Coherent radiance capture of scenes under changing

illumination conditions for relighting applications

K. Jacobs!, A. Hjorth Nielsen!?, J. Vesterbaek!?, C. Loscos'
1 VECG, University College London, UK
2 Aalborg University, Denmark

September 21, 2006

Abstract

Relighting algorithms make it possible to take a
model of a real-world scene and virtually modify
its lighting. Most relighting algorithms require
a capture process that usually involves taking
photographs of the scene in order to extract its
geometry and original illumination parameters
(radiance and reflectance values of scene sur-
faces). This capture process is often long, te-
dious and error-prone. Therefore, it is usually
carried out under highly controlled conditions,
requiring for instance that the original illumina-
tion conditions are fixed, known, or easily mea-
surable.

In this paper we introduce a new radiance
capture method that allows the user to capture
different parts of the scene at different times
of the day or under different types of lighting
conditions. The scene radiance distribution is
reconstructed from originally uncalibrated pho-
tographs of reflective spheres positioned near
each surface under consideration. A novel regis-
tration method is presented that allows a semi-
automatic calibration of the position of the re-
flective sphere. Furthermore, the radiance val-
ues on the reflective sphere are back-projected
onto the scene geometry in a fast and mathemat-
ically accurate manner, removing distortion and
pinching effects often introduced when using re-
flective spheres. The back-projected radiance
is coherent (captured under the same illumina-
tion condition) with the surfaces of the scene for
which reflectance values are estimated using an
iterative algorithm. Once the reflectance prop-
erties are known, the scene can be relit using a
novel illumination pattern.

Keywords:

Radiance calibration, relighting, inverse illumi-
nation.

1 Introduction

In the last decade, several methods [1] [2] [3]
[4] [5] [6] have been proposed to enable the vir-
tual relighting of existing real scenes while the
number of relighting applications has grown.
In post-production, for instance, the insertion
of virtual data in captured video sequences re-
quires a highly realistic blending, in particular
concerning the illumination conditions. In ur-
ban planning, relighting can be used to observe
the virtual insertion of a new building in a city
at different times of the day. Another applica-
tion could be interior design where a designer
wants to simulate different lighting conditions
in an existing room.

In general, to allow the relighting of an ex-
isting scene, one has to have a certain under-
standing of the geometry and the illumination
properties of that scene. Those are often ex-
tracted from photographs acquired during the
capture process. The complexity of the different
steps of the capture process and the extraction
of the illumination properties has led designers
to use tedious manual methodologies or expen-
sive equipment when inserting virtual elements
and lighting effects into existing real scenes.

While several good relighting methods exist,
the convenience and competence of their cap-
ture strategy is lacking. Nowadays the capture
process is the most critical part of the imple-
mentation of a relighting system, and relight-
ing algorithms are developed to adapt to it. To
capture the geometry and scene radiance, all



methods presented in the literature work under
strictly controlled conditions or use expensive
equipment (e.g., 3D scanners). However, there
are circumstances when it is not possible to con-
trol all scene conditions, e.g., indoor scenes with
large windows, or cloudy outdoor scenes. More-
over, part of the scene may need to be recap-
tured at different times before the correct geom-
etry, radiance and reflectance parameters can be
estimated. This occurs for instance when the
user realizes that additional photographs need
to be taken to model the scene geometry. There-
fore a less restrictive capture procedure would
be desirable.

In this paper a new approach to relighting is
presented that takes the difficulties of the radi-
ance capturing into account. Rather than re-
stricting the user to capture a scene under cer-
tain conditions, it allows a more practical cap-
ture process, with no need of controlling the
light sources’ intensity or their positions. More
precisely the presented algorithm lets the user
model the scene radiance from a simple photo-
graph of a reflective sphere, for which the posi-
tions of the sphere and the camera used to cap-
ture it do not need to be known a priori. Instead
those positions are estimated using a novel semi-
automatic calibration algorithm. Next, the ra-
diance values in the image are back-projected
onto the scene geometry using a fast and math-
ematically accurate warping method. This en-
ables reflectance calculation with an iterative al-
gorithm, using local and distant textured area
light sources that do not need to be geometri-
cally modelled.

The remainder of this paper is structured as
follows. Section 2 discusses the concepts and
the various capture methods used by other re-
lighting algorithms. Section 3 summarizes the
issues with radiance capture and introduces the
identified input data necessary to acquire the ra-
diance and the model of the scene. Section 4 ex-
plains how the lighting conditions are modeled
from the information contained in uncalibrated
images of a sphere and how obtained radiance
values are projected onto the local scene. In
section 5, we explain how the radiance capture
can be used to estimate BRDF to then allow re-
lighting. Finally, a conclusion is given in section
6.

2 Related Work

As highlighted in [1] common illumination refers
to the inclusion of virtual objects in a scene
without modifying the existing lighting condi-
tions while relighting is the process of virtually
modifying the original lighting conditions of the
captured scene. The latter is more difficult to
achieve because when a real light source is vir-
tually turned off, all associated illumination ef-
fects (e.g., shadows, highlights and indirect re-
flections) need to be removed. To perform re-
lighting of a scene it is often preferable to have
certain knowledge of the geometry, the reflection
properties of the surfaces and the illumination
characteristics of the light sources present in the
scene. The process of retrieving the reflectance
parameters (BRDFs) is called inverse illumina-
tion as it is the reverse problem of simulating
illumination. In [7] a survey is presented of the
concept of inverse illumination and the existing
methods used to solve it.

Common illumination and relighting algo-
rithms are always preceded by a scene capture
(geometry and radiance). The scene geometry
can be retrieved using software [8] [9] [10] [11]
or 3D scanners [12] [13] [14]. The scene ra-
diance is usually extracted from high dynamic
range images (HDRIs) as they can represent a
wider range of radiance values. Several algo-
rithms [15] [16] exist to produce HDRIs from
multiple exposures, including one [17] dealing
with changes in the environment. In addition
some methods use a lightprobe image to capture
the overall radiance of the scene, acquired from
photographs of a reflective sphere [18] [19] or a
fisheye lens [20]. In our method the use of a re-
flective sphere was preferred as it is cheaper and,
when ignoring fresnel refraction, the reflection
on a sphere does not distort the scene radiance,
unlike a fisheye lens [21]. The methods using re-
flective spheres, assume its position, or at least
the position of the camera used to capture it, is
known.

Inverse illumination consists of mapping radi-
ance and BRDF properties to every point of the
scene. It is usually easier to extract only diffuse
BRDF properties for large scenes [3] [4], but a
few methods [6] [5] [2] manage to get a more gen-
eral BRDF (diffuse and specular) estimate. Ex-
isting methods using reflective spheres to model
the incoming light do this in an incorrect and/or
inefficient manner, as is shown in section 4, by
assuming incorrectly that it reflects a 4 field



of view. This is less of importance when the
light comes from a distant part of the scene,
but is problematic when it comes from nearby
surfaces. The above mentioned relighting meth-
ods work well under controlled conditions (easy
geometry, fixed and controlled lighting), but it
would be very difficult to obtain good BRDF es-
timates for an uncontrollable environment with
possible changes in lighting conditions. As men-
tioned in the introduction, examples of uncon-
trollable environments include outdoor scenes
with changeable weather conditions, and also
indoor scenes with uncontrollable light switches
or with variable natural light coming from win-
dows.

Some recent work address these issues [22]
[23]. In [22] an alternative for the radiance
capturing is proposed. The geometric model
of an outdoor scene comes from scanned data
[24] onto which radiance textures are mapped.
These textures are extracted from photographs
taken at different times of the day so if directly
stitched together, differences are clearly visible
in the overlapping areas. Based on estimated
visibility and shadow maps radiance values are
normalized to create new textures with consis-
tent illumination. The result is a homogeneous
relighting over the complete model. Although
very interesting the method has some drawbacks
as several assumptions are made: radiance val-
ues are homogeneous inside a shadow, the sun is
fully visible (not partially covered by clouds), its
position can be estimated, and the contribution
from the sky is not directly considered. As a
result, this method is limited to certain types of
relighting, and inverse illumination would not
be possible from this scene capture. Debevec
et al. [23] proposed a similar approach to the
one presented in this paper. Although this pa-
per aims at achieving the same results their ap-
proach is still very different. The BRDF esti-
mate is calculated iteratively, starting from a
representative BRDF sample for each material
in the scene reconstructed by capturing that ma-
terial under controlled illumination (in their ex-
ample at nighttime). The reflective spheres are
not treated for distortion and their positions are
estimated from the known camera position used
to capture it. Finally their results focus on out-
door scenes with the main light source at infin-
ity. As explained in the rest of the paper, our
approach provides a general method to capture
the scene radiance, allowing relighting of scenes
lit under different uncontrollable lighting condi-

tions with less restrictions and assumptions than
existing methods.

3 Problem statement

Figure 1: A screenshot of the 3D scene model
with textures superimposed. The textures are
extracted from HDRIs captured under varying
illumination: parts of the scene were captured in
the morning, other parts in the evening, thus in-
fluencing the scene lighting because of the large
window. Surfaces with a different border colour
were captured under different illumination.

To calculate the BRDF of a certain point p in
the scene, a reformulation of the radiance equa-
tion [25] is solved. To do so, the radiance and
irradiance at p need to be known. The radiance
can be directly extracted from an input pho-
tograph [15]. The irradiance is calculated by
gathering the radiance from other scene points
that are visible in HDR images that should be
captured under the same lighting conditions as
was the radiance of the point p. This is hard
to achieve when the scene is difficult to model
(e.g., when a large set of input images are re-
quired to model the geometry) and the illumina-
tion conditions are unstable (e.g., outdoor scene
or indoor room with large windows). An exam-
ple of a scene model is presented in Fig. 1. The
scene textures are extracted from different input
images used for the geometry extraction, which
are captured under different illumination con-
ditions. As a result, the radiance in the scene
looks incoherent: the radiance values of certain
surfaces are independent from the radiance val-
ues in other surfaces. In other words, the radi-
ance equation cannot be reconstructed to calcu-



late the reflectance at a certain point.

A better way of getting the irradiance at p is
by calculating it from the radiance values visi-
ble in an image of a reflective sphere, positioned
near p. The reflective sphere will not reflect
100% of the scene radiance. This loss is in gen-
eral approximated by a scaling factor, which can
be calculated by comparing a reference object in
the lightprobe image with its reflection in the
sphere. Reflective spheres have already been
used in previous work (e.g., [18] [19]), but these
methods rely on the fact that the scene is rela-
tively distant compared to p. Furthermore, the
position of the reflective sphere is often manu-
ally measured or positioned on a modeled scene
point. The presented method does not make
such assumptions.

—

———

Figure 2: (a) An input image I; (b) Its associ-
ated lightprobe image LP;.

The scene radiance and geometry are cap-
tured as follows. Two sets of photographs are
taken and converted to HDRIs. ' A first set
contains N photographs of the scene, called in-
put images I;, with ¢ € [1..N]. The second set
contains N photographs of a reflective sphere
positioned at various places in the scene, called
lightprobe images LP;, with ¢ € [1..N]. The in-
put images I; are used to enable geometry re-
construction and to steer the reflectance cal-
culations. Materials for which the reflectance
needs to be calculated need to be visible in at
least one input image. The lightprobe images
LP; are used for the lighting extraction and the
BRDF estimation. Every input image I; has a

1The input images can also be plain low dynamic
range images, as long as the pixel values are unsatu-
rated and the camera curve used to capture these images
is known.

lightprobe image LP; assigned; the set {I;, LP;}
needs to be captured under the same illumina-
tion conditions and the position of LP; needs
to be close to the surfaces visible in I;. How-
ever, for i # j, {I;,LP;} and {I;, LP;} can be
captured under different lighting conditions. An
example of such image pair is given in Fig. 2.

As discussed in section 4, to enable the cal-
ibration of the reflective sphere within the 3D
scene, it is important to know the ratio between
the radius of the sphere and the dimensions of
the scene. This is easy to obtain by measuring
a reference object in the scene and the diameter
of the sphere.

4 Coherent Radiance Cap-
ture

To retrieve a coherent radiance distribution in
the scene, with all radiance values being cap-
tured under the same lighting conditions, the
radiance values captured from a lightprobe im-
age are back-projected onto the scene geometry.
Although we make the assumption that some
geometry is known, it is not necessary to have
an accurate geometry model, and a cube map
or sphere as used for traditional environment
map techniques could be sufficient too. In the
ideal case, when the reflective sphere is infinitely
small and the distance between the camera and
the sphere infinitely long, the sphere reflects a
full 47 steradians. Practically however, this can
never be achieved, and a conical volume be-
hind the sphere is not reflected onto the camera
lens. Usually the lightprobe images are treated
without considering the finite set-up of the cap-
turing, resulting in distortion of the scene radi-
ance and pinching effects. This makes any back-
projection on the local scene error-prone.

The exact dimensions of the conical area be-
hind the sphere and the correct relation between
the radiance in the lightprobe image and in the
scene are defined by the positions of the reflec-
tive scene, the camera used to capture it and
the size of the sphere. Instead of manually mea-
suring or modeling the positions of the sphere
and/or the camera, which is tedious and time
consuming, we have implemented a novel cal-
ibration method that automatically estimates
the position of the sphere and the camera based
on a minimum of 6 pairs of points [p, g|, where
p is a 3D scene point and ¢ its projection in the



lightprobe image. Knowing the scene geometry
and the positions of the reflective sphere and
the camera enables us to implement an efficient
warping method to project the radiance from a
lightprobe image onto the 3D scene.

The entire process of mapping the radiance
onto the scene consists of the following steps:

e Camera calibration: the position of the
camera is estimated in a local coordinate
system positioned in the center of the
sphere (see section 4.1).

e Lightprobe registration: the transfor-
mation matrix between this local coordi-
nate system and the scene’s world coordi-
nate system is calculated (see section 4.2).

¢ Radiance registration: once the sphere
position is known a post-processing phase
takes place during which a latitude-
longitude image (LL;) is created that de-
fines the radiance of a 3D point as seen from
the center of the sphere in an efficient and
mathematically accurate manner (see sec-
tion 4.3).

e Radiance mapping: finally using LL;,
the radiance values in LP; are back-
projected onto the entire 3D scene (see sec-
tion 4.4).

Section 4.5 illustrates the performance of the
coherent radiance capture as outlined above,
based on a real-world example.

4.1 Camera calibration

Image Plane

Figure 3: Notations used to retrieve the distance
of the camera from the reflective sphere.

The distance D of the camera from the reflec-
tive sphere can be estimated if the internal pa-
rameters (such as the vertical field of view (fov)
of the lens and the total vertical resolution (M)
of the camera sensor), the physical dimension
(R) and the pixel resolution (Mj) of the pro-
jection of the reflective sphere in the lightprobe

image are known. A simple procedure to esti-
mate the camera position is by assuming that
the camera operates like a pinhole camera as
is depicted in Fig. 3. Based on the assumption
that the sphere is centered in the field of view of
the camera, the distance of the camera C' from
the center S of the sphere can be approximated
using simple trigonometry. First the tangent an-
gle ay, i.e., the ray reflected from the sphere at
5 radians, is calculated as:

Afjtg(%)

tg(ar) =

From this we can estimate the distance D of the
camera from the center of the sphere:

R

D =
sin(ay)

We can express the position of the camera
[-D,0,0] in the local coordinate system of the
sphere. To improve this estimation, the internal
distortion of the camera could be measured in
advance by using a calibration board [26].

4.2 Lightprobe registration

Latitude-longitude image

LL

Figure 4: The local coordinate system X'Y’'Z’
is positioned in the center of the sphere, the X’-
direction lies along the viewing direction. Vector
T defines the translation between the world and
local coordinate system. The radiance of a point
p is derived from the latitude-longitude map us-
ing its (local) spherical coordinates [, ¢4, R],
where ¢ is the projection of p on the sphere.

Finding the position of the reflective sphere
in the 3D scene is the same as finding the trans-
formation between the local coordinate system
of the reflective sphere and the world coordinate
system of the 3D scene, see Fig. 4. This trans-
formation can be written as a 4 x 4 matrix, with
12 unknowns. If 4 pairs [p, p'] (with p a point in
world coordinates and p’ the same point in lo-
cal coordinates) are known, the resulting set of



equations, and therefore the 12 unknowns, can
be solved. However, with the current set-up the
local coordinates p’ are unknown.

By assuming that the scene is distant a
latitude-longitude image can be created that
gives the projection g of the point p onto the
reflective sphere, using software like HDRshop
[27] or Photomatix [28] (see Fig. 4). The lo-
cal coordinates g can be constructed from the
pixel [0, ¢p] in the latitude-longitude image us-
ing simple trigonometry. Still, a scaling factor
exists between the local coordinates p’ and ¢ and
these can be considered as extra unknowns that
need to be estimated. Given these assumptions,
the following algorithm can be used to estimate
the position of a reflective sphere in the 3D scene
based on a set of 6 corresponding points between
the 3D scene and the lightprobe image:

e Define 6 pairs of points [p,q|, with p the
point in world coordinates and ¢ in local
coordinates derived from the pixel value of
p in the lightprobe image.

e These 6 corresponding points define 18
equations with 12 (the transformation ma-
trix) plus 6 (the scaling factors between ¢
and p) unknowns.

e Solve this system of 18 equations with 18
unknowns. The last row of the transforma-
tion matrix defines the position of the re-
flective sphere in the world coordinate sys-
tem.

This is a relatively fast calibration procedure,
requiring little manual input (the selection of
corresponding points). The precision of the
calculated sphere position can be enhanced by
adding more corresponding points and solving
the transformation matrix as the LSE of the
resulting set of equations. Though it might
seem incorrect to construct the point g from a
latitude-longitude image generated by assuming
that the scene lies at infinity, tests showed that
when the corresponding points are relatively far
(> 20 times its diameter) from the reflective
sphere, its position can be retrieved accurately.

Once the transformation matrix between the
local and world coordinate system is known,
the camera position in world coordinate can be
transformed from its known position in the local
coordinate system of the reflective sphere calcu-
lated in section 4.1.

4.3 Radiance registration

As discussed previously, software that creates a
latitude-longitude (or cube) map from a light-
probe image makes the assumption that the
scene is distant compared to the position of the
reflective sphere and that the sphere reflects 47
steradians. This assumption is incorrect in more
practical situations when one needs to capture a
lightprobe image as outlined in the introduction,
where the sphere is actually positioned near sur-
faces in the 3D scene. This misinterpretation of
the lightprobe image results in pinching and dis-
tortion of the scene radiance.

Lightprobe image

£
©
©
5

Latitude-longitude image

Figure 5: Left: Generating a latitude-longitude
image by deriving the angle ¢ from p, S, and
D. Right: the distortion that occurs when the
latitude-longitude image is derived by assuming
the scene to lie at infinity.

A 2D interpretation of the generation of the
latitude-longitude map is illustrated in Fig. 5
(Left). The pixel ¢ in the lightprobe image, pro-
jected onto the lens under the angle «;, contains
the radiance of scene point p. The radiance of
pixel i should therefore be stored in the latitude-
longitude image at position [0, ¢,] where 6, and
¢p are the azimuth and elevation angles of p in
the local coordinate system of the sphere. If
one assumes that the scene lies at infinity, the
projection of point p is estimated to lie at infin-
ity along the dashed line, or in other words the
radiance of pixel ¢ is stored at position [0, ¢p]
in the latitude-longitude image, with 6, and ¢
being the azimuth and elevation angles of the
dashed line expressed in local spherical coordi-
nates. However, due to the fact that the scene
is in fact finite this dashed line actually inter-
sects with the scene in b. Therefore, when us-
ing the constructed latitude-longitude image to
back-project the radiance from the lightprobe
onto the geometry, the radiance of point p is
projected onto the scene point b. This results in
a distortion of the radiance from p to b, which is
proportional to the distance between the sphere



and the scene and the orientation of the surface
on which p lies towards the line Sp.

Since the scene geometry and the positions of
the camera and lightprobe are known, it is pos-
sible to warp the radiance values onto the scene
geometry in a mathematically accurate manner.
There are two ways to achieve this. The first
shoots rays through a pixel of the lightprobe
image, calculates its point of reflection and finds
the intersection of the reflected ray with the tri-
angles of the 3D scene. This is a computational
expensive solution where the computation time
depends on the complexity of the 3D scene. The
second calculates for each scene point p its re-
flection point on the sphere by solving a 4th-
degree self-inversive polynomial and using sim-
ple OpenGL commands. From this reflection
point its projection in the lightprobe image can
be found without the need to perform computa-
tional expensive ray intersections and indepen-
dently of the scene complexity. Therefore the
latter approach was developed in our method.
It is important to note that the accuracy of both
methods is limited by the accuracy of the scene
reconstruction and position calibration.

With the position of the sphere known,
OpenGL is used to find the coordinates of the
scene points that are visible from the center of
the sphere. More precisely the entire scene is
rendered as a cube map positioned in the center
of the reflective sphere. We render color values
where the color of a point p in the scene is set
to a unique quartet: [t;,t,,S;,S;]. The first two
values define the position of p in a triangle, the
second two values define the unique ID of the
scene triangle to which p belongs. The result-
ing position map is used as a lookup table to
see which 3D scene points are visible from the
center of the sphere. Finding the correspond-
ing pixels in the lightprobe image for these 3D
scene points is equivalent to solving Alhasen’s
Billiard problem, for which a 2D graphical in-
terpretation is given in Fig. 5. The following
terminology applies: § is the angle between the
rays from the center of the sphere towards point
p and the camera C| v is the angle of reflection,
and «; is the angle of the reflected ray towards
the center of the camera. It was recently proven
that ¢ cannot be solved from §, R, p and C' (or
D) using the Ruler and Compass method [29].
Instead v should be calculated from the roots
of the following self-inverse polynomial [30]:

azt + 22+ + Bz+a=0

(1)

with
a = ei‘s(ei‘s—klkg)
B = k?+k2— 2k koe®
§ = 2(ki+ k35— kikgcos(d) — 1)
R
kl == 5
ky = al

\/Pz + P}

The angle 9 exists and can be calculated from
the roots of equation (1) if and only if:

0 < & < cos™H(ky)+cos™H(ky) < 7

We can calculate € = 5 — 9 now as:
|
€= 7 cos (Re(z))

This results in four possible values for €, but
only € for which the following condition applies
is the correct reflective angle:

§ + 2¢ = cos ™' (ky cos(e)) + cos ™ (ka cos(e))

Once ¢, and therefore 9, is known, «a; is calcu-
lated using the sine rule:

D R
sin(180 — 1)

sin(a;)

This can easily be extended to 3D by execut-
ing the above calculations in the plane formed
by the camera, the sphere center and p. Now
for each sphere positioned in the scene, and
from each lightprobe image LP; a correct ra-
diance map is created in latitude-longitude for-
mat, called LL;. This LL; now represents a
good estimate of the radiance of a point p as
seen from the center of the sphere. This esti-
mate is especially good when the light sources
in the scene are diffuse emitters.

4.4 Radiance mapping

The radiance values from LL; are then back-
projected onto the entire (modeled or ap-
proximated) scene geometry. For this back-
projection, the position map constructed in sec-
tion 4.3 is used to look up to which scene points
the radiance values in LL; belong to.

Due to the usually poor resolution of the light-
probe image, compared to the dimensions of the



3D scene, the lightprobe image is oversampled
in an irregular manner and interpolation issues
need to be considered. When visualising the
radiance mapping the radiance samples seem
blurred. However, they are mapped correctly
with the given resolution which is acceptable in
most applications of radiance mapping.

4.5 Radiance capture: analysis,
results and discussion

Neutral geometry

Figure 6: Scene composition: the parts of the
scene with the same material properties are
grouped into a material cluster (areas with the
same color and labeled MC;, with ¢ an MC’s
index number). The parts of the scene visible
in the same input and with the same material
properties are grouped into an illumination clus-
ter (areas labeled IC;; with j an IC’s index into
MC; or IC;; € MC,;). There is no texture as-
signed to the ceiling in this example, therefore
it is considered as being neutral, hence no re-
flectance calculation will proceed on this sur-
face. The door and the carpet are considered to
be textured. The radiance of the scene is tone
mapped.

In this paper, all scenes are modeled using Im-
ageModeler 3.5 [11], which introduces a small
error in the geometry reconstruction. For in-
stance, for the scene shown in Fig. 6 (the size
of the room is £3m x 4m x 3m), the variance
in the height of the room after modeling was
+5em. This has an influence on the presented
lightprobe registration and warping algorithm.

In order to assess the accuracy of the esti-
mated position of the lightprobes as described in
section 4.2, the positions of 6 reflective spheres
in the scene were marked and modeled in the 3D
reconstruction of the scene (these points were
not used during the actual calibration). Al-
though only 6 points suffice to estimate the posi-
tion of the sphere, usually around 15 points were
required to get a satisfying registration. These
15 points need to be picked randomly around
the actual position of the sphere and at identi-
fiable features such as corners. The estimated
positions for the 6 spheres were always within a
radius of 3cm of the modeled position, which is
within the range of the scene accuracy, see Fig.
7 (a). The alignment of the back-projection with
the scene geometry is also a good assessment of
the calibration and is shown in Fig. 7 (b). The
alignment with the light source is good, which is
the very important for relighting applications.

A result of the warping method introduced
in section 4.3 is shown in Fig. 7 (¢) and (d).
Image (c) shows the back-projection when dis-
tortion and pinching effects are ignored, while in
image (d) these effects are removed by using the
method presented in this paper. It is clear that
the projection on the radiator and border of the
wall is well aligned with the actual geometry in
(d) while it is heavily distorted in (c).

A numerical interpretation of the distortion
can be assessed by creating a distortion image,
the same size of the latitude-longitude image
and position map, which defines for each scene
point p in the position map the distance to the
point b, where p and b are scene points as de-
fined in Fig. 5. Fig. 8 (a) shows a distortion
image for a lightprobe image (b) captured for
the scene shown in Fig. 6.

Fig. 8 illustrates several practical issues. Sur-
faces parallel to the viewing direction receive the
most distortion. The maximum distortion of the
scene shown in this figure is more than 1m for
a scene with dimensions £3 x 3 x 4 along the
ground floor. Distortion is also particularly high
at areas with a high depth gradient, such as near
the radiator.

5 Application to relighting

We have developed a new coherent reflectance
estimation technique that allows relighting of
scenes lit under changing illumination. The in-
put of our relighting algorithm are the set of im-



Figure 7: (a) The position of 3 spheres (represented by colored spheres) and the associated camera
positions (represented by colored boxes) in the 3D scene. The wireframe shown results from the 3D
modeling. The spheres are positioned £3c¢m above ground. (a - inset) A view from above: a sphere
and its modeled position (the intersection of lines underneath the sphere). (b) A screenshot of the
3D model with textures resulting from the back-projection of a calibrated lightprobe. The orange
rectangles highlight where the back-projection can be assessed, the wireframe allows verifying the
alignment of the back-projected textures with the original objects. We can see that the alignment
of the grid and the back-projection is reasonably well. (c¢) The back-projection of a calibrated
lightprobe image onto surfaces at a distance of £50cm without considering distortion effects. The
warping effect is especially visible on the radiator and the border of the wall. (d) The back-
projection of a calibrated lightprobe after removing distortion effects. The texture is much better
aligned with the border of the wall and the radiator.

ages I; associated to images taken of reflective
spheres LP; as explained in section 3. In section
5.1 the scene modelling procedure is described,
then the coherent BRDF estimation algorithm
is explained in section 5.2. The paper focuses on
diffuse reflection properties only, for demonstra-
tion purposes of the feasibility of the approach,
but one could extend it to more complex sur-
faces. Section 5.3 presents some results of the
BRDF estimation based on two different exam-
ples. The relighting method is then presented
in section 5.4.

15-25cm

<40cm

5.1 Scene modelling

A 3D model is built from photographs using
ImageModeler 3.5 [11]. The final 3D geomet-
ric model consists of a set of large triangles.
The BRDF estimation is executed per trian-
gle, therefore to improve the results the origi-
nal triangles are further triangulated based on a
variance and area constraint with the objective
to subdivide the scene such that the radiance
over a triangle is homogeneous. Triangles with

Figure 8: (a) Distortion image for the light-

probe image shown in (b); each pixel defines
the distance of the distortion introduced. (b)
Latitude-longitude image without removing dis-
tortion and pinching effects.

the same material properties are grouped into
a material cluster (MC'), and triangles within
such clusters that are visible in the same input
image are further grouped into an illumination
cluster (IC'). This means that each IC; has one



lightprobe image LP; and one input image I; as-
signed. This is illustrated in Fig. 6 which shows
an indoor scene, for which the wall surfaces are
captured under different illumination settings.
Some parts of the scene that have a large vari-
ance in radiance values are automatically set as
being patterned (for example the door and the
carpet in Fig. 6) because the variance of radi-
ance over the surface is high, even with a refined
triangulation. Surfaces for which not enough in-
formation has been captured and for which no
reflectance estimate will be conducted are called
neutral.

5.2 BRDF estimation

For the purpose of this paper, the scene was
considered to contain only diffuse materials,
but a more sophisticated BRDF model, with
anisotropic and specular characteristics, could
also be considered. The BRDF calculation pre-
sented in this paper follows an iterative strat-
egy, comparable to the one in Boivin et al. [2],
but slightly more sophisticated as the strategy
adapts to scene elements and makes use of co-
herence to compensate for geometric inaccuracy.

The main idea can be summarised as follows.
First an initial value for the diffuse BRDF is
made. Then the scene is rendered using the
scene radiance extracted from the lightprobe im-
ages, the scene geometry and the BRDF esti-
mates. If the difference between the rendered
and the input images is too large, the BRDF
model is refined iteratively. To obtain consis-
tent BRDF values for triangles belonging to the
same material, a coherency principle is applied.

The remainder of this section is as follows.
First we will discuss how the BRDF is calcu-
lated at a triangle level (5.2.1), then we explain
how this information is distributed to the differ-
ent MC; using the coherency principle (5.2.2).
Finally we will discuss how the implementation
of PBRT [31] was extended to deal with local
textured area light sources (5.2.3).

5.2.1 BRDF estimate per triangle

To speed up the calculations, a BRDF estimate
is made per triangle. Initially, the BRDF for
a triangle is set to a pre-defined starting value.
Then the scene is rendered from the camera po-
sition used to capture the N input images us-
ing global illumination. For each viewpoint, the
neutral geometry (see section 5.1) is considered
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as being a black emitter, where the emitted radi-
ance is extracted from the generated LL;. After
rendering these N image estimates fi, a direct
comparison can be made between the radiance
values of the triangles visible in I; and their ren-
dered counterparts in I;. This gives a measure
of the error between the true BRDF and the es-
timation. Using this error, the estimated BRDF
values can be improved iteratively.

The starting BRDF value can be calculated
from the radiance equation which describes the
reflected radiance for a point p into direction w,.
as:

L,(p,w,)

/ plwi, wy) Li(p, w;) cos(0;)dw;
Q

where L; is the incident radiance at p in di-
rection w; and p is the general reflectance. This
simplifies to an explicit equation for diffuse ma-
terial to the reflectance pgy:

_ Ly (p,wr)
P T L (py w;) cos(0; ) duw;

(2)

In other words, a good estimate for the diffuse
BRDF for a point p is given as a ratio where the
nominator is the radiance value of the point p
in its associated input image I; and the denom-
inator is the sum of the radiance values, modu-
lated by a cosine, that can be seen from point
p. In practice, this sum is derived by rendering
the scene on a hemisphere positioned around p,
where the radiance values of the scene points
come from either I; (when visible in I;) or LL;
(when not visible in I;), and summing all re-
sulting pixels after modulating them by the ap-
propriate functions. As the BRDF is only cal-
culated per triangle, the starting BRDF value
for the triangle is set to the result of the above
mentioned calculations for the midpoint of the
triangle.

When a scene is not perfectly diffuse, the
above described estimate is incorrect; the esti-
mate is refined per triangle iteratively as follows:

n+1

Py =Expg

where n is equal to the iteration number, and E
is the average of the radiance values in I; over
the average of the radiance values in I;:

avg
Ii

ravg
I;

E =




Recall that (see section 5.1) some triangles in
the 3D scene are labeled as being patterned and
others are not. For non-patterned triangles, one
diffuse BRDF estimate is calculated for each tri-
angle midpoint. When a triangle is patterned,
a per pixel estimate is carried out. In practice
this is carried out by storing the diffuse BRDF
estimates in a diffuse map (dm). This diffuse
map has the same dimensions as the radiance
texture stored for that particular triangle. For
non-textured triangles all pixels in dm have the
same BRDF value. For textured triangles, the
entries in dm are the per-pixel calculated BRDF
values. This diffuse map can effectively be used
by PBRT to render the scene with the defined
diffuse BRDF. The update of F is still calcu-
lated per triangle (for noise reduction), therefore
some artifacts may become visible for textured
surfaces; the finer the triangulation, the less ob-
vious these artifacts become.

5.2.2 Coherent BRDF estimation

It would be logical to estimate the BRDF per
material cluster MC;, as a material, unless
being patterned, has the same BRDF value
throughout a surface. Unfortunately, local in-
accuracies will most likely make the BRDF val-
ues across the triangles of an MC incoherent.
In order to obtain this coherent BRDF, the
BRDF values for all triangles belonging to the
same MC' are averaged using a specific weight-
ing function which reflects the accuracy to be
expected for the calculation of the BRDF for a
certain triangle. In this paper, this weighting
function is given by the relative distance of a
triangle to the lightprobe image used to calcu-
late its BRDF'. This makes sense as the radiance
representation extracted from a lightprobe im-
age is most accurate for points near the reflective
sphere used to capture the lightprobe image. In
mathematical terms, the BRDF of a particular
MC; is given as:

T
Pi Z Wy X Pt
t=1
d;t
T -1
with T the total number of triangles belong-
ing to MC; and d; the distance of triangle t to
its associated reflective sphere. To improve the

weighting function, the radiance variance of a

Wt
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triangle could be incorporated as the per trian-
gle BRDF estimate is less accurate for triangles
with a large texture variance.

As a result, the BRDF is uniform across all
triangles belonging to the same M C. This cal-
culation should also remove local errors related
to the scene geometry approximation or an in-
correct light source model (also see section 5.3).

5.2.3 Rendering using PBRT

The images I; are rendered with PBRT using
Monte Carlo path tracing [31]. We have ex-
tended the common version of PBRT to sup-
port textured area light sources and allow im-
portance sampling of these. Since the illumina-
tion is based on the entire back-projected radi-
ance, it is important to specifically adjust the
path tracer to provide more samples where the
radiance is high to avoid noise in the render-
ing. The original path tracer implemented in
PBRT determines the contribution from direct
lighting by randomly choosing a light source
to sample and chooses sample points on this
uniformly over area. This approach results
in high variance of the Monte Carlo estimator
because the HDR textures used as area light
sources contain both low and high radiance val-
ues (very high variance). The importance sam-
pling is implemented by re-triangulating the
area light sources, and calculating the contribu-
tion from each new ”small” area light source (av-
erage emittance times area) to build a discrete
1D cumulative density function (CDF). This
CDF is then used to determine which area light
source to sample when estimating the contribu-
tion from direct lighting, resulting in a lower-
variance Monte Carlo estimator.

5.3 BRDF estimation results

To verify our proposed BRDF estimation al-
gorithm two different scenes were constructed.
The first, a synthetic scene generated using
PBRT, is used to assess the method indepen-
dently from any errors that might be introduced
by using a real scene and the sphere calibra-
tion. The second scene is a model of a real scene
and is used to assess the reflectance calculation
in real situations with possible inaccuracies in-
troduced by the geometry reconstruction, the
sphere calibration and other hypotheses on the
surface properties.



5.3.1 Synthetic scene

The synthetic scene consists of four walls, a ceil-
ing, a floor and one object, see Fig. 9. The
ceiling contains an area light source. A light-
probe image is generated from three different
positions, assuming an infinitely small reflec-
tive sphere and a camera positioned at infin-
ity. The reflectance values of the scene are
known and are purely diffuse, as are the po-
sitions of the reflective spheres and their cor-
responding (virtual) cameras. The reflectance
of the blue wall and the white object are esti-
mated, while considering the other walls, ceil-
ing and floor as neutral geometry. After back-
projecting the lightprobe images onto the scene
geometry, the initial BRDF values are set (incor-
rectly) to [0.5,0.5,0.5]. The correct reflectance
values are obtained in less than three iterations.
The two screen shots of our implemented sys-
tem, see Fig. 9 (b) and (c¢), show the evolu-
tion of the BRDF values in the RGB-channel
for the triangles in the blue MC (b) and the
white MC (c). The white box shows consid-
erable color bleeding, while the blue wall does
not. As a result the blue M C converges faster
(in one iteration) than the white MC (in two
iterations).

5.3.2 Real Scene

A room containing white walls with several col-
ored patches displayed on them was modeled us-
ing ImageModeler 3.5 [11], see Fig. 6. A Canon
EOS 10D was used to capture the input and
lightprobe images. Different parts of the room
were captured under different illumination con-
ditions. The reflectance of two walls (the front
and right wall in Fig. 6, were captured under
different illumination), the door and some parts
of the carpet are estimated whereas the remain-
der of the scene is considered to be neutral. The
door and carpet are labeled as being textured.
The reflective spheres used were all positioned
slightly above the carpet.

After 3 iterations, the BRDF estimation con-
verges, when using 128 samples per pixel in
PBRT. Fig. 10 (a) shows a rendering of the
scene I; from the same viewpoint as the input
image I; shown in (b). The error image (c) re-
veals errors in areas containing un-modeled ge-
ometry (borders), in areas with missing detail
(ventilator above door), and specular highlights
(doorknob). The latter is due to our implemen-

tation of textured area light sources in PBRT.
Nevertheless, the maximum error is still low, it
is 8% near the edges of the doorknob due to the
un-modeled specular effects. The difference near
the ceiling is due to an incorrect lighting model:
the light is actually embedded within a framed
box, surrounded by convex mirrors, while it has
been modeled as a textured area light source.
As a result the fall-off of the light is less present
than in the reality.

This can also be seen in Fig. 11 (a) which
shows the per triangle calculated BRDF'. For the
white wall the BRDF values near the top are
darker and of slightly different color than the
BRDF values for the triangles near the ground.
The estimate for the triangles near the ground is
more correct as they are closer to the reflective
sphere used to calculate the BRDF values. In
addition, the geometry of the light sources was
not modeled and therefore at highest points of
the wall more radiance was gathered than in the
real scene. However, as can be seen in (b), the
coherent BRDF weighting compensates well for
errors in the radiance gathering. In this example
the front and right wall were considered to be
different M C'’s, to be able to examine the differ-
ence between the BRDF calculations when dif-
ferent illumination conditions apply. The BRDF
for the front wall is [0.83,0.82,0.81], while it
is [0.89,0.88,0.92] for the right wall. Consider-
ing that only diffuse components have been es-
timated, these results confirm that the method
provides consistent BRDF' estimates.

12

(a)

(b)

Figure 11: (a) BRDF calculated per triangle,
(b) BRDF after applying coherent weighting.

5.4 Relighting

Once the BRDF properties of a 3D scene recon-
structed model are estimated, the scene can be
relit with any input illumination. One way is



Figure 9: A synthetic scene is generated to test the reflectance calculation. The scene consists of
four walls (red, green, blue and orange), a ceiling containing a small area light source, a floor and
one white object. (a) The synthetic scene with back-projected textures from one of the lightprobe
images of the scene. (b,c) The two plots show the iteration data for the blue MC (b) and the
white MC' (c). The true BRDF for the blue MC is [0.0, 0.0, 0.6] and for the white M C [1.0, 1.0,
1.0]. The initial values for the BRDF were set to [0.5, 0.5, 0.5] for both MC’s. The calculated
BRDF estimates are [0.0009 0.0009 0.6093] and [0.995 1.0061 1.0091] for the blue and white MC
respectively.

(a) (c)
Figure 10: (a) Estimated input image I; using 2024 samples per pixels. (b) Original input image.

(¢) Error image calculated between (a) and (b). The relative error is less than 8%. The error is
mainly visible near specular highlights (doorknob) and missing geometry (ventilator above door).
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to apply a novel radiance captured from a new
lightprobe image, which is then used to relight
the scene. To evaluate the quality of the syn-
thetic relighting, a new comparison image (I,.)
is captured under the same illumination as LP,,
and the relighting is carried out from the same
viewpoint as the comparison image. Fig. 12
shows I, (a) and the resulting relighting I, (b).
Fig. (b) looks very similar to (a) except where
specular effects are clearly visible, like for in-
stance on the doorknob. Additional visible arti-
facts on the side of the door are due to a crude
calculation of E per triangle, to speed up the
computation. A per pixel gathering of E could
significantly reduce the perception of these dis-
tinctive triangles, but may result in other types
of artifacts due to the Monte Carlo sampling.

——

(a)

Figure 13: Relighting after inclusion of virtual
objects. (a) both objects are specular. (b) the
material of the statue is changed to clay.

the scene is at a finite distance, near the light-
probe. The novel calibration method is based on
a set of minimum 6 pairs of points between the
lightprobe image and the 3D scene (model ex-
tracted from input photographs of a real scene).
The novel back-projection method uses the po-
sitions of the sphere and the camera, and the 3D
scene geometry to calculate the radiance of the
scene points visible from the center of the sphere
by solving a fourth degree self-inversive polyno-
mial. As a result our method offers a more accu-
rate back-projection while other methods, using
lightprobe images, often ignore distortion and

(a)

(b)

Figure 12: (a) Input image. (b) A rendered im-
age using 2024 samples per pixels and under the
same illumination as in (a).

Fig. 13 (a) and (b) show tow relit images after
inclusion of two virtual objects into the scene.
In (a) a specular teapot and statue are added,
while in (b) the material of the statue is changed
from specular to clay.

6 Conclusion

In this paper we have presented a novel ap-
proach to relighting, that reconstructs the scene
radiance from uncalibrated lightprobe images of
a reflective sphere. The first contribution of the
paper explains how to automatically calibrate
lightprobe images for accurate radiance regis-
tration, even with the constraint that the orig-
inal lightprobe position is unknown and that
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pinching effects.

The second contribution is the application
of the radiance capture to inverse illumination
and relighting of scenes originally captured un-
der varying illumination. The radiance values
captured from the lightprobe image are back-
projected onto the scene geometry and are then
used to gather irradiance at points near the po-
sition of the reflective sphere. This allows es-
timating the reflectance values for surfaces near
the spheres. The diffuse BRDF values of the ma-
terials in a scene were calculated, and relighting
examples of the scene were shown.

The proposed method was shown to work
when diffuse material properties are estimated
but could be extended to more complex BRDF
models. The most obvious limitation of the re-
lighting quality is due to the assumption that all
light sources in the scene are diffuse. A correct
model of the light distribution would greatly im-
prove the relighting results. We expect more



research to be done on the modeling of light
sources in the near future.
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