Automatic Verification of Knowledge and Time
with NuSMV

Alessio Lomuscio, Charles Pecheur, Franco Raimondi

Technical Report RN/06/18

Abstract

We show that the problem of model checking multi-dimendiomadal logics
can be reduced to the problem of model checking ARCTL, anneide of the
temporal logic CTL with action labels and operators to reaabout actions. In
particular, we introduce a methodology for model checkirtgraporal-epistemic
logic by building upon an extension of the model checker N¥Shhat enables the
verification of ARCTL. We briefly present the implementatiamnd report experi-
mental results for the verification of a typical securityfoeml involving temporal-
epistemic properties: the protocol of the dining cryptpders.

1 Introduction

Epistemic logic [5, 15] has traditionally played an impaitaole in Artificial Intelli-
gence (Al). Not only epistemic logic can provide a formalibds reason about states
of knowledge in automatic reasoners but it can also be searfasnal specification
language to reason about artificial agents as common peaictithe area of Multi-
Agent Systems (MAS). Indeed, epistemic logic is partidylappropriate in MAS as
knowledge constitutes the basis for rational action. Is time of work typically one
considers the epistemic modal logic,S&mbined with a temporal logic for branching
time or linear time interpreted on computationally grouhdemantics [21] such as the
one of interpreted systems [5], or a suitable variation {#3{.

While much attention in the 80s and 90s focused on provinglogical results
(notably completeness and computational complexity) &fous temporal and epis-
temic combinations [7, 13, 14], considerable attentionlieen given in the past few
years to the problem of devising model checking techniqoegtese formalisms
[9, 6, 19, 18]. These efforts are strictly related to the nechift of attention from
theorem proving to model checking as suggested, amongspihgB].

This article intends to make a contribution in this line byposing an efficient
model checking technique for verifying CTLK (an epistendgit on branching time)
based on NuSMV [3], a mainstream model checker for tempogat! Specifically the
present article makes the following points. First, it iswhahat the model checking of
CTLK can be (automatically) rephrased as the one of modelkthg the action-based
temporal logic ARCTL [17]. Second, we present an extensioNuSMYV that enables

automatic model checking of ARCTL. Third, we present an egttic translator from
an SMV-like language for a semantics of MAS for the extensibove. The main
benefits of this approach as opposed to current state-edsthies in the efficiency of
the approach which we try to demonstrate while discussipg®emental results.

2 Préiminaries

We summarise the formalism afiterpreted systemm Section 2.1, a formalism to
reason about time and knowledge in a system of agents. 82 we discuss the
problem ofmodel checkingising NuSMV.

2.1 Interpreted systemsand CTLK

The formalism of interpreted systems, introduced in [Shvdes a formal framework
to reason about time and knowledge in a system of agents. beta set of: agents:
¥ ={1,...,n}. Asetoflocal state€; and a set of actiondct; is associated to each
agenti, together with a protocaP; : L, — 24 assigning a list of enabled actions
to each local state. The local states of an agent changedaegdo a local evolution
functiont; : L; x Ly x Act — L;, whereLg is the set of local states of a special agent
in X (the environment), andct = Acty x ... x Act,. ThesetS = Ly x ... x L,

is called the set of global states. Given a set of initial glatiates/ C S, the set
G C S representing the set of reachable states is generated leyahéion of I and

in accordance with the protocol and the agents’ local eimifunctiond. Given a set
of atomic propositionsi P and an interpretatiol” C S x AP, aninterpreted system
is a tuple

IS = <(Li,ACti,Pi,ti) I,V>

The logic CTLK combines the traditional Al epistemic logig,Swith the temporal
logic CTL. Specifically, the syntax of CTLK is defined as foils:

pu=p|l-p|loVe|EXp| EGp| ElpUy] | Kip (1)

where K;p is read as “agent knows” and the CTL operators have their standard
meaning — for exampley Gy is read as “there exists a path wheréolds forever”.
Other derived operators are defined in a standard way (se@tef]). To evaluate
CTLK formulae, a Kripke modeM;s = (W, I, R, ~1,...,~y, V) is associated to a
given interpreted systeriS, as follows: W is the setG; of reachable stateg, C W

is the set of initial states, the temporal relatiBn C W x W is obtained using the
protocolsP; and the evolutions functions, the epistemic relations; C W x W, for

i € X, are defined by checking the equality of th&éh local component of two global
states (i.e.{l1,...,l,) ~; (I{,...,1,) iff {; = 1)), andV is the evaluation relation
appearing i/ S.2

i€

1The system evolves synchronously, i.e, at each time stépeafigents perform a move.
°Note thatW is, by definition, thereachablestate space, i.e. it only contains states that are reachable
from I throughR;. This condition is crucial to the proper interpretation~of and K; .

The formulae defined by 1 are interpretediifys in a standard way: we refer
to [4, 5, 18] for the formal definition oM = ¢, wheref= is the standard satisfaction
relation.

2.2 Modd checking using NuSMV

Given a Kripke modelM and a formulap, model checkings defined as the problem
of establishing whether or nd/ = . In this approach\/ represents the system to
be checked ang the specification of the system. In the last fifteen yearsriegkes
and tools have been developed to perform the verificatidnitaan automatic way,
mainly for temporal models and temporal specifications. MU$3] is a mature model
checker for temporal logics and it has been employed in thécagion of a number of
examples. Other very successful model checkers existblyopin [10], Verics [16],
etc.

NuSMV has a dedicated modelling language (the SMV langyagagh permits
the definition of the temporal model in an expressive, compad modular way.
NuSMV avoids building or exploring the state space corresjag to its models ex-
plicitly; instead, NuSMV applies symbolic techniques lthesm ordered binary de-
cision diagrams (OBDDs) or propositional satisfiabilityA[3 solvers to efficiently
perform verification over large state spaces.

NuSMV is a command line tool for most operating systems, éddurce code is
available under the terms of the GNU General Pubic Licen$d jG

3 Moded checking MAS: stateof theart

Recently, different approaches have been proposed todxtenlel checking tech-
niques from temporal logics to richer logics, with the ainvefifying knowledge-based
and agent-based systems. Two main streams can be idemniifieel iecent literature:

1. Dedicated tools. Works along this line include the model checker MCK (Model
Checking Knowledge, [6]), implementing the verificationagfrtain classes of
interpreted systems. Verics [16] is a model checker for MA&Satibed using
networks of timed automatacMAS [19] is an OBDD-based model checker for
MAS described in interpreted systems.

2. Extensions (and trandations) to existing tools. [9] propose the use of local
propositions to reduce the problem of model checking kndgéeand time to
the verification of a temporal-only model. [22] define the MAB language,
and they show how the verification of this language can beaedito the verifi-
cation of PROMELA code (the input language of the model cke&PIN [10]).
Similarly, [1] introduce the language AgentSpeak(F), dreytpresent a transla-
tion into PROMELA code.

Experimental results from the papers cited above show timahverage, purpose-
built tools can handle larger examples, and that trying ® erdsting tools often re-
quires manual intervention. We show below this is not nerélgsthe case. In the

remainder of this paper our aim is to introduce a fully auttedamethodology that
builds upon an existing tool (NuSMV) and show that it perfertomparably or better
than similar approaches.

4 Mode checking CTLK in NuSMV

This section introduces the logic ARCTL (Action-Restritt€TL) and a proposed ex-
tension to NuSMV thereby enabling the verification of ARCTheoators. In Sec-
tion 4.2 we show how the problem of model checking for CTLK barreduced to the
problem of model checking for ARCTL, thereby permitting theification of CTLK
by using NuSMV. In addition, in Section 4.3 we present an SIKg-language for
interpreted systems and its translation into SMV code.

4.1 Thelogic ARCTL

The logic ARCTL [17] extends the logic CTL by allowing quditation over action
labelled paths. More in detail, given a set of atomic profmss AP and a set of
atomic actionsd A, the syntax of ARCTL is defined as:

o u= plopleVe|EXe| A X
| EalpUg] | AalpUy] ()
a = b|-alaVa (3

wherep and« are state and action formulae apd=s AP andb € AA are atomic
propositions over states and actions, respectively. Siipito CTL, other temporal
operators can be derived in a standard way.

A model for ARCTL is a tuple of the formd/ = (S, Sy, A, T, Vp,V4), whereS
is a set of statesSy C S is a set of initial statesd is a set of actions]” C S x
A x S is a transition relation (notice the dependence on actjdiis): S — 247
is an interpretation for atomic propositions, avig : A — 244 is an interpretation
for atomic actions. Given a modél = (S, Sy, T, Vp,Va), the a-restriction of M,
denoted by\/,,, is a modelM,, = (S, Sy, Tw, Vp, Va), whereT,, is a transition relation
suchtha(s,a,s’) € T, iff (s,a,s’) € T anda |= o (Wherej= is the natural extension
of V4 to propositional formulae). We refer to [17] for further detalils.

For model checking purposes, we have extended NUSMYV to stigwgoverification
of ARCTL formulae. We used NuSMV existing “input” variabléss model ARCTL
actions. In particular, we have modified the syntax of thenidee accepted by NuSMV
as follows:

ctlexpr == ... (existing CTL forms)
EAX(simpleexpr) ctlexpr
EAGQ simpleexpr) ctlexpr
EA(simpleexpr) [ctlexpr U ctlexpr]

wheresimpleexpr is a conditional expression, further restricted to contaily input
variables. For exampl&€A(a)[p U q] is the concrete syntax faE,[pUq|. Ad-
ditionally, we have implemented extensions to the NuSMVecbdse to enable the
verification of these operators (the details of these maifias are beyond the scope
of this paper).

4.2 Reducing CTLK toARCTL

The problem of model checking CTLK (see Section 2.1) can beaced to the prob-
lem of model checking ARCTL. Specifically, given a CTLK model and a CTLK
formulapk, we can define an ARCTL modéll = F (M) and an ARCTL formula
F(pk) such thatM i &= ¢k iff F(Mg) E F(ek). LetX = {1,...,n} be a set
of agents, and led/x = (W, I, R;, {~;}icx, V) be a model associated to some inter-
preted systendS = ((L;, Act;, P;,t;),cx . 1, V). The modelF (M) is an ARCTL
modelM = (S, Sy, A, T, Vp,Va) such that

e S=W andSy = I;

e the setdA = {Run, Agty, ..., Agt,} contains a propositioRun to label tem-
poral transitions (defined bi;) andn propositionsdgt; (one for each agent) to
label epistemic equivalence steps (defined), and the action sed is 244;

e the transition relatio” combines the temporal transitid®y and the epistemic
relations{~, };cx in the following way: for states, s’ € W, (i) (s, { Run},s’) €
T iff sRys'; (i) (s,{Agti},s') € Tiff s ~; &5 (iii) (s,{al,...,ax},s’) € Tiff
(s,{a;},s") foralll <i < k3

e Vp =V andV, is the identity function.

The translation of a temporal-epistemic formula into an ARGormula is induc-
tively defined as follows:

e F(p) =p, if pis a propositional formula.
o F(EXp) = EpunXy; F(E[oUV]) = Erun|pU]; F(EGp) = ErunGe;

In other words we use the labelgun (Agt;, respectively) to denote a temporal re-
lation (the epistemic relation for agentrespectively). This translation allows us to
model check CTLK formulas by model checking their transiasiin ARCTL. Clearly
a similar approach can be used for more complex modal logics.

The translation from an interpreted systdi$i to the ARCTL modelF'(M;s) is
performed automatically by a translator we have implentk(gee next section).

SCase (jii) is necessary for interpreting distributed kremtge operators, but this discussion is beyond the
scope of this paper.

Agent model (xtd. NuSMV)
+ CTLK specs

M4 translator

NuSMV model
+ ARCTL specs

i

NuSMV
(w/ ARCTL support)

TRUE FALSE

+ counter—ex.

Figure 1: Verification work flow for interpreted systems

4.3 An SMV-likelanguage for interpreted systems

We have designed extensions of the SMV language for the igésorof interpreted
systems and CTLK formulae. These extensions can be traddatinto a standard
SMV model and ARCTL formulae. Concretely, the extensiorsdafined as a library
of M4 macro$. The work flow needed to perform verification of an interpdetgstem
is summarised in Figure 1. Notice that the only manual irgetion is the provision of
the input file describing the problem to be verified.

Inthis language, an agenhane> is associated with the SMV variableg1>, . . , <vn>
that define its local state, through a declarad@ENT(<nane>, <v1>, .., <vn>).
The actions of each agent are represented as input varigi#e?). The protocol of
each agentis described as a relation between its localstdtaction variables (within
an SMV TRANS statement). The transition function is encoded using a HERANS
statement, and initial conditions using a n&@wNI T statement. Figure 2 shows the
structure of a typical definition of a class of agents as an Sidule (note that-*- ”
starts comments in SMV, see [3] for details).

Internally, the translation generates additional bool¥ARRS corresponding to the
Run andAgt; propositions of the ARCTL model (e.®UN, bob. e andal i ce. ne
in the model of Fig. 2), an@i TRANS statements expand to standaiANS statements
conditioned orRUN.

Note that the state space of the NuSMV model is not a priotriotsd to the
(temporally) reachable states; this has to be imposed hyahslation scheme. A state
is reachable iff it can be reached from the initial statesudlgh a series of temporal
steps (or, equivalently, iff there exists a reverse pathftbat state back to the initial

4M4 [12] is a general-purpose macro processor available ast bidIX platforms.

MODULE anAgent (args, ENV) -- an agent nodul e
VAR local : {...}; -- the local state

AGENT(ne, | ocal) -- declare the local state
IVAR action : {...}; -- actions of the agent
TINNT(...); -- initial conditions
TRANS(action =
case ...) -- the agent’s protocol
TTRANS(NEXT(l ocal) =
case ...) -- the agent’s evolution function
MODULE mai n -- main nodul e
VAR_ENV -- declare ENV vari abl es
VAR alice : anAgent(argsl, ENV) ; -- an agent
bob : anAgent (args2, ENV) ; -- another agent

Figure 2: Example of agent definition in extended SMV

set). Assuming we have access to reverse temporal trarsitisough some action
condition Back in our ARCTL model, and a state conditidni¢ for initial states, the
set of the (temporally) reachable states is captured byalkening ARCTL formula:

Reachable = Egci F Init

Since this is a temporal formula, it has to be folded into NiSploperties; it cannot
be used in the NuSMV model itself. For example, the CTLK folanki; o expands to
the ARCTL formulad 44, X (Reachable —).

Our library implements this scheme. In particular, TlERANS construct imple-
ments an encoding scheme allowing temporal transitione toaversed both forwards
and backwards. On the specification side, new operdixs TAG etc. provide the
equivalent of SMV’s built-inAX, AG etc., restricted to temporal transitions, and a new
operatorKK implementsK ;. For instance, the CTLK formuldG(K,(p V q)) ex-
pressing that agemtalways knows eithep or ¢, is written asTAG(KK(a, p| q)) .

5 Exampleapplication

In this section we model the protocol of the dining cryptgdrers using the formalism
presented in Section 2.1, in order to enable its verificaiging the methodology pre-
sented in Section 4.2. The protocol was introduced by ChaJ&j,iand was modelled
using agents by various authors [20, 19, 11]. The aim of thasoggol is to allow the
anonymous broadcasting of messages, and it is usuallydintes using the following
scenario (wording from [2]):

“Three cryptographers are sitting down to dinner at theivéaite three-star restau-
rant. Their waiter informs them that arrangements have beaadle with the maitre
d’hotel for the bill to be paid anonymously. One of the crgp&phers might be paying
for dinner, or it might have been NSA (U.S. National Secuigncy). The three cryp-
tographers respect each other’s right to make an anonymaysipnt, but they wonder
if NSA is paying. They resolve their uncertainty fairly byrgang out the following
protocol:

Each cryptographer flips an unbiased coin behind his mentyden him and the
cryptographer on his right, so that only the two of them caa #e outcome. Each

cryptographer then states aloud whether the two coins hesearthe one he flipped
and the one his left-hand neighbor flipped—fell on the samhe sr on different sides.

If one of the cryptographers is the payer, he states the dampotwhat he sees. An
odd number of differences uttered at the table indicatesaltayptographer is paying;

an even number indicates that NSA is paying (assuming thatediwas paid for only

once). Yet if a cryptographer is paying, neither of the ottver learns anything from

the utterances about which cryptographer it is”

The same procedure can also be used for any numbécryptographers greater
than three. This scenario is encoded as an interpretedsysténtroducing, agents
C4,...,C,, and one agenk to represent the environment (which selects the payer
and the result of coin tosses at the beginning of each rundeterministically).

The local state of cryptograph€@f is modelled using three variablegual;, paid;, even;,
representing respectively whether the coins thiatcan see are equal or different,
whetherC; is the payer, and whether the number of different utteranepsrted is
even® The list of actions for each cryptographer includes theoastilo not hi ng,
say equal ,andsay di fferent, performed in compliance with the description
provided above. In the initial state the variables for eagiptographer are initialised
to a null value, and they are updated in the first time stepefiest the environment’s
configuration. At this point, each cryptographer utters dppropriate phrasesay
equal orsay different)andthe instance terminates with the update of the vari-
able storing the value of “different” utterances (eitheeewor odd).

The key properties of this scenario are easy to express @Qdih. For instance:

(odd A —paids) — AX(K¢1(paidy V paids) @)
N—Kci(paidy) A ~K¢i(paids))

even — AX(Kc1(—paidy A —paids)) (5)

Formula 4 expresses the property that, if the first cryptolgea did not pay for
the dinner and there is an odd number of utterances, them update of his local
state, the first cryptographknowsthat someone of the remaining cryptographers paid
for the dinner, but the first cryptographer does not know wieogayer is. Formula 5
expresses the property that if the number of utteranceis, ¢he first cryptographers
knows that nobody paid for the dinner.

We have encoded this scenario using the language preseriedtion 4.3 and we
have been able to verify the example for up to nine cryptdugaf. Experimental
results are reported in the next section.

6 Experimental results

Table 1 reports the time results obtained in the verificatibthe example presented
in the previous section, as a function of the number of cryrphers (first column).
The third column reports the time required for the verifioatof the formulae 4 and 5

SWe refer to [11] for other possible encodings of the sameogait Our choice here is motivated by the
need of comparing our experimental results with the ones9n11].
6The source code for these examples is available fronp: / / www. geoci ti es. cont i j cai 07/ di ncrypt - code. zi p.

N. crypt | Boolvars| NUSMV | MCMAS | VERICS
3 61 0.34s 0.67s 84s
4 78 0.46s 2.09s 730s
5 99 0.86s 8.91s 1h5m
6 116 2.95s 19.5s 8h32m
7 137 1mi15s 2m29s N/A
8 156 6m34s 2h59m N/A
9 175 49m5s N/A N/A

Table 1: Average experimental results.

(appropriately translated into ARCTL formulae). The setoalumn reports the num-
ber of Boolean variables required to encode the example[4$der more details on
this technique), and provides an estimate for the size ofrtbdel; for instance, 137
Boolean variables are required to encode an example witlygtagraphers, corre-
sponding to a maximal state space of IZ& ~ 10%!.

The fourth and fifth columns report the time results obtaiinetthe verification of
the protocol of the dining cryptographers using the modet&eravcMAs and Verics,
as reported in [19, 11], for the verification of the same folaeumentioned above, as a
function of the number of cryptographers. Notice that, imthse ofMcmAS, the veri-
fication time does not depend on the formula being verifieditisdusually a fraction
of the time spent in reading and parsing the model (the opp@sirue for NuUSMV,
because of different implementation choices). The lastroolreports the time results
for Verics. Differently from the previous two cases, Velscesults are based on an
implementation of Bounded Model Checking for CTLK. [18]. ®tp this, Verics's
performance for this two formulae is worse than the other taaxel checkers, but
Verics is capable of finding counterexamples for false fdemefficiently: in [11] itis
shown that certain false formulae can be verified in scegavith up to 100 cryptog-
raphers. NeithemcMAS nor the technique of this article can handle this magnitdde o
state spaces.

6.1 Discussion

A comparison of the results obtained with the three modetkdies is reported in Fig-
ure 3. Clearly for the formulae considered here the apprpeesented here performs
moderately better thamcMAs and VERICS. The better performance is due to the
optimisation techniques implemented in NuSMV (such ashaafly model checking
and caching). Obviously, experimental results depend eretamples tested and it
is not appropriate to draw final conclusions on one examplg ofdditionally, we
would expect \ERICS to outperform the approach presented here when trying to fal
sify formulas on very large state spaces. Neverthelesshink the discussion above
shows that the technique presented here can significantipleonent the other model
checkers in many instances.

We could not compare our methodology to other existing aqghtes based on ex-
isting model checkers (see Section 3). Indeed, such appesaxten require a manual

100000

10000 u

1000 -
& g
. - —e—nusmv
100 = - & -mcmas
.0 - -A- -Verics
..m
10 -
L //
A -

Time (s)

Figure 3: Comparison of the experimental results.

intervention in the translation from their specific prograimg language into the pro-
gramming language of the temporal model checkers, andgsistifeasible for large
examples such as the one considered here.

7 Conclusion

In this paper we have presented a novel technique for moéekatg CTLK that relies
on the translation of this logic into action-based temptmgic and model checking of
this logic with NuSMV. The approach is sound and complete anmdmplementation
shows experimental results that are in line with or bettantxisting specialised tools.

The use of macros for extending the NuSMV language has afldareeasy pro-
totyping but limits the syntactic flexibility. A more natursyntax could be supported
with more involved translation facilities. Further worlkclndes investigating optimi-
sation of the verification scheme, both at the level of thadiation from CTLK to
ARCTL and through additional extensions or optimizatiohSloSMV itself. Another
importantissue to be addressed is the handling of witnassdrgenerated by NuSMV,
which need to be formulated back in terms of the original CTinkidel. We would
also like to investigate using NuSMV’s SAT-based boundediehahecking capabil-
ities rather than the current OBDD-based approach. Givefitfitation of NuUSMV,
this requires shifting frorbranchingto linear temporal logic, requiring a new and more
restrictive encoding scheme for CTLK properties. The feiisi and applicability of
such a scheme remains to be explored.

References

[1] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridgé&lodel checking
AgentSpeak. In J. S. Rosenschein, T. Sandholm, W. MichadIMa Yokoo, ed-

10

itors, Proceedings of the Second International Joint ConferemcAwutonomous
Agents and Multi-agent systems (AAMAS;p3apges 409-416. ACM Press, 2003.

[2] D. Chaum. The dining cryptographers problem: Uncowditl sender and recip-
ient untraceabilityJournal of Cryptology1(1):65-75, 1988.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglid. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. USMV2: An open-source tool for sym-
bolic model checking. IfProceedings of the 14th International Conference on
Computer Aided Verification (CAV'02yolume 2404 olLNCS pages 359-364.
Springer-Verlag, 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peleiflodel Checking The MIT Press,
Cambridge, Massachusetts, 1999.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Varéleasoning about Knowledge
MIT Press, Cambridge, 1995.

[6] P. Gammie and R. van der Meyden. MCK: Model checking tlggd@f knowl-
edge. InProceedings of 16th International Conference on Compuiged\Verifi-
cation (CAV’04) volume 3114 of NCS pages 479-483. Springer-Verlag, 2004.

[7] J. Halpern and Y. Moses. A guide to completeness and cexitplfor modal
logics of knowledge and beliefrtificial Intelligence 54:319-379, 1992.

[8] J. Halpern and M. Vardi. Model checking vs. theorem pngri A manifesto.
In Proceedings of the 2nd International Conference on Prilesippf Knowl-
edge Representation and Reasoning (KR'payes 325-334. Morgan Kaufmann,
April 1991.

[9] W. van der Hoek and M. Wooldridge. Model checking knowgedand time. In
SPIN 2002 — Proceedings of the Ninth International SPIN \&loop on Model
Checking of Softwarésrenoble, France, April 2002.

[10] G. J. Holzmann. The model checker SPIREEE transaction on software engi-
neering 23(5):279-295, 1997.

[11] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczék,Raimondi, and
M. Szreter. Comparing BDD and SAT based techniques for moketking
Chaum’s dining cryptographers protocdtundamenta Informaticge2006. to
appear.

[12] B.W. Kernighan and D.M. RitchieThe M4 Macro ProcessoBell Laboratories,
1977.

[13] R. van der Meyden. Axioms for knowledge and time in distted systems
with perfect recall. InProceedings, Ninth Annual IEEE Symposium on Logic in
Computer Scieng@ages 448-457, Paris, France, 1994. IEEE Computer Society
Press.

11

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

R. van der Meyden and K. Wong. Complete axiomatizatfonseasoning about
knowledge and branching tim&tudia Logica75(1):93-123, 2003.

J.-J. Ch. Meyer and W. van der HoelEpistemic Logic for Al and Computer
Sciencevolume 41 ofCambridge Tracts in Theoretical Computer Scien€am-
bridge University Press, 1995.

W. Nabialek, A. Niewiadomski, W. Penczek, A. Polroémyd M. Szreter. Vecs
2004: A model checker for real time and multi-agent systeinsProceedings
of the International Workshop on Concurrency, Specificatind Programming
(CS&P’04), volume 170 oinformatik-Berichtepages 88—99. Humboldt Univer-
sity, 2004.

C. Pecheur and F. Raimondi. Symbolic model checkinggids with actions. In
Proceedings of MoChArt 2006ecture Notes in Atrtificial Intelligence. Springer
Verlag, August 2006. to appeatr.

W. Penczek and A. Lomuscio. Verifying epistemic prdjger of multi-agent sys-
tems via bounded model checkingrundamenta Informaticaes5(2):167-185,
2003.

F. Raimondi and A. Lomuscio. Automatic verification outi-agent systems
by model checking via OBDDsJournal of Applied Logic2005. To appear in
Special issue on Logic-based agent verification.

R. van der Meyden and Kaile Su. Symbolic model checkhegknowledge of
the dining cryptographers. IRroceedings of the 17th IEEE Computer Secu-
rity Foundations Workshop (CSFW’Q4)ages 280-291, Washington, DC, USA,
2004. IEEE Computer Society.

M. Wooldridge. Computationally grounded theories geacy. In E. Durfee,
editor,Proceedings of ICMAS, International Conference of MuljieAt Systems
pages 13-22. IEEE Press, 2000.

M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Matecking multia-
gent systems with MABLE. IfProceedings of the First International Conference
on Autonomous Agents and Multiagent Systems (AAMASp@8Es 952-959,
Bologna, Italy, July 2002.

M. Wooldridge and A. Lomuscio. Multi-agemS K logic. In M. Ojeda-Aciego,
I. P. de Guzman, G. Brewka, and L. Moniz Pereira, editoogjcs in Artificial In-
telligence — Proceedings of the Seventh European WorkskdbA 2000 (LNAI
Volume 1919)pages 300-312. Springer-Verlag, 2000.

12

