categorical attributes (that is, all attributes which are not percentages)
with one binary variable for each possible attribute value. In total, we
obtained 27 attributes.

We generated the training and test sets by 10 random splits of the
data, so that 75% of the examples from each school (task) belong to
the training set and 25% to the test set. We note that the number
of examples (students) differs from task to task (school). On average,
the training set includes about 80 students per school and the test set
about 30 students per school. Moreover, we tuned the regularization
parameter with 15-fold cross-validation. To account for different school
populations, we computed the cross-validation error within each task
and then normalized according to school population. The overall mean
squared test error was computed by normalizing for each school in
a similar way. In order to compare with previous work on this data
set, we used the measure of percentage explained variance from [7].
Explained variance is defined as one minus the mean squared test error
over the total variance of the data and indicates the percentage of
variance explained by the prediction model.

The results for this experiment are shown in Table 2. For compari-
son, we have also reported the best result from [7], which was obtained
with a hierarchical Bayesian multi-task method described therein, and
that obtained in [15] with a multi-task regularization method using
〈(wt − w0), (wt − w0)〉 for regularization (unlike our method, no ma-
trix D was included and estimated). We note that a number of key
differences between Bayesian approaches, like the one of [7] and [23],
and regularization ones, like the one discussed in this paper, have been
analyzed in [16] – we refer the reader to that work for more information
on this issue. As shown in the table, our multi-task feature learning al-
gorithm has superior performance over the other methods for this data
set.
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Table 2. Comparison of different methods for the school data.

Method Explained variance

Independent 22.3 ± 1.9%

Bayesian MTL [7] 29.5 ± 0.4%

Regularized MTL [15] 34.8 ± 0.5%

MTL-FEAT (linear kernel) 37.1 ± 1.5%

MTL-FEAT (Gaussian kernel) 37.6 ± 1.0%
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Fig. 9. School data. Left: matrix A learned for the school data set using a
linear kernel. For clarity, only the 15 most important learned features/rows
are shown. Right: The most important feature learned, common across all 139
schools/tasks simultaneously learned.

This data set seems well-suited to the approach we have proposed,
as one may expect the learning tasks to be very related – as also dis-
cussed in [7, 15] – in the sense assumed in this paper. Indeed, one may
expect that academic achievement should be influenced by the same
factors across schools, if we exclude statistical variation of the student
population within each school. This is confirmed in Figure 9, where the
learned coefficients and the most important feature are shown. As ex-
pected, the predicted examination score depends very strongly on the
student’s VR band. The other factors are much less significant. Ethnic
background (primarily British-born, Carribean and Indian) and gender
have the next largest influence. What is most striking perhaps is that
none of the school-specific attributes has any noticeable significance.

Finally, the effects of the number of tasks on the test performance
and of the regularization parameter γ on the number of features learned
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Table 3. Performance of the algorithms for the dermatology data.

Method Misclassifications

Independent (linear) 16.5 ± 4.0

MTL-FEAT (linear) 16.5 ± 2.6

Independent (Gaussian) 9.8 ± 3.1

MTL-FEAT (Gaussian) 9.5 ± 3.0
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Fig. 10. Dermatology data. Feature coefficients matrix A learned, using a
linear kernel.

are similar to those for the conjoint and synthetic data: as the number
of tasks increases, test performance improves and as γ increases sparsity
increases. These plots are similar to Figures 6 and 7 and are not shown
for brevity.

6.4 Dermatology Data

Finally, we discuss a real-data experiment where it seems (as these are
real data, we cannot know for sure whether indeed this is the case)
that the tasks are unrelated (at least in the way we have defined in
this paper). In this case, our methods find features which are different
across the tasks and do not improve or decrease performance relative
to learning each task independently.
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We used the UCI dermatology data set8 as in [22]. The problem is a
multi-class one, namely to diagnose one of six dermatological diseases
based on 33 clinical and histopathological attributes. As in the afore-
mentioned paper, we obtained a multi-task problem from the six binary
classification tasks. We divided the data set into 10 random splits of
200 training and 166 testing points and measured the average test error
across these splits.

We report the misclassification test error in Table 3. Algorithm 1
gives similar performance to that obtained in [22] with joint feature se-
lection and linear SVM classifiers. However, similar performance is also
obtained by training 6 independent classifiers. The test error decreased
when we ran Algorithm 2 with a single-parameter Gaussian kernel, but
it is again similar to that obtained by training 6 independent classifiers
with a Gaussian kernel. Hence one may conjecture that these tasks are
weakly related to each other or unrelated in the way we define in this
paper.

To further explore this point, we show the matrix A learned by
Algorithm 1 in Figure 10. This figure indicates that different tasks
(diseases) are explained by different features. These results reinforce our
hypothesis that these tasks may be independent. They indicate that in
such a case our methods do not “hurt” performance by simultaneously
learning all tasks. In other words, in this problem our algorithms did
learn a “sparse common representation” but did not – and probably
should not – force each feature learned to be equally important across
the tasks.

7 Conclusion

We have presented an algorithm which learns common sparse repre-
sentations across a pool of related tasks. These representations are as-
sumed to be orthonormal functions in a reproducing kernel Hilbert
space. Our method is based on a regularization problem with a novel
type of regularizer, which is a mixed (2, 1)-norm.

We showed that this problem, which is non-convex, can be reformu-
lated as a convex optimization problem. This result makes it possible
to compute the optimal solutions using a simple alternating minimiza-
tion algorithm, whose convergence we have proven. For the case of a
high-dimensional feature map, we have developed a variation of the
algorithm which uses kernel functions. We have also proposed a varia-

8 Available at http://www.ics.uci.edu/mlearn/MLSummary.html.
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tion of the first algorithm for solving the problem of multi-task feature
selection with a linear feature map.

We have reported experiments with our method on synthetic and
real data. They indicate that our algorithms learn sparse feature rep-
resentations common to all the tasks whenever this helps improve per-
formance. In this case, the performance obtained is better than that
of training the tasks independently. Moreover, when applying our al-
gorithm on a data set with weak task interdependence, performance
does not deteriorate and the representation learned reflects the lack
of task relatedness. As indicated in the experiments, one can also use
the estimated matrix A to visualize the task relatedness. Finally, our
experiments have shown that learning orthogonal features improves on
just selecting input variables.

To our knowledge, our approach provides the first convex optimiza-
tion formulation for multi-task feature learning. Although convex opti-
mization methods have been derived for the simpler problem of feature
selection [22], prior work on multi-task feature learning has been based
on more complex optimization problems which are not convex [3, 8, 13]
and, so, are at best only guaranteed to converge to a local minimum.

Our algorithm also shares some similarities with recent work in [3]
where they also alternately update the task parameters and the fea-
tures. Two main differences are that their formulation is not convex
and that, in our formulation, the number of learned features is not
fixed in advance but it is controlled by a regularization parameter.

As noted in Section 4, our work relates to that in [31], which investi-
gates regularization with the trace norm in the context of collaborative
filtering. Regularization with the trace norm for collaborative filtering
is also investigated in [2]. In fact, the sparsity assumption which we
have made in our work, starting with the (2, 1)-norm, connects to the
low rank assumption in that work. Hence, it may be possible that our
alternating algorithm, or some variation of it, could be used to solve
the optimization problems of [31, 2]. Such an algorithm could be used
with any convex loss function.

Our work may be extended in different directions. First, it would
be interesting to carry out a learning theory analysis of the algorithms
presented in this paper. Results in [12, 25] may be useful for this pur-
pose. Another interesting question is to study how the solutions of our
algorithm depend on the regularization parameter and investigate con-
ditions which ensure that the number of features learned decreases with
the degree of regularization, as we have experimentally observed in this
paper. Results in [26] may be useful for this purpose.
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Second, on the algorithmic side, it would be interesting to explore
whether our formulation can be extended to the more general class of
spectral norms in place of the trace norm. A special case of interest is
the (2, p)-norm for p ∈ [1,∞). This question is being addressed in [6].

Finally, a promising research direction is to explore whether differ-
ent assumptions about the features (other than the orthogonality one
which we have made throughout this paper) can still lead to convex
optimization methods for learning other types of features. More specif-
ically, it would be interesting to study whether non-convex models for
learning structures across the tasks, like those in [35] where ICA type
features are learned, or hierarchical features models like in [32], can be
reformulated in our framework.
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A Proof of Equation (13)

Proof. Consider a matrix C ∈ Sd
+. We will compute inf{trace(D−1C) :

D ∈ Sd
++, trace(D) ≤ 1}. We can write D = UDiag(λ)U>, with U ∈ Od

and λ ∈ R
d
++. We first minimize over λ. Applying Lemma 1, we have

that

inf
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We now show that

inf
{∥∥U>C

1

2
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2,1
: U ∈ Od

}
=
(
trace C

1

2

)2

and that a minimizing U is a system of eigenvectors of C. To see this,
note that
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if ui is an eigenvector of C. Equality at the application of Lemma 1
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1
2

trace C
1
2
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In addition, it can be shown that min{trace(D+C) : D ∈ Sd
+,

trace(D) ≤ 1, range(C) ⊆ range(D)} also equals
(
trace C

1

2

)2
, using

similar arguments as above. The difference here is that Lemma 1 is

applied only to those i such that
∥∥C 1

2 ui

∥∥
2
6= 0 and the corresponding

λi are guaranteed to be nonzero by the range constraint.

B Convergence of Algorithm 1

In this appendix, we present the proofs of Theorems 2 and 3. For this
purpose, we substitute equation (13) in the definition of Rε obtaining
the objective function

Sε(W ) := Rε(W, Dε(W )) =
T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ
(
trace(WW> + εId)

1

2

)2
.

Moreover, we define the following function which formalizes the W -step
of the algorithm,

gε(W ) := min{Rε(V, Dε(W )) : V ∈ R
d×T } .

Since Sε(W ) = Rε(W, Dε(W )) and Dε(W ) minimizes Rε(W, ·), we ob-
tain that

Sε(W
(n+1)) ≤ gε(W

(n)) ≤ Sε(W
(n)) . (23)

We begin by observing that Sε has a unique minimizer. This is a
direct consequence of the following proposition.
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Proposition 3. The function Sε is strictly convex for every ε > 0.

Proof. It suffices to show that the function

W 7→
(
trace(WW> + εId)

1

2

)2

is strictly convex. But this is simply a spectral function, that is, a func-
tion of the singular values of W . By [24, Sec. 3], strict convexity follows

directly from strict convexity of the real function σ 7→
(∑

i

√
σ2

i + ε
)2

.

This function is strictly convex because it is the square of a positive
strictly convex function. ut

We note that when ε = 0, the function Sε is regularized by the trace
norm squared which is not a strictly convex function. Thus, in many
cases of interest S0 may have multiple minimizers. This may happen,
for instance, if the loss function L is not strictly convex, which is the
case with SVMs.

Next, we show the following continuity property which underlies the
convergence of Algorithm 1.

Lemma 2. The function gε is continuous for every ε > 0.

Proof. We first show that the function Gε : Sd
++ → R defined as

Gε(D) := min
{
Rε(V, D) : V ∈ R

d×T
}

is convex. Indeed, Gε(D) is the minimal value of T separable regular-
ization problems with a common kernel function determined by D. For
a proof that the minimal value of a 2-norm regularization problem is
convex in the kernel, see [5, Lemma 2]. Since the domain of this function
is open, Gε is also continuous (see [11, Sec. 4.1]).

In addition, the matrix-valued function W 7→ (WW >+εId)
1

2 is con-
tinuous. To see this, we recall the fact that the matrix-valued function

Z ∈ Sd
+ 7→ Z

1

2 is continuous. Continuity of the matrix square root is

due to the fact that the square root function on the reals, t 7→ t
1

2 , is
operator monotone – see e.g., [10, Sec. X.1].

Combining, we obtain that gε is continuous, as the composition of
continuous functions. ut

Proof of Theorem 2. By inequality (23) the sequence {Sε(W
(n)) :

n ∈ N} is nonincreasing and, since L is bounded from below, it is
bounded. As a consequence, as n → ∞, Sε(W

(n)) converges to a
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number, which we denote by S̃ε. We also deduce that the sequence{
trace

(
W (n)W (n)> + εId

) 1

2

: n ∈ N

}
is bounded and hence so is the

sequence {W (n) : n ∈ N}. Consequently there is a convergent subse-

quence {W (n`) : ` ∈ N}, whose limit we denote by W̃ .
Since Sε(W

(n`+1)) ≤ gε(W
(n`)) ≤ Sε(W

(n`)), gε(W
(n`)) converges to

S̃ε. Thus, by Lemma 2 and the continuity of Sε, gε(W̃ ) = Sε(W̃ ). This

implies that W̃ is the minimizer of Rε(·, Dε(W̃ )), because Rε(W̃ , Dε(W̃ ))

= Sε(W̃ ).

Moreover, recall that Dε(W̃ ) is the minimizer of Rε(W̃ , ·) subject
to the constraints in (12). Since the regularizer in Rε is smooth, any
directional derivative of Rε is the sum of its directional derivatives with
respect to W and D. Hence, (W̃ , Dε(W̃ )) is the minimizer of Rε.

We have shown that any convergent subsequence of {W (n) : n ∈ N}
converges to the minimizer of Rε. Since the sequence {W (n) : n ∈ N}
is bounded it follows that it converges to the minimizer as a whole. ut

Proof of Theorem 3. Let
{(

W`n
, Dε`n

(W`n
)
)

: n ∈ N
}

be a limit-

ing subsequence of the minimizers of {Rε`
: ` ∈ N} and let (W̃ , D̃)

be its limit as n → ∞. From the definition of Sε it is clear that
min{Sε(W ) : W ∈ R

d×T } is a decreasing function of ε and converges
to S̄ = min{S0(W ) : W ∈ R

d×T } as ε → 0. Thus, Sε`n
(W`n

) → S̄.
Since Sε(W ) is continuous in both ε and W (see proof of Lemma 2),

we obtain that S0(W̃ ) = S̄. ut

C Proof of Lemma 3 used in the proof of Theorem 4

Lemma 3. Let P, N ∈ R
d×T such that P>N = 0. Then ‖P + N‖tr ≥

‖P‖tr. The equality is attained if and only if N = 0.

Proof. We use the fact that, for matrices A, B ∈ Sn
+, A � B implies

that traceA
1

2 ≥ traceB
1

2 . This is true because the square root function

on the reals, t 7→ t
1

2 , is operator monotone – see [10, Sec. V.1]. We
apply this fact to the matrices P >P + N>N and N>N to obtain that

‖P + N‖tr = trace((P + N)>(P + N))
1

2 = trace(P>P + N>N)
1

2 ≥
trace(P>P )

1

2 = ‖P‖tr.

The equality is attained if and only if the spectra of P >P + N>N and
P>P are equal, whence trace(N>N) = 0, that is N = 0. ut
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