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Abstract

We describe a method for enabling dependable forwardingesfsages in untrusted networks. Nodes
perform only relatively lightweight operations per messand only the originator and destination need
to trust each other. Whereas existing protocols for depdadadmmunication rely on establishing a
verifiable identity for every node, our protocol can opeiataetworks with unknown or varying mem-
bership and with no limits on the creation of new identiti€ur system supports the maintenance of
unlinkability: relays cannot tell whether a given origioaind destination are communicating. The des-
tination of each message generates an unforgeable acldgemeent (U-ACK) that allows relays and
the originator to verify that the message was delivered uifiedl to the destination. Relays do not
need to share keys with the originator or destination, ontaktheir identities. Similarly, the endpoints
do not need to know the identities of the relays. U-ACKs eaatudes to measure the level of service
provided by their neighbours and optionally to adjust tivelef service they provide in return, creating
an incentive for nodes to forward messages.
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1 Introduction

Increasingly, the dependability of a networked commuibcesystem is considered a key issue for the operation of
a larger system as a whole. However, there are a number déobek to achieving dependability, including the
possibility of malicious behaviour that aims to disrupt abgert communication. For a set of nod@s, forming a
communication network, we need some way of assessing whedirect forwarding behaviour is being observed.
Here, our definition o€orrect forwarding behaviour is very simple: forwarding behaviour is deemed to be coiirect
the network of nodesy, if a node,n; € N, the originator, can send a message to another node, N, i # j, the
destination, by relying on the message forwarding behawbuv.

Our scenario is a network of node¥, in which we assume that only the originatey, and destination;;, of each
message trust each other, and there is no other trust redatfpwithin the network. This means thatandn; may

not be able to see or verify the identities of any other nodahé network. Nodes that forward a message but are
not the originator or the destination are termreldys. In our discussion, we assume that any node may act as an
originator of its own messages as well as a destination ay ffer the messages of other nodes.

We assume that nodes communicate using the general unitwhaaication, which we will term anessage, which
is any self-contained block of data. Depending on the agfitio and the layer of operation in the communication
stack, amessage could be apacket, a frame, a datagram, anapplication data unit (ADU) such as alock in a file
transfer, etc. Our goal is to enable measurably dependabl@fding of messages in a network of untrusted nodes.

Correct forwarding behaviour can be achieved with high camfce if all the nodes trust each other. Trust may be
established, for example, by the use of a certified or cestdiaentity for each node. Identities or pseudonyms may
also be derived from other information within the netwonkgls as network addresses, but these may be transient or
may not be strongly verifiable. In certain circumstancessnehdentity is available and verifiable to some degree, it
may be possible to detect failed, misbehaving or malicimdes|[1, 2, 3].

However, in many environments, it may not be practical tésiren establishing the identity of every membernbdfo
provide the level of trust required to have confidence ofexrforwarding behaviour. For example, the membership
of the network may be changing constantly, or it may not besipbs to verify or certify the identity of a node,

n € N. Even ifitis possible to verify a node’s identity, that idigyymay be subverted without being detected. In
other cases, users may wish to maintain anonymitynbinkability, meaning that other network nodes should be
unable to determine whether a given pair of nodes are conuatimg. Additionally, maintaining unlinkability helps

to counter some denial of service attacks (DoS) which magetarodes based on their identities. Examples of such
environments include ad hoc wireless networks, peer-&-petworks and some online communities.

Another issue especially relevant to ad hoc networks andtpegeer systems is resource usage. Many protocols
have recently been proposed to address the problem of usercensume more resources than they contribute.
Encouraging these ‘free riders’ to cooperate may have dfignt impact on the performance and even viability
of open membership networks. Free riding also has secumipjiéations, because denial of service (DoS) attacks
are often based on resource exhaustion. Unfortunatelyy mfathe proposed solutions to the free riding problem
require detailed record-keeping and information-shatirag could undermine the privacy of users [4, 5, 6]. Other
proposals depend on central coordination or identity mamegt, introducing a single point of failure into otherwise
decentralised systems [7, 8, 9].

If pairs of adjacent nodes can measure the level of servaertiteive from one another and use this information to
adjust the level of service they provide in return, then eamthe has an incentive to cooperate in order to continue
receiving cooperation [10]. This local, reciprocal apmtodoes not require central coordination, record-keeping o
information-sharing. Each node must be able to identify amthenticate its neighbours, but these identities can be
local in scope, and a node is free to present a different ityeioteach neighbour. If the level of service offered to
each neighbour is proportional to the level of service nexmithere is no incentive for a node to present multiple
simultaneous identities to the same neighbour [11].

1.1 Structure of this paper

The next section describes the U-ACK protocol, which ermhl@es in a message-forwarding network to measure
the level of service provided by their neighbours. By meiagureliability at the message level, a single incentive
mechanism can support a wide range of end-to-end servidesuwtirelays needing to be aware of the details of
higher protocol layers [12].

Our protocol uses end-to-end (originator to destinatiof)rgeabl e acknowl edgements (U-ACKSs) that can be verified
by relays without establishing a security association wither of the endpoints. Unlike a digital signature scheme,
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relays do not need to share any keys with the originator dirddn, or to know their identities.

Section 3 presents a semi-formal proof demonstrating thACKs cannot be forged as long as the underlying
cryptographic primitives are secure. Section 4 considessiple applications of the protocol, Section 5 reviews
related work, and Section 6 concludes the paper and givegsfadescription of our ongoing work and thoughts for
the future.

2 Unforgeable acknowledgements

The unforgeable acknowledgement (U-ACK) protocol hantileskinds of datamessages, which consist of a header
and a data payload, argknowledgements. The originator and destination of each message must stsmeret key

that is not revealed to any other node, and each messagesbaretin the same endpoints must contain a unique serial
number or nonce to prevent replay attacks. This number needenvisible to intermediate nodes, and indeed the
protocol does not reveal any information that can be usee@terohine whether two messages have the same source
or destination, although such information might be reva:ale traffic analysis or by other protocol layers.

Our protocol does not rely upon or mandate any particularrkapagement scheme or key exchange mechanism;
any existing scheme appropriate to the application can ed. U#/e only assume that the originator and destination
have some way of establishing a shared secretikey,

2.1 Overview

Unforgeable acknowledgements (U-ACKs) make use of twodstathcryptographic primitivesmessage authenti-
cation codes (MACs) and collision-resistant hashing (or simply hashing). Any node can generate a correct hash.
However, only the originator and destination, both of whictow the secret ke, can generate a correct value
for the MAC. So, before transmitting a message, the originedmputes a MAC over the message using the secret
key, k shared with the destination. Instead of attaching the MA@ é&message, the originator attacheshhsh of

the MAC to the message. Relays store a copy of the hash when theyrtbtheamessage. If the message reaches
its destination, the destination computes a MAC over theived message using the secret Keyshared with the
originator. If the hash of this MAC matches the hash receiwét the message, the destination sendsN#C

as an acknowledgement, which is forwarded back along the path taken by the mesdagtays can verify that the
acknowledgement hashes to the same value that was attactiedrmessage sent by the originator, but they cannot
forge acknowledgements for undelivered messages bedaskatk the secret key, to compute the correct MAC,
and because the hash function is collision-resistant.

2.2 Description

More formally, letH («) denote the hash of, let M AC(y, z) denote a message authentication code computed over
the message using the keyy, and let{a, b} denote the concatenation @&andb. Let k be the secret key shared by
the originator and destination, and {&be the data to be sent. The relays between the originatorestohdtion are
denotedr; ... 7).

The operation of the protocol proceeds as follows:

1. The originator first attaches a unique nonce or serial mupafto the data, to produce the paylgad= {s, d}.
2. The originator calculatds, = H(M AC(k,p1)) and send$hq,p; } to relayry.

3. Each relayr,, stores an identifier (e.g. the network address) of the pusvimp under the hash,,, and
forwards{h,,+1, Pm+1} to the next hop, wherk,, 1 = h,, unlessr,, modifies the header, ang,+1 = pm
unlessr,, modifies the payload.

4. Onreceivinghart1, par+1} fromr,,, the destination calculatds(M AC (k, par+1)) and compares the result
to hary1. If the result does not match, then eitthgr 1 # hy Or par1 # p1 —in other words either the header
or the payload has been modified by one of the relays — and #timdtton does not acknowledge the message.

5. If the message has not been modified, the destinatiomeetioe acknowledgemeat;; = MAC(k, par+1)
to relayry.

6. Each relay-,, calculatesH (a.,,+1), and if the result matches a stored hash, forwarggo the previous hop
stored under the hash, wherg = a,,+1 unless,, modifies the acknowledgement.
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7. When a relay receives an acknowledgement whose hash mabehetored hash of a message it previously
forwarded, it knows that neither the header, the payloadthacknowledgement was modified by any node
between itself and the destination.

8. When the originator receives an acknowledgement whode matches the stored hash of a message it pre-
viously transmitted, it knows that neither the header, ndqad, nor the acknowledgement was modified by
any node between itself and the destination, and that theagesvas correctly delivered to the destination, as
only the destination could have generated the acknowledgem

Note that in this protocol, nodes that act as relays may huplddonfidence of their neighbours’ dependability in
forwarding messages without having to send messages thasisé/henever a node sees a U-ACK for a message, it
knows that the message was successfully delivered. If tHe has knowledge of the network path from itself to the
destination, it can then have confidence that the path as kewhdependable, i.e. that all the nodes on the path are
dependable. However, the U-ACK protocol does not rely oresdtaving this kind of knowledge of network paths.

2.3 Timeouts

Relays cannot store hashes indefinitely while waiting fdmagvledgements — at some point, old hashes must be
discarded to make room for new ones. A relay that receiveslamavledgement after discarding the corresponding
hash cannot verify or forward the acknowledgement, so tiseme reason for a relay to store a hash for longer than
its upstream or downstream neighbours. The most efficidatiso would be for all relays along the path to discard
the hash at the same time, but adding a time-to-live valuedssages would undermine unlinkability by allowing
relays to estimate the distance to the originator.

Fixed timeouts avoid this problem while ensuring that agljicelays discard the hash at approximately the same
time. The length of the timeout represents a tradeoff batwiee maximum end-to-end latency the network can tol-
erate, and the number of outstanding hashes each relay torest Bhe choice of an appropriate timeout will depend
on the application. TCP’s maximum segment lifetime (MSLpresents a conservative estimate of the maximum
latency across the Internet: a typical implementation eau30 seconds (which is much greater than the typical
latency or round-trip time), and TCP may wait for two MSLs dref allowing re-use of a port number. Thus 60
seconds seems to be a reasonable timeout for hashes in aretrieerlay; shorter timeouts may be appropriate for
other applications.

2.4 Lost messages

Messages may be lost, reordered, or modified for a numberagbres, and it may not be possible to determine
whether such events are due to the normal behaviour of theorietor due to the malicious or incorrect behaviour
of relays. For example, in a wireless ad hoc network, losgdexing, bit errors and even duplication of messages
may be considered normal behaviour for the network.

In contrast to existing approaches that try to identify tloelen or link responsible for each failure, we take the
pragmatic approach of measuring dependability withownagting to distinguish between malicious, selfish, and
accidental failures. This makes it possible for our protdomperate in networks with a variable failure rate; an
unknown, changing, or open membership; and those netwdrkserquality of service (QoS) of network parameters
is dynamically variable.

The exact way in which the dependability metric is computed eefreshed is independent of this protocol. The
behaviour of the metric in time (including freshness, deaag/or expiry of dependability information) and in space
(for a given neighbour, relay, or path as a whole) would bdiegion specific, and our protocol places no specific
constraints on the nature of this metric.

2.5 Reverse-path forwarding

We have assumed that the forward path of the message is the st that will be followed, in reverse, by the
U-ACK. This may not be possible in all networks — for exampeng wireless networks may contain unidirectional
links. In such cases, there are two situations to consider:

e The reverse path hasme relay nodesin common with the forward path. In this case, there may be some nodes
that receive information about the dependability of theiighbours, while others do not, at least not for all
messages.
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e The reverse path ham relay nodesin common with the forward path. In this case, only the originator iees
information about the dependability of its neighbours.

In either situation, the U-ACK protocol provides a coarsahged measure of dependability: simply that the network
as a whole is managing to deliver messages to their intenesiithdtions and that U-ACKs are being returned, i.e.
correct forwarding behaviour is being maintained for themogk, N. This may be sufficient for the application.
However, if other path information is available, e.g. theritities of relays on the forward and reverse paths, then a
more fine-grained and accurate ‘world view’ of dependapititay be created.

Note that routing asymmetries such as those commonly fautteeiinternet do not prevent reverse-path forwarding:
each relay stores the identity of the previous hop when fating a message, so the reverse path can be found even
if the relay’s routing tables are asymmetric. Similarlyymsnetric link bandwidth is not a problem as long as it is
possible to return one acknowledgement for each messagmdba opposite direction.

Our protocol can therefore operate in situations with digeouting paths; the dependability metric chosen should
take account of the nature of the paths and any path infoom#tat may be available.

2.6 Non-unicast communication

So far, we have implicitly considered unicast communigatidHowever, there may be further considerations if
non-unicast mechanisms are used for message delivery. xaorpée, some protocols in mobile ad hoc networks
(MANETS) use flooding or broadcast-based forwarding. Inhsapplications, multiple copies of a message may
reach a destination or relay node by different paths. To tagirthe association between messages and U-ACKs,
a simple extension of the protocol is to return a copy of thAGK to every neighbour from which a copy of the
corresponding message was received. However, this maytdeiadreased overhead, so an application may wish
to reduce the number of U-ACKs transmitted and adjust adegigthe definition and dynamic evaluation of the
dependability metric being used.

Another issue is that of group communication, such as ofmagny or many-to-many communication using multicast
transmission (as opposed to peer-to-peer systems, forpdeanin principle, IP-multicast, for example, is an open
membership network: any node can join a given multicastgrséiere, a single transmission may have many desti-
nations, and a naive translation of our protocol would rexj@ach of these destinations to send an acknowledgement.
Reliable multicast is still considered a research i§stwever, it is known to be impractical to use per-destorati
acknowledgments, and other approaches, such as tree4rdsades, are currently being considered. We have not
yet examined this issue in detail.

2.7 Malicious nodes

It is important to note that while messages may carry sourcestination addresses, the U-ACK protocol does not
authenticate these addresses. A U-ACK proves one of twgghifo the originator, it proves that the downstream
neighbour delivered the message to its intended destimatma relay, it proves that the downstream neighbour de-
livered the message the destination intended by the upstream neighbour — this does not necessarily correspond to
the message’s destination address. The upstream and deamsteighbours might collude to produce and acknowl-
edge messages with spoofed addresses, so U-ACKs cannadmuBscover reliable routes to particular addresses.
However, in the context of unlinkable communication thiaitation becomes a strength: messages need not carry
any information to associate them with one another, or withgarticular originator or destination.

There is nothing to stop an attacker from modifying the headea message, perhaps replacing it with a hash
generated by the attacker for acknowledgement by a dovamtecomplice. However, the attacker will then be
unable to provide a suitable acknowledgement to its upstregighbour, and thus from its neighbour’s point of view
the attacker will effectively have dropped the message eatbinitted one of its own instead, albeit one with an
identical payload. The upstream neighbour will not consitle attacker to have delivered the message as requested,
and may reduce its level of service accordingly. Likewidhéfattacker modifies the payload instead of the header, the
destination will not acknowledge the message and againttaekar will be unable to provide an acknowledgement
to its upstream neighbour.

With respect to reliability, any modification to a messagacknowledgement is equivalent to dropping the message,
and a node that modifies messages or acknowledgementsvalegtito a free rider. The protocol does not attempt
to distinguish between malicious and accidental message $ince attempting to do so might allow dishonest users
to manipulate the system by exploiting identity charasters.

1The IETF Reliable Multicast Transport (RMT) Wi@ t p: // www. i et f. org/htmi . charters/rnt-charter. htn
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3 Proof of unforgeability

The strength and scalability of our system comes from itpBaity. Only originators and destinations can generate
a set of check bits for a message, but any node can verify ek bits without needing to know the identity of, or
share state with, the originator or destination. The keyutopwotocol is the unforgeability of acknowledgements, so
in this section we demonstrate that relays cannot forgeadeatgements as long as the underlying cryptographic
primitives are secure. Four specific assumptions are maulg #ie underlying primitives, based on the design goals
of those primitives:

1. It is not feasible to recover the secret kéyby observing any sequence of authenticated messages
{MAC(]C, ml), ml} N {MAC(]C, mn), mn}

2. Itis not feasible to calculaté/ AC(k, m) for a given message: without knowing the secret key.
3. Itis not feasible to find the preimageof a given hastd ().

4. Itis not feasible to find a second preimag¢ « for a given preimage, such thati (y) = H(z).

The first two properties are standard requirements and mesigls for MAC functions, and the last two properties
(inversion resistance and second preimage resistance)aar@ard requirements and design goals for cryptographic
hash functions. These properties are not affected by recdigion search attacks on cryptographic hash functions
[13, 14]. Aslong as these properties are true for any spedifi€ and hash function used to implement our protocol,
we consider U-ACKs to be unforgeable.

First we show that the protocol does not reveal the secretlkey eavesdropper could recover the secret key from
some sequence of messages:

{H(MAC(k,m1)),m1}... {H(MAC(k,my)), m,}

and their acknowledgements:
MAC(k,mq)... MAC(k, my,)

then the attacker could also recover the key from:
{MAC(k,my),m1}...{MAC(k,my,), my}
contradicting the first assumption above.

Next we show that an attacker cannot forge acknowledgenveitheut the secret key. Assume that an attacker
succeeds in forging an acknowledgement. Either the forgkdavledgement is identical to the genuine acknowl-
edgement, or itis different. If it is identical then eithbetattacker has succeeded in calculafind C (k, m) without
knowing &, which contradicts the second assumption above, or thekattdnas found a way of inverting the hash
function, which contradicts the third assumption. On theeotand if the forged acknowledgement is different from
the genuine acknowledgement, the attacker has found adgreimagey # x= such thatH (y) = H(x), which
contradicts the fourth assumption.

4 Applications

This paper does not describe a complete communicationrsy$tet rather a protocol building block that allows
nodes to measure dependability. The mechanism by whicinat@ys and destinations exchange secret keys is not
discussed here, because the acknowledgement protocaldpendent of the key exchange mechanism; similarly,
end-to-end encryption is not discussed, although we woxped it to be used by parties requiring privacy and also
to enable stronger unlinkability.

4.1 Generality

Unforgeable acknowledgements can operate in a peer-tospeday or at the network layer, providing an incentive
for nodes to forward messages as well as transmitting tlair @here are no dependencies between messages other
than between a message and its acknowledgement, so eaciigmess be treated as an independent datagram;
retransmission, sequencing and flow control can be hangi&igber protocol layers. This allows a single incentive
mechanism to support a wide range of upper layer protocalssenvices. In contrast, many existing incentive
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mechanisms are limited to file-sharing applications, bseahey require content hashes to be known in advance
[15, 16, 17, 18].

We assume that acknowledgements can be forwarded backtal®sgme path as the messages they acknowledge —
if the reverse path is not the same as the forward path theroat&dgements can only be verified end-to-end.

4.2 Gateways, proxies and middleboxes

The U-ACK protocol does not require relays to share keys wiifjinators or destinations, but it can easily be
generalised to situations where the originator wishesrexdtraffic through a certain trusted gateway, proxy or othe
middlebox: the originator exchanges keys with the gatewal/the gateway exchanges keys with the destination;
the gateway acknowledges messages from the originatorameiids them to the destination with new headers;
and the destination acknowledges messages from the gat@Wwaykey shared by the originator and the gateway is
independent from the key shared by the gateway and the d#stinso it is possible for the gateway to re-encrypt
the messages before forwarding them; indeed, onion ro{t®jgcould be layered on top of our protocol, providing
originator anonymity as well as originator-destinatiotinkability.

4.3 Overhead

The bandwidth and computation overheads of the U-ACK puaidtace modest. Each message must carry the hash
of its MAC and a unique nonce or serial number, and the ortgimand destination must each perform one hash
computation in addition to the normal cost of using MACs. lEaelay must perform a single hash computation
and table lookup per acknowledgement, and forward one MAG@enowledgement. Since acknowledgements are
small and there is at most one acknowledgement per mess&geyvdedgements could be piggybacked on messages
in bi-directional communication to reduce transmissiostso

Each relay must store one hash per outstanding messages stothge overheads of the protocol depend on three
factors: the data rate of the end-to-end pdih; the message sizé,,,; and the timeout for stored hashé3, If Sy,
is the size of a hash for a single message, we can approxihegtdrage requirement of a nodg, as:

 D,Ty.S,,

Sn ST n

So, with a 60 second timeout and a minimum message size of 25 imcluding headers, a relay with an 11 Mb/s
link (e.g. 802.11b wireless LAN) may need to store up to 660,0utstanding hashes, requiring 13 MB of memory
for a 160-bit hash function such as SHA-1. This represer@sambrst case, however, when all messages have the
minimum size and all acknowledgements take the maximum tinagrive; in a more realistic scenario with a mean
message size of 500 bytes and an average round-trip timeazfdhds, the storage overhead would be just 275 KB.

5 Reated work

5.1 Reciprocation

Reciprocation between neighbours is used to encouragarmesoontribution in several deployed peer-to-peer net-
works [15, 16, 17]. These systems differ in how they allocatources among cooperative neighbours, but all of
them provide a higher level of service to contributors than-nontributors. Hash trees [20] are calculated in advance
and used to verify each block of data received, so these nietvame only suitable for distributing static files.

SLIC [21] is an incentive mechanism for message forwardmpgeer-to-peer search overlays. The level of service
received from a neighbour is measured by the number of seascifts it returns, but without a way to verify results
this creates an incentive to return a large number of bogusgtse In contrast, the U-ACK protocol prevents relays
from returning bogus acknowledgements.

SHARP [22] is a general framework for peer-to-peer resotreaiing; digitally signed ‘tickets’ are used to reserve and
claim resources such as storage, bandwidth and comput&tlaims can be delegated, so peers can trade resources
with peers more than one hop away, but the identities of &t the delegation chain must be visible in order to
validate the claim. This makes SHARP unsuitable for unlbi&a&ommunication.

5.2 Authenticated acknowledgements

2HARP [2] is a routing protocol for ad hoc wireless networksvhich each node that receives a packet sends an ac-
knowledgement to the previous two nodes, allowing each twderify that its downstream neighbour forwarded the
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packet. Every node has a public/private key pair for sigmitihowledgements; these key pairs must be certified by a
central authority to prevent nodes from generating extygoeérs and using them to create bogus acknowledgements.
This requirement makes 2HARP unsuitable for use in open reeship networks.

IPSec [23] uses message authentication codes for enddtaugthentication at the network layer. This makes it
possible to authenticate transport-layer acknowledgtsreeswell as data, but the MACs can only verified by the
endpoints, not by third parties such as relays.

TLS [24] uses MACs at the transport layer. TCP headers arautbenticated, however, so it is possible for relays
to forge TCP acknowledgements. As with IPSec, the MACs ugerlLs cannot be verified by relays.

Some robust routing protocols for ad hoc networks use MACactmowledge messages and to detect faulty links
and nodes [25, 26]. This requires a trusted certificate aitgtfor key distribution, and rules out unlinkability.

5.3 Authentication using one-way functions

Gennaro and Rohatgi [27] describe two methods for authegimti streams using one-way functions. The first scheme
uses one-time signatures [28, 29]. Each block of the streartamns a public key, and is signed with the private key
corresponding to the public key contained in the previowskl The first block carries a conventional asymmetric
signature. One-time signatures are large, so this schesa ¢@nsiderable bandwidth overhead. The computational
cost of verifying a one-time signature is comparable to tfan asymmetric signature, although signing is more
efficient.

The second scheme uses chained hashes, where each blaamkgdme hash of the next block, and the first block
carries an asymmetric signature. The entire stream mustderkto the originator before the first block is sent. This
scheme is similar to the use of hash trees in file-sharingarésy

The Guy Fawkes protocol [30] also uses chained hashes. Tdieaior does not need to know the entire stream in
advance, but each block must be known before the previou idsent. Each block carries a preimage and a hash
that are used to verify the previous block, and a hash thahdtso the contents of the next block. The first block
carries a conventional signature.

Several ad hoc routing protocols use hash chains to redecautinber of asymmetric signature operations [31, 32,
33, 34]. Others use delayed disclosure, in which a hash apddimage are sent by the same party at different times,
requiring loose clock synchronisation [32, 35, 36]. In ototpcol the preimage is not sent until the hash is received,
so no clock synchronisation is required.

The schemes described above use similar techniques todtwepl described in this paper, but their aims are dif-
ferent. Whereas the aim of a signature scheme is to associsgages with an originator, the aim of our protocol
is to associate an acknowledgement with a message, witthentifying the originator or destination of the message.
The signature schemes mentioned above therefore requiniiahasymmetric signature to identify the originator,
whereas the U-ACK protocol does not require asymmetrictogiaphy.

6 Conclusion and futurework

We have described the U-ACK protocol, which enables nodes network to measure the dependability of their
neighbours in forwarding messages usimforgeable acknowledgments (U-ACKs). The protocol does not require
trust between all nodes in the network; the only nodes thedi ne be able to verify one another’s identities are the
originator and destination. The acknowledgements crelayetthe protocol are unforgeable but can be verified by
untrusted third parties. The protocol has broad applittgbit can operate at the network layer or in a peer-to-peer
overlay, and does not require relays to establish a se@gdyciation with the endpoints, or to be aware of the details
of higher-layer protocols. It can be seen as a building bfocklependable communication systems, allowing nodes
to measure the level of service received from their neightsa that they can adjust the level of service they provide
in return.

We are currently investigating specific properties of thet@rol when used in peer-to-peer systems, e.g. the dy-
namics of resource usage that occur with a mixture of freersidaltruists and reciprocators. The investigations will
explore the sensitivity of the U-ACK scheme to various pagtars such as the size and structure of the network, the
proportion of free-riders, etc.

The U-ACK scheme could also have applicability to systenas tieed to be robust to Byzantine failures, such as
applications for safety-critical systems, civil defenoel anilitary use.
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