
RN/06/FIXME Research
December 12, 2006 Note

A lightweight mechanism for dependable communication in untrusted
networks

Michael Rogers and Saleem Bhatti

Electronic Mail: m.rogers@cs.ucl.ac.uk
URL: http://www.cs.ucl.ac.uk/staff/M.Rogers/

Abstract

We describe a method for enabling dependable forwarding of messages in untrusted networks. Nodes
perform only relatively lightweight operations per message, and only the originator and destination need
to trust each other. Whereas existing protocols for dependable communication rely on establishing a
verifiable identity for every node, our protocol can operatein networks with unknown or varying mem-
bership and with no limits on the creation of new identities.Our system supports the maintenance of
unlinkability: relays cannot tell whether a given originator and destination are communicating. The des-
tination of each message generates an unforgeable acknowledgement (U-ACK) that allows relays and
the originator to verify that the message was delivered unmodified to the destination. Relays do not
need to share keys with the originator or destination, or to know their identities. Similarly, the endpoints
do not need to know the identities of the relays. U-ACKs enable nodes to measure the level of service
provided by their neighbours and optionally to adjust the level of service they provide in return, creating
an incentive for nodes to forward messages.

Department of Computer Science
University College London
Gower Street
London WC1E 6BT, UK



1 Introduction

Increasingly, the dependability of a networked communication system is considered a key issue for the operation of
a larger system as a whole. However, there are a number of challenges to achieving dependability, including the
possibility of malicious behaviour that aims to disrupt or subvert communication. For a set of nodes,N , forming a
communication network, we need some way of assessing whether correct forwarding behaviour is being observed.
Here, our definition ofcorrect forwarding behaviour is very simple: forwarding behaviour is deemed to be correctin
the network of nodes,N , if a node,ni ∈ N , the originator, can send a message to another node,nj ∈ N, i 6= j, the
destination, by relying on the message forwarding behaviour of N .

Our scenario is a network of nodes,N , in which we assume that only the originator,ni, and destination,nj , of each
message trust each other, and there is no other trust relationship within the network. This means thatni andnj may
not be able to see or verify the identities of any other nodes in the network. Nodes that forward a message but are
not the originator or the destination are termedrelays. In our discussion, we assume that any node may act as an
originator of its own messages as well as a destination or relay for the messages of other nodes.

We assume that nodes communicate using the general unit of communication, which we will term amessage, which
is any self-contained block of data. Depending on the application and the layer of operation in the communication
stack, amessage could be apacket, a frame, a datagram, anapplication data unit (ADU) such as ablock in a file
transfer, etc. Our goal is to enable measurably dependable forwarding of messages in a network of untrusted nodes.

Correct forwarding behaviour can be achieved with high confidence if all the nodes trust each other. Trust may be
established, for example, by the use of a certified or certifiable identity for each node. Identities or pseudonyms may
also be derived from other information within the network, such as network addresses, but these may be transient or
may not be strongly verifiable. In certain circumstances, where identity is available and verifiable to some degree, it
may be possible to detect failed, misbehaving or malicious nodes [1, 2, 3].

However, in many environments, it may not be practical to insist on establishing the identity of every member ofN to
provide the level of trust required to have confidence of correct forwarding behaviour. For example, the membership
of the network may be changing constantly, or it may not be possible to verify or certify the identity of a node,
n ∈ N . Even if it is possible to verify a node’s identity, that identity may be subverted without being detected. In
other cases, users may wish to maintain anonymity orunlinkability, meaning that other network nodes should be
unable to determine whether a given pair of nodes are communicating. Additionally, maintaining unlinkability helps
to counter some denial of service attacks (DoS) which may target nodes based on their identities. Examples of such
environments include ad hoc wireless networks, peer-to-peer networks and some online communities.

Another issue especially relevant to ad hoc networks and peer-to-peer systems is resource usage. Many protocols
have recently been proposed to address the problem of users who consume more resources than they contribute.
Encouraging these ‘free riders’ to cooperate may have a significant impact on the performance and even viability
of open membership networks. Free riding also has security implications, because denial of service (DoS) attacks
are often based on resource exhaustion. Unfortunately, many of the proposed solutions to the free riding problem
require detailed record-keeping and information-sharingthat could undermine the privacy of users [4, 5, 6]. Other
proposals depend on central coordination or identity management, introducing a single point of failure into otherwise
decentralised systems [7, 8, 9].

If pairs of adjacent nodes can measure the level of service they receive from one another and use this information to
adjust the level of service they provide in return, then eachnode has an incentive to cooperate in order to continue
receiving cooperation [10]. This local, reciprocal approach does not require central coordination, record-keeping or
information-sharing. Each node must be able to identify andauthenticate its neighbours, but these identities can be
local in scope, and a node is free to present a different identity to each neighbour. If the level of service offered to
each neighbour is proportional to the level of service received, there is no incentive for a node to present multiple
simultaneous identities to the same neighbour [11].

1.1 Structure of this paper

The next section describes the U-ACK protocol, which enables nodes in a message-forwarding network to measure
the level of service provided by their neighbours. By measuring reliability at the message level, a single incentive
mechanism can support a wide range of end-to-end services without relays needing to be aware of the details of
higher protocol layers [12].

Our protocol uses end-to-end (originator to destination)unforgeable acknowledgements (U-ACKs) that can be verified
by relays without establishing a security association witheither of the endpoints. Unlike a digital signature scheme,

RN/06/FIXME Page 1



relays do not need to share any keys with the originator or destination, or to know their identities.

Section 3 presents a semi-formal proof demonstrating that U-ACKs cannot be forged as long as the underlying
cryptographic primitives are secure. Section 4 considers possible applications of the protocol, Section 5 reviews
related work, and Section 6 concludes the paper and gives a brief description of our ongoing work and thoughts for
the future.

2 Unforgeable acknowledgements

The unforgeable acknowledgement (U-ACK) protocol handlestwo kinds of data:messages, which consist of a header
and a data payload, andacknowledgements. The originator and destination of each message must share asecret key
that is not revealed to any other node, and each message sent between the same endpoints must contain a unique serial
number or nonce to prevent replay attacks. This number need not be visible to intermediate nodes, and indeed the
protocol does not reveal any information that can be used to determine whether two messages have the same source
or destination, although such information might be revealed by traffic analysis or by other protocol layers.

Our protocol does not rely upon or mandate any particular keymanagement scheme or key exchange mechanism;
any existing scheme appropriate to the application can be used. We only assume that the originator and destination
have some way of establishing a shared secret key,k.

2.1 Overview

Unforgeable acknowledgements (U-ACKs) make use of two standard cryptographic primitives:message authenti-
cation codes (MACs) andcollision-resistant hashing (or simply hashing). Any node can generate a correct hash.
However, only the originator and destination, both of whichknow the secret key,k, can generate a correct value
for the MAC. So, before transmitting a message, the originator computes a MAC over the message using the secret
key,k shared with the destination. Instead of attaching the MAC tothe message, the originator attaches thehash of
the MAC to the message. Relays store a copy of the hash when they forward the message. If the message reaches
its destination, the destination computes a MAC over the received message using the secret key,k, shared with the
originator. If the hash of this MAC matches the hash receivedwith the message, the destination sends theMAC
as an acknowledgement, which is forwarded back along the path taken by the message.Relays can verify that the
acknowledgement hashes to the same value that was attached to the message sent by the originator, but they cannot
forge acknowledgements for undelivered messages because they lack the secret key,k, to compute the correct MAC,
and because the hash function is collision-resistant.

2.2 Description

More formally, letH(x) denote the hash ofx, let MAC(y, z) denote a message authentication code computed over
the messagez using the keyy, and let{a, b} denote the concatenation ofa andb. Let k be the secret key shared by
the originator and destination, and letd be the data to be sent. The relays between the originator and destination are
denotedr1 . . . rM .

The operation of the protocol proceeds as follows:

1. The originator first attaches a unique nonce or serial number,s, to the data, to produce the payloadp1 = {s, d}.

2. The originator calculatesh1 = H(MAC(k, p1)) and sends{h1, p1} to relayr1.

3. Each relayrm stores an identifier (e.g. the network address) of the previous hop under the hashhm, and
forwards{hm+1, pm+1} to the next hop, wherehm+1 = hm unlessrm modifies the header, andpm+1 = pm

unlessrm modifies the payload.

4. On receiving{hM+1, pM+1} from rM , the destination calculatesH(MAC(k, pM+1)) and compares the result
to hM+1. If the result does not match, then eitherhM+1 6= h1 or pM+1 6= p1 – in other words either the header
or the payload has been modified by one of the relays – and the destination does not acknowledge the message.

5. If the message has not been modified, the destination returns the acknowledgementaM+1 = MAC(k, pM+1)
to relayrM .

6. Each relayrm calculatesH(am+1), and if the result matches a stored hash, forwardsam to the previous hop
stored under the hash, wheream = am+1 unlessrm modifies the acknowledgement.

RN/06/FIXME Page 2



7. When a relay receives an acknowledgement whose hash matches the stored hash of a message it previously
forwarded, it knows that neither the header, the payload, nor the acknowledgement was modified by any node
between itself and the destination.

8. When the originator receives an acknowledgement whose hash matches the stored hash of a message it pre-
viously transmitted, it knows that neither the header, the payload, nor the acknowledgement was modified by
any node between itself and the destination, and that the message was correctly delivered to the destination, as
only the destination could have generated the acknowledgement.

Note that in this protocol, nodes that act as relays may buildup confidence of their neighbours’ dependability in
forwarding messages without having to send messages themselves. Whenever a node sees a U-ACK for a message, it
knows that the message was successfully delivered. If the node has knowledge of the network path from itself to the
destination, it can then have confidence that the path as a whole is dependable, i.e. that all the nodes on the path are
dependable. However, the U-ACK protocol does not rely on nodes having this kind of knowledge of network paths.

2.3 Timeouts

Relays cannot store hashes indefinitely while waiting for acknowledgements – at some point, old hashes must be
discarded to make room for new ones. A relay that receives an acknowledgement after discarding the corresponding
hash cannot verify or forward the acknowledgement, so thereis no reason for a relay to store a hash for longer than
its upstream or downstream neighbours. The most efficient solution would be for all relays along the path to discard
the hash at the same time, but adding a time-to-live value to messages would undermine unlinkability by allowing
relays to estimate the distance to the originator.

Fixed timeouts avoid this problem while ensuring that adjacent relays discard the hash at approximately the same
time. The length of the timeout represents a tradeoff between the maximum end-to-end latency the network can tol-
erate, and the number of outstanding hashes each relay must store. The choice of an appropriate timeout will depend
on the application. TCP’s maximum segment lifetime (MSL) represents a conservative estimate of the maximum
latency across the Internet: a typical implementation value is 30 seconds (which is much greater than the typical
latency or round-trip time), and TCP may wait for two MSLs before allowing re-use of a port number. Thus 60
seconds seems to be a reasonable timeout for hashes in an Internet overlay; shorter timeouts may be appropriate for
other applications.

2.4 Lost messages

Messages may be lost, reordered, or modified for a number of reasons, and it may not be possible to determine
whether such events are due to the normal behaviour of the network, or due to the malicious or incorrect behaviour
of relays. For example, in a wireless ad hoc network, loss, reordering, bit errors and even duplication of messages
may be considered normal behaviour for the network.

In contrast to existing approaches that try to identify the node or link responsible for each failure, we take the
pragmatic approach of measuring dependability without attempting to distinguish between malicious, selfish, and
accidental failures. This makes it possible for our protocol to operate in networks with a variable failure rate; an
unknown, changing, or open membership; and those networks where quality of service (QoS) of network parameters
is dynamically variable.

The exact way in which the dependability metric is computed and refreshed is independent of this protocol. The
behaviour of the metric in time (including freshness, decayand/or expiry of dependability information) and in space
(for a given neighbour, relay, or path as a whole) would be application specific, and our protocol places no specific
constraints on the nature of this metric.

2.5 Reverse-path forwarding

We have assumed that the forward path of the message is the same path that will be followed, in reverse, by the
U-ACK. This may not be possible in all networks – for example some wireless networks may contain unidirectional
links. In such cases, there are two situations to consider:

• The reverse path hassome relay nodes in common with the forward path. In this case, there may be some nodes
that receive information about the dependability of their neighbours, while others do not, at least not for all
messages.

RN/06/FIXME Page 3



• The reverse path hasno relay nodes in common with the forward path. In this case, only the originator receives
information about the dependability of its neighbours.

In either situation, the U-ACK protocol provides a coarse-grained measure of dependability: simply that the network
as a whole is managing to deliver messages to their intended destinations and that U-ACKs are being returned, i.e.
correct forwarding behaviour is being maintained for the network, N . This may be sufficient for the application.
However, if other path information is available, e.g. the identities of relays on the forward and reverse paths, then a
more fine-grained and accurate ‘world view’ of dependability may be created.

Note that routing asymmetries such as those commonly found in the Internet do not prevent reverse-path forwarding:
each relay stores the identity of the previous hop when forwarding a message, so the reverse path can be found even
if the relay’s routing tables are asymmetric. Similarly, asymmetric link bandwidth is not a problem as long as it is
possible to return one acknowledgement for each message sent in the opposite direction.

Our protocol can therefore operate in situations with diverse routing paths; the dependability metric chosen should
take account of the nature of the paths and any path information that may be available.

2.6 Non-unicast communication

So far, we have implicitly considered unicast communication. However, there may be further considerations if
non-unicast mechanisms are used for message delivery. For example, some protocols in mobile ad hoc networks
(MANETs) use flooding or broadcast-based forwarding. In such applications, multiple copies of a message may
reach a destination or relay node by different paths. To maintain the association between messages and U-ACKs,
a simple extension of the protocol is to return a copy of the U-ACK to every neighbour from which a copy of the
corresponding message was received. However, this may leadto increased overhead, so an application may wish
to reduce the number of U-ACKs transmitted and adjust accordingly the definition and dynamic evaluation of the
dependability metric being used.

Another issue is that of group communication, such as one-to-many or many-to-many communication using multicast
transmission (as opposed to peer-to-peer systems, for example). In principle, IP-multicast, for example, is an open
membership network: any node can join a given multicast group. Here, a single transmission may have many desti-
nations, and a naive translation of our protocol would require each of these destinations to send an acknowledgement.
Reliable multicast is still considered a research issue1. However, it is known to be impractical to use per-destination
acknowledgments, and other approaches, such as tree-basedschemes, are currently being considered. We have not
yet examined this issue in detail.

2.7 Malicious nodes

It is important to note that while messages may carry source or destination addresses, the U-ACK protocol does not
authenticate these addresses. A U-ACK proves one of two things. To the originator, it proves that the downstream
neighbour delivered the message to its intended destination. To a relay, it proves that the downstream neighbour de-
livered the messageto the destination intended by the upstream neighbour – this does not necessarily correspond to
the message’s destination address. The upstream and downstream neighbours might collude to produce and acknowl-
edge messages with spoofed addresses, so U-ACKs cannot be used to discover reliable routes to particular addresses.
However, in the context of unlinkable communication this limitation becomes a strength: messages need not carry
any information to associate them with one another, or with any particular originator or destination.

There is nothing to stop an attacker from modifying the header of a message, perhaps replacing it with a hash
generated by the attacker for acknowledgement by a downstream accomplice. However, the attacker will then be
unable to provide a suitable acknowledgement to its upstream neighbour, and thus from its neighbour’s point of view
the attacker will effectively have dropped the message and transmitted one of its own instead, albeit one with an
identical payload. The upstream neighbour will not consider the attacker to have delivered the message as requested,
and may reduce its level of service accordingly. Likewise ifthe attacker modifies the payload instead of the header, the
destination will not acknowledge the message and again the attacker will be unable to provide an acknowledgement
to its upstream neighbour.

With respect to reliability, any modification to a message oracknowledgement is equivalent to dropping the message,
and a node that modifies messages or acknowledgements is equivalent to a free rider. The protocol does not attempt
to distinguish between malicious and accidental message loss, since attempting to do so might allow dishonest users
to manipulate the system by exploiting identity characteristics.

1The IETF Reliable Multicast Transport (RMT) WGhttp://www.ietf.org/html.charters/rmt-charter.html

RN/06/FIXME Page 4

http://www.ietf.org/html.charters/rmt-charter.html


3 Proof of unforgeability

The strength and scalability of our system comes from its simplicity. Only originators and destinations can generate
a set of check bits for a message, but any node can verify thosecheck bits without needing to know the identity of, or
share state with, the originator or destination. The key to our protocol is the unforgeability of acknowledgements, so
in this section we demonstrate that relays cannot forge acknowledgements as long as the underlying cryptographic
primitives are secure. Four specific assumptions are made about the underlying primitives, based on the design goals
of those primitives:

1. It is not feasible to recover the secret keyk by observing any sequence of authenticated messages
{MAC(k,m1),m1} . . . {MAC(k,mn),mn}.

2. It is not feasible to calculateMAC(k,m) for a given messagem without knowing the secret keyk.

3. It is not feasible to find the preimagex of a given hashH(x).

4. It is not feasible to find a second preimagey 6= x for a given preimagex, such thatH(y) = H(x).

The first two properties are standard requirements and design goals for MAC functions, and the last two properties
(inversion resistance and second preimage resistance) arestandard requirements and design goals for cryptographic
hash functions. These properties are not affected by recentcollision search attacks on cryptographic hash functions
[13, 14]. As long as these properties are true for any specificMAC and hash function used to implement our protocol,
we consider U-ACKs to be unforgeable.

First we show that the protocol does not reveal the secret key. If an eavesdropper could recover the secret key from
some sequence of messages:

{H(MAC(k,m1)),m1} . . . {H(MAC(k,mn)),mn}

and their acknowledgements:
MAC(k,m1) . . . MAC(k,mn)

then the attacker could also recover the key from:

{MAC(k,m1),m1} . . . {MAC(k,mn),mn}

contradicting the first assumption above.

Next we show that an attacker cannot forge acknowledgementswithout the secret key. Assume that an attacker
succeeds in forging an acknowledgement. Either the forged acknowledgement is identical to the genuine acknowl-
edgement, or it is different. If it is identical then either the attacker has succeeded in calculatingMAC(k,m) without
knowing k, which contradicts the second assumption above, or the attacker has found a way of inverting the hash
function, which contradicts the third assumption. On the other hand if the forged acknowledgement is different from
the genuine acknowledgement, the attacker has found a second preimagey 6= x such thatH(y) = H(x), which
contradicts the fourth assumption.

4 Applications

This paper does not describe a complete communication system, but rather a protocol building block that allows
nodes to measure dependability. The mechanism by which originators and destinations exchange secret keys is not
discussed here, because the acknowledgement protocol is independent of the key exchange mechanism; similarly,
end-to-end encryption is not discussed, although we would expect it to be used by parties requiring privacy and also
to enable stronger unlinkability.

4.1 Generality

Unforgeable acknowledgements can operate in a peer-to-peer overlay or at the network layer, providing an incentive
for nodes to forward messages as well as transmitting their own. There are no dependencies between messages other
than between a message and its acknowledgement, so each message can be treated as an independent datagram;
retransmission, sequencing and flow control can be handled by higher protocol layers. This allows a single incentive
mechanism to support a wide range of upper layer protocols and services. In contrast, many existing incentive

RN/06/FIXME Page 5



mechanisms are limited to file-sharing applications, because they require content hashes to be known in advance
[15, 16, 17, 18].

We assume that acknowledgements can be forwarded back alongthe same path as the messages they acknowledge –
if the reverse path is not the same as the forward path then acknowledgements can only be verified end-to-end.

4.2 Gateways, proxies and middleboxes

The U-ACK protocol does not require relays to share keys withoriginators or destinations, but it can easily be
generalised to situations where the originator wishes to direct traffic through a certain trusted gateway, proxy or other
middlebox: the originator exchanges keys with the gateway and the gateway exchanges keys with the destination;
the gateway acknowledges messages from the originator and forwards them to the destination with new headers;
and the destination acknowledges messages from the gateway. The key shared by the originator and the gateway is
independent from the key shared by the gateway and the destination, so it is possible for the gateway to re-encrypt
the messages before forwarding them; indeed, onion routing[19] could be layered on top of our protocol, providing
originator anonymity as well as originator-destination unlinkability.

4.3 Overhead

The bandwidth and computation overheads of the U-ACK protocol are modest. Each message must carry the hash
of its MAC and a unique nonce or serial number, and the originator and destination must each perform one hash
computation in addition to the normal cost of using MACs. Each relay must perform a single hash computation
and table lookup per acknowledgement, and forward one MAC per acknowledgement. Since acknowledgements are
small and there is at most one acknowledgement per message, acknowledgements could be piggybacked on messages
in bi-directional communication to reduce transmission costs.

Each relay must store one hash per outstanding message, so the storage overheads of the protocol depend on three
factors: the data rate of the end-to-end path,Dp; the message size,Sm; and the timeout for stored hashes,Th. If Sh

is the size of a hash for a single message, we can approximate the storage requirement of a node,Sn, as:

Sn =
Dp.Th.Sh

Sm

So, with a 60 second timeout and a minimum message size of 125 bytes including headers, a relay with an 11 Mb/s
link (e.g. 802.11b wireless LAN) may need to store up to 660,000 outstanding hashes, requiring 13 MB of memory
for a 160-bit hash function such as SHA-1. This represents the worst case, however, when all messages have the
minimum size and all acknowledgements take the maximum timeto arrive; in a more realistic scenario with a mean
message size of 500 bytes and an average round-trip time of 5 seconds, the storage overhead would be just 275 KB.

5 Related work

5.1 Reciprocation

Reciprocation between neighbours is used to encourage resource contribution in several deployed peer-to-peer net-
works [15, 16, 17]. These systems differ in how they allocateresources among cooperative neighbours, but all of
them provide a higher level of service to contributors than non-contributors. Hash trees [20] are calculated in advance
and used to verify each block of data received, so these networks are only suitable for distributing static files.

SLIC [21] is an incentive mechanism for message forwarding in peer-to-peer search overlays. The level of service
received from a neighbour is measured by the number of searchresults it returns, but without a way to verify results
this creates an incentive to return a large number of bogus results. In contrast, the U-ACK protocol prevents relays
from returning bogus acknowledgements.

SHARP [22] is a general framework for peer-to-peer resourcetrading; digitally signed ‘tickets’ are used to reserve and
claim resources such as storage, bandwidth and computation. Claims can be delegated, so peers can trade resources
with peers more than one hop away, but the identities of all peers in the delegation chain must be visible in order to
validate the claim. This makes SHARP unsuitable for unlinkable communication.

5.2 Authenticated acknowledgements

2HARP [2] is a routing protocol for ad hoc wireless networks in which each node that receives a packet sends an ac-
knowledgement to the previous two nodes, allowing each nodeto verify that its downstream neighbour forwarded the

RN/06/FIXME Page 6



packet. Every node has a public/private key pair for signingacknowledgements; these key pairs must be certified by a
central authority to prevent nodes from generating extra key pairs and using them to create bogus acknowledgements.
This requirement makes 2HARP unsuitable for use in open membership networks.

IPSec [23] uses message authentication codes for end-to-end authentication at the network layer. This makes it
possible to authenticate transport-layer acknowledgements as well as data, but the MACs can only verified by the
endpoints, not by third parties such as relays.

TLS [24] uses MACs at the transport layer. TCP headers are notauthenticated, however, so it is possible for relays
to forge TCP acknowledgements. As with IPSec, the MACs used by TLS cannot be verified by relays.

Some robust routing protocols for ad hoc networks use MACs toacknowledge messages and to detect faulty links
and nodes [25, 26]. This requires a trusted certificate authority for key distribution, and rules out unlinkability.

5.3 Authentication using one-way functions

Gennaro and Rohatgi [27] describe two methods for authenticating streams using one-way functions. The first scheme
uses one-time signatures [28, 29]. Each block of the stream contains a public key, and is signed with the private key
corresponding to the public key contained in the previous block. The first block carries a conventional asymmetric
signature. One-time signatures are large, so this scheme has a considerable bandwidth overhead. The computational
cost of verifying a one-time signature is comparable to thatof an asymmetric signature, although signing is more
efficient.

The second scheme uses chained hashes, where each block contains the hash of the next block, and the first block
carries an asymmetric signature. The entire stream must be known to the originator before the first block is sent. This
scheme is similar to the use of hash trees in file-sharing networks.

The Guy Fawkes protocol [30] also uses chained hashes. The originator does not need to know the entire stream in
advance, but each block must be known before the previous block is sent. Each block carries a preimage and a hash
that are used to verify the previous block, and a hash that commits to the contents of the next block. The first block
carries a conventional signature.

Several ad hoc routing protocols use hash chains to reduce the number of asymmetric signature operations [31, 32,
33, 34]. Others use delayed disclosure, in which a hash and its preimage are sent by the same party at different times,
requiring loose clock synchronisation [32, 35, 36]. In our protocol the preimage is not sent until the hash is received,
so no clock synchronisation is required.

The schemes described above use similar techniques to the protocol described in this paper, but their aims are dif-
ferent. Whereas the aim of a signature scheme is to associate messages with an originator, the aim of our protocol
is to associate an acknowledgement with a message, without identifying the originator or destination of the message.
The signature schemes mentioned above therefore require aninitial asymmetric signature to identify the originator,
whereas the U-ACK protocol does not require asymmetric cryptography.

6 Conclusion and future work

We have described the U-ACK protocol, which enables nodes ina network to measure the dependability of their
neighbours in forwarding messages usingunforgeable acknowledgments (U-ACKs). The protocol does not require
trust between all nodes in the network; the only nodes that need to be able to verify one another’s identities are the
originator and destination. The acknowledgements createdby the protocol are unforgeable but can be verified by
untrusted third parties. The protocol has broad applicability: it can operate at the network layer or in a peer-to-peer
overlay, and does not require relays to establish a securityassociation with the endpoints, or to be aware of the details
of higher-layer protocols. It can be seen as a building blockfor dependable communication systems, allowing nodes
to measure the level of service received from their neighbours so that they can adjust the level of service they provide
in return.

We are currently investigating specific properties of the protocol when used in peer-to-peer systems, e.g. the dy-
namics of resource usage that occur with a mixture of free riders, altruists and reciprocators. The investigations will
explore the sensitivity of the U-ACK scheme to various parameters such as the size and structure of the network, the
proportion of free-riders, etc.

The U-ACK scheme could also have applicability to systems that need to be robust to Byzantine failures, such as
applications for safety-critical systems, civil defence and military use.

RN/06/FIXME Page 7



References

[1] R. Perlman. Network layer protocols with Byzantine robustness. PhD Thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, August 1988.

[2] P.W. Yau and C.J. Mitchell. 2HARP: A secure routing protocol to detect failed and selfish nodes in mobile ad
hoc networks. InProc. 5th World Wireless Congress, San Francisco, CA, USA, pages 1–6, 2004.

[3] D. Quercia, M. Lad, S. Hailes, L. Capra and S. Bhatti. STRUDEL: Supporting trust in the dynamic estab-
lishment of peering coalitions. InProc. 21st Annual ACM Symposium on Applied Computing (SAC2006),
Bourgogne University, Dijon, France, 23-27 April 2006.

[4] T.W. Ngan, D.S. Wallach, and P. Druschel. Enforcing fairsharing of peer-to-peer resources. In F. Kaashoek and
I. Stoica, editors,Proc. 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA,
February 2003, volume 2735 ofLecture Notes in Computer Science, pages 149–159. Springer, 2003.

[5] M. Ham and G. Agha. ARA: A robust audit to prevent free-riding in P2P networks. In5th IEEE International
Conference on Peer-to-Peer Computing, Konstanz, Germany, August-September 2005.

[6] S. Buchegger and J.Y. Le Boudec. A robust reputation system for P2P and mobile ad hoc networks. In2nd
Workshop on Economics of Peer-to-Peer Systems, Cambridge, MA, USA, June 2004.

[7] L. Anderegg and S. Eidenbenz. Ad hoc VCG: A truthful and cost-efficient routing protocol for mobile ad hoc
networks with selfish agents. InACM Mobicom, 2003.

[8] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In8th Workshop on
Hot Topics in Operating Systems, Elmau, Germany, May 2001.

[9] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer,
and R.P. Wattenhofer. FARSITE: Federated, available, and reliable storage for an incompletely trusted environ-
ment. InProc. 5th USENIX Symposium on Operating Systems Design and Implementation, Boston, MA, USA,
pages 1–14, December 2002.

[10] M. Rogers and S. Bhatti. Cooperation in decentralised networks. InLondon Communications Symposium,
London, UK, September 2005.

[11] J.R. Douceur. The Sybil attack. In P. Druschel, F. Kaashoek, and A. Rowstron, editors,Proc. 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, USA, March 2002, volume 2429 ofLecture
Notes in Computer Science, pages 251–260. Springer, 2002.

[12] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system design.ACM Transactions on Com-
puter Systems, 2(4):277–288, November 1984.

[13] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD,
2004. Cryptology ePrint 2004/199, available fromhttp://eprint.iacr.org/2004/199.pdf.

[14] X. Wang, Y.L. Yin, and H. Yu. Finding collisions in the full SHA-1. In 25th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 2005.

[15] C. Grothoff. An excess-based economic model for resource allocation in peer-to-peer networks.Wirtschaftsin-
formatik, 45(3):285–292, June 2003.

[16] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer Systems,
Berkeley, CA, USA, June 2003.

[17] Y. Kulbak and D. Bickson. The eMule protocol specification. Technical report, School of Computer Science
and Engineering, Hebrew University of Jerusalem, January 2005.

[18] P. Gauthier, B. Bershad, and S.D. Gribble. Dealing withcheaters in anonymous peer-to-peer networks. Techni-
cal Report 04-01-03, University of Washington, January 2004.

[19] D. Goldschlag, M. Reed, and P. Syverson. Onion routing for anonymous and private internet connections.
Communications of the ACM, 42(2):39–41, February 1999.

[20] R. Merkle. Protocols for public key cryptosystems. InIEEE Symposium on Security and Privacy, Oakland, CA,
USA, April 1980.

RN/06/FIXME Page 8

http://eprint.iacr.org/2004/199.pdf


[21] Q. Sun and H. Garcia-Molina. SLIC: A selfish link-based incentive mechanism for unstructured peer-to-peer
networks. In24th International Conference on Distributed Computing Systems, 2004.

[22] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:An architecture for secure resource peering. In
19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA, October 2003.

[23] S. Kent and R. Atkinson. RFC 2401: Security architecture for the internet protocol, November 1998.

[24] T. Dierks and C. Allen. RFC 2246: The TLS protocol, January 1999.

[25] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on-demand secure routing protocol resilient to
Byzantine failures. InProc. ACM Workshop on Wireless Security (WiSe’02), Atlanta, GA, USA, pages 21–30,
September 2002.

[26] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly secure and efficient routing. InIEEE
Infocom, Hong Kong, March 2004.

[27] R. Gennaro and P. Rohatgi. How to sign digital streams. In B.S.J. Kaliski, editor,Proc. 17th Annual Cryptology
Conference (CRYPTO ’97), Santa Barbara, CA, USA, August 1997, volume 1294 ofLecture Notes in Computer
Science, pages 180–197. Springer, 1997.

[28] L. Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-98, SRI Interna-
tional, Palo Alto, CA, USA, 1979.

[29] R. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance, editor,Proc.
Conference on the Theory and Applications of Cryptographic Techniques (CRYPTO ’87), Santa Barbara, CA,
USA, August 1987, volume 293 ofLecture Notes in Computer Science. Springer, 1988.

[30] R.J. Anderson, F. Bergadano, B. Crispo, J.H. Lee, C. Manifavas, and R.M. Needham. A new family of authen-
tication protocols.Operating Systems Review, 32(4):9–20, October 1998.

[31] R. Hauser, T. Przygienda, and G. Tsudik. Reducing the cost of security in link-state routing. InISOC Symposium
on Network and Distributed System Security, San Diego, CA, USA, February 1997.

[32] S. Cheung. An efficient message authentication scheme for link state routing. InProc. 13th Annual Computer
Security Applications Conference (ACSAC ’97), San Diego, CA, USA, pages 90–98, December 1997.

[33] M.G. Zapata and N. Asokan. Securing ad hoc routing protocols. InProc. ACM Workshop on Wireless Security
(WiSe’02), Atlanta, GA, USA, pages 1–10, September 2002.

[34] Y.C. Hu, D.B. Johnson, and A. Perrig. SEAD: Secure efficient distance vector routing for mobile wireless ad
hoc networks. In4th IEEE Workshop on Mobile Computing Systems and Applications (WMCSA ’02), June
2002.

[35] A. Perrig, R. Canneti, J.D. Tygar, and D. Song. The TESLAbroadcast authentication protocol.CryptoBytes,
5(2):2–13, 2002.

[36] Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc networks. In
8th International Conference on Mobile Computing and Networking (MobiCom), September 2002.

RN/06/FIXME Page 9


	Introduction
	Structure of this paper

	Unforgeable acknowledgements
	Overview
	Description
	Timeouts
	Lost messages
	Reverse-path forwarding
	Non-unicast communication
	Malicious nodes

	Proof of unforgeability
	Applications
	Generality
	Gateways, proxies and middleboxes
	Overhead

	Related work
	Reciprocation
	Authenticated acknowledgements
	Authentication using one-way functions

	Conclusion and future work

