
Automatic Verification of Knowledge and Time
with NuSMV

Alessio Lomuscio, Charles Pecheur, Franco Raimondi

Technical Report RN/06/18

Abstract

We show that the problem of model checking multi-dimensional modal logics
can be reduced to the problem of model checking ARCTL, an extension of the
temporal logic CTL with action labels and operators to reason about actions. In
particular, we introduce a methodology for model checking atemporal-epistemic
logic by building upon an extension of the model checker NuSMV that enables the
verification of ARCTL. We briefly present the implementationand report experi-
mental results for the verification of a typical security protocol involving temporal-
epistemic properties: the protocol of the dining cryptographers.

1 Introduction

Epistemic logic [5, 15] has traditionally played an important role in Artificial Intelli-
gence (AI). Not only epistemic logic can provide a formal basis to reason about states
of knowledge in automatic reasoners but it can also be seen asa formal specification
language to reason about artificial agents as common practice in the area of Multi-
Agent Systems (MAS). Indeed, epistemic logic is particularly appropriate in MAS as
knowledge constitutes the basis for rational action. In this line of work typically one
considers the epistemic modal logic S5n combined with a temporal logic for branching
time or linear time interpreted on computationally grounded semantics [21] such as the
one of interpreted systems [5], or a suitable variation of it[23].

While much attention in the 80s and 90s focused on proving metalogical results
(notably completeness and computational complexity) for various temporal and epis-
temic combinations [7, 13, 14], considerable attention hasbeen given in the past few
years to the problem of devising model checking techniques for these formalisms
[9, 6, 19, 18]. These efforts are strictly related to the recent shift of attention from
theorem proving to model checking as suggested, among others, in [8].

This article intends to make a contribution in this line by proposing an efficient
model checking technique for verifying CTLK (an epistemic logic on branching time)
based on NuSMV [3], a mainstream model checker for temporal logic. Specifically the
present article makes the following points. First, it is shown that the model checking of
CTLK can be (automatically) rephrased as the one of model checking the action-based
temporal logic ARCTL [17]. Second, we present an extension for NuSMV that enables

1

automatic model checking of ARCTL. Third, we present an automatic translator from
an SMV-like language for a semantics of MAS for the extensionabove. The main
benefits of this approach as opposed to current state-of-the-art lies in the efficiency of
the approach which we try to demonstrate while discussing experimental results.

2 Preliminaries

We summarise the formalism ofinterpreted systemsin Section 2.1, a formalism to
reason about time and knowledge in a system of agents. In Section 2.2 we discuss the
problem ofmodel checkingusing NuSMV.

2.1 Interpreted systems and CTLK

The formalism of interpreted systems, introduced in [5], provides a formal framework
to reason about time and knowledge in a system of agents. LetΣ be a set ofn agents:
Σ = {1, . . . , n}. A set of local statesLi and a set of actionsActi is associated to each
agenti, together with a protocolPi : Li → 2Acti assigning a list of enabled actions
to each local state. The local states of an agent change according to a local evolution
functionti : Li×LE ×Act → Li, whereLE is the set of local states of a special agent
in Σ (the environment), andAct = Act1 × . . . × Actn. The setS = L1 × . . . × Ln

is called the set of global states. Given a set of initial global statesI ⊆ S, the set
G ⊆ S representing the set of reachable states is generated by theevolution ofI and
in accordance with the protocol and the agents’ local evolution functions1. Given a set
of atomic propositionsAP and an interpretationV ⊆ S × AP , an interpreted system
is a tuple

IS =
〈

(Li, Acti, Pi, ti)i∈Σ
, I, V

〉

The logic CTLK combines the traditional AI epistemic logic S5n with the temporal
logic CTL. Specifically, the syntax of CTLK is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUϕ] | Kiϕ (1)

whereKiϕ is read as “agenti knowsϕ” and the CTL operators have their standard
meaning — for example,EGϕ is read as “there exists a path whereϕ holds forever”.
Other derived operators are defined in a standard way (see e.g. [4, 5]). To evaluate
CTLK formulae, a Kripke modelMIS = (W, I,Rt,∼1, . . . ,∼n, V) is associated to a
given interpreted systemIS, as follows:W is the setG of reachable states,I ⊆ W

is the set of initial states, the temporal relationRt ⊆ W ×W is obtained using the
protocolsPi and the evolutions functionsti, the epistemic relations∼i ⊆W ×W , for
i ∈ Σ, are defined by checking the equality of thei-th local component of two global
states (i.e.,(l1, . . . , ln) ∼i (l′

1
, . . . , l′n) iff li = l′i), andV is the evaluation relation

appearing inIS.2

1The system evolves synchronously, i.e, at each time step allthe agents perform a move.
2Note thatW is, by definition, thereachablestate space, i.e. it only contains states that are reachable

from I throughRt. This condition is crucial to the proper interpretation of∼i andKiϕ.

2

The formulae defined by 1 are interpreted inMIS in a standard way: we refer
to [4, 5, 18] for the formal definition ofM |= ϕ, where|= is the standard satisfaction
relation.

2.2 Model checking using NuSMV

Given a Kripke modelM and a formulaϕ, model checkingis defined as the problem
of establishing whether or notM |= ϕ. In this approachM represents the system to
be checked andϕ the specification of the system. In the last fifteen years techniques
and tools have been developed to perform the verification task in an automatic way,
mainly for temporal models and temporal specifications. NuSMV [3] is a mature model
checker for temporal logics and it has been employed in the verification of a number of
examples. Other very successful model checkers exist, notably Spin [10], Verics [16],
etc.

NuSMV has a dedicated modelling language (the SMV language), which permits
the definition of the temporal model in an expressive, compact and modular way.
NuSMV avoids building or exploring the state space corresponding to its models ex-
plicitly; instead, NuSMV applies symbolic techniques based on ordered binary de-
cision diagrams (OBDDs) or propositional satisfiability (SAT) solvers to efficiently
perform verification over large state spaces.

NuSMV is a command line tool for most operating systems, and its source code is
available under the terms of the GNU General Pubic License (GPL).

3 Model checking MAS: state of the art

Recently, different approaches have been proposed to extend model checking tech-
niques from temporal logics to richer logics, with the aim ofverifying knowledge-based
and agent-based systems. Two main streams can be identified in the recent literature:

1. Dedicated tools. Works along this line include the model checker MCK (Model
Checking Knowledge, [6]), implementing the verification ofcertain classes of
interpreted systems. Verics [16] is a model checker for MAS described using
networks of timed automata.MCMAS [19] is an OBDD-based model checker for
MAS described in interpreted systems.

2. Extensions (and translations) to existing tools. [9] propose the use of local
propositions to reduce the problem of model checking knowledge and time to
the verification of a temporal-only model. [22] define the MABLE language,
and they show how the verification of this language can be reduced to the verifi-
cation of PROMELA code (the input language of the model checker SPIN [10]).
Similarly, [1] introduce the language AgentSpeak(F), and they present a transla-
tion into PROMELA code.

Experimental results from the papers cited above show that,on average, purpose-
built tools can handle larger examples, and that trying to use existing tools often re-
quires manual intervention. We show below this is not necessarily the case. In the

3

remainder of this paper our aim is to introduce a fully automated methodology that
builds upon an existing tool (NuSMV) and show that it performs comparably or better
than similar approaches.

4 Model checking CTLK in NuSMV

This section introduces the logic ARCTL (Action-Restricted CTL) and a proposed ex-
tension to NuSMV thereby enabling the verification of ARCTL operators. In Sec-
tion 4.2 we show how the problem of model checking for CTLK canbe reduced to the
problem of model checking for ARCTL, thereby permitting theverification of CTLK
by using NuSMV. In addition, in Section 4.3 we present an SMV-like language for
interpreted systems and its translation into SMV code.

4.1 The logic ARCTL

The logic ARCTL [17] extends the logic CTL by allowing quantification over action
labelled paths. More in detail, given a set of atomic propositionsAP and a set of
atomic actionsAA, the syntax of ARCTL is defined as:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EαXϕ | AαXϕ

| Eα[ϕUϕ] | Aα[ϕUϕ] (2)

α ::= b | ¬α | α ∨ α (3)

whereϕ andα are state and action formulae andp ∈ AP andb ∈ AA are atomic
propositions over states and actions, respectively. Similarly to CTL, other temporal
operators can be derived in a standard way.

A model for ARCTL is a tuple of the formM = (S, S0, A, T, VP , VA), whereS
is a set of states,S0 ⊆ S is a set of initial states,A is a set of actions,T ⊆ S ×
A × S is a transition relation (notice the dependence on actions), VP : S → 2AP

is an interpretation for atomic propositions, andVA : A → 2AA is an interpretation
for atomic actions. Given a modelM = (S, S0, T, VP , VA), theα-restriction ofM ,
denoted byMα, is a modelMα = (S, S0, Tα, VP , VA), whereTα is a transition relation
such that(s, a, s′) ∈ Tα iff (s, a, s′) ∈ T anda |= α (where|= is the natural extension
of VA to propositional formulaeα). We refer to [17] for further details.

For model checking purposes, we have extended NuSMV to support the verification
of ARCTL formulae. We used NuSMV existing “input” variablesto model ARCTL
actions. In particular, we have modified the syntax of the formulae accepted by NuSMV
as follows:

ctlexpr ::= . . . (existing CTL forms)

EAX(simpleexpr)ctlexpr

EAG(simpleexpr)ctlexpr

EA(simpleexpr)[ctlexpr U ctlexpr]

4

wheresimpleexpr is a conditional expression, further restricted to containonly input
variables. For example,EA(a)[p U q] is the concrete syntax forEa[pUq]. Ad-
ditionally, we have implemented extensions to the NuSMV code base to enable the
verification of these operators (the details of these modifications are beyond the scope
of this paper).

4.2 Reducing CTLK to ARCTL

The problem of model checking CTLK (see Section 2.1) can be reduced to the prob-
lem of model checking ARCTL. Specifically, given a CTLK modelMK and a CTLK
formulaϕK , we can define an ARCTL modelM = F (MK) and an ARCTL formula
F (ϕK) such thatMK |= ϕK iff F (MK) |= F (ϕK). Let Σ = {1, . . . , n} be a set
of agents, and letMK = (W, I,Rt, {∼i}i∈Σ, V) be a model associated to some inter-
preted systemIS =

〈

(Li, Acti, Pi, ti)i∈Σ
, I, V

〉

. The modelF (MK) is an ARCTL
modelM = (S, S0, A, T, VP , VA) such that

• S = W andS0 = I;

• the setAA = {Run,Agt1, . . . , Agtn} contains a propositionRun to label tem-
poral transitions (defined byRt) andn propositionsAgti (one for each agent) to
label epistemic equivalence steps (defined by∼i), and the action setA is 2AA;

• the transition relationT combines the temporal transitionRt and the epistemic
relations{∼i}i∈Σ in the following way: for statess, s′ ∈W , (i) (s, {Run}, s′) ∈
T iff sRts

′; (ii) (s, {Agti}, s
′) ∈ T iff s ∼i s

′; (iii) (s, {a1, . . . , ak}, s
′) ∈ T iff

(s, {ai}, s
′) for all 1 ≤ i ≤ k.3

• VP = V andVA is the identity function.

The translation of a temporal-epistemic formula into an ARCTL formula is induc-
tively defined as follows:

• F (p) = p, if p is a propositional formula.

• F (EXϕ) = ERunXϕ; F (E[ϕUψ]) = ERun[ϕUψ]; F (EGϕ) = ERunGϕ;

In other words we use the labelsRun (Agti, respectively) to denote a temporal re-
lation (the epistemic relation for agenti, respectively). This translation allows us to
model check CTLK formulas by model checking their translations in ARCTL. Clearly
a similar approach can be used for more complex modal logics.

The translation from an interpreted systemIS to the ARCTL modelF (MIS) is
performed automatically by a translator we have implemented (see next section).

3Case (iii) is necessary for interpreting distributed knowledge operators, but this discussion is beyond the
scope of this paper.

5

NuSMV model

+ ARCTL specs

Agent model (xtd. NuSMV)

+ CTLK specs

(w/ ARCTL support)

NuSMV

M4 translator

FALSE

+ counter−ex.

TRUE

Figure 1: Verification work flow for interpreted systems

4.3 An SMV-like language for interpreted systems

We have designed extensions of the SMV language for the description of interpreted
systems and CTLK formulae. These extensions can be translated to into a standard
SMV model and ARCTL formulae. Concretely, the extensions are defined as a library
of M4 macros4. The work flow needed to perform verification of an interpreted system
is summarised in Figure 1. Notice that the only manual intervention is the provision of
the input file describing the problem to be verified.

In this language, an agent<name> is associated with the SMV variables<v1>,..,<vn>
that define its local state, through a declarationAGENT(<name>,<v1>,..,<vn>).
The actions of each agent are represented as input variables(IVAR). The protocol of
each agent is described as a relation between its local stateand action variables (within
an SMVTRANS statement). The transition function is encoded using a newTTRANS
statement, and initial conditions using a newTINIT statement. Figure 2 shows the
structure of a typical definition of a class of agents as an SMVmodule (note that “--”
starts comments in SMV, see [3] for details).

Internally, the translation generates additional booleanIVARS corresponding to the
Run andAgti propositions of the ARCTL model (e.g.RUN,bob.me andalice.me
in the model of Fig. 2), andTTRANS statements expand to standardTRANS statements
conditioned onRUN.

Note that the state space of the NuSMV model is not a priori restricted to the
(temporally) reachable states; this has to be imposed by thetranslation scheme. A state
is reachable iff it can be reached from the initial states through a series of temporal
steps (or, equivalently, iff there exists a reverse path from that state back to the initial

4M4 [12] is a general-purpose macro processor available on most UNIX platforms.

6

MODULE anAgent(args,ENV) -- an agent module
VAR local : {...}; -- the local state
AGENT(me,local) -- declare the local state
IVAR action : {...}; -- actions of the agent
TINIT(...); -- initial conditions
TRANS(action =

case ...) -- the agent’s protocol
TTRANS(NEXT(local) =

case ...) -- the agent’s evolution function

MODULE main -- main module
VAR_ENV -- declare ENV variables
VAR alice : anAgent(args1,ENV) ; -- an agent

bob : anAgent(args2,ENV) ; -- another agent

Figure 2: Example of agent definition in extended SMV

set). Assuming we have access to reverse temporal transitions through some action
conditionBack in our ARCTL model, and a state conditionInit for initial states, the
set of the (temporally) reachable states is captured by the following ARCTL formula:

Reachable ≡ EBackF Init

Since this is a temporal formula, it has to be folded into NuSMV properties; it cannot
be used in the NuSMV model itself. For example, the CTLK formulaKiϕ expands to
the ARCTL formulaAAgti

X(Reachable→ ϕ).
Our library implements this scheme. In particular, theTTRANS construct imple-

ments an encoding scheme allowing temporal transitions to be traversed both forwards
and backwards. On the specification side, new operatorsTAX, TAG, etc. provide the
equivalent of SMV’s built-inAX, AG, etc., restricted to temporal transitions, and a new
operatorKK implementsKiϕ. For instance, the CTLK formulaAG(Ka(p ∨ q)) ex-
pressing that agenta always knows eitherp or q, is written asTAG(KK(a,p|q)).

5 Example application

In this section we model the protocol of the dining cryptographers using the formalism
presented in Section 2.1, in order to enable its verificationusing the methodology pre-
sented in Section 4.2. The protocol was introduced by Chaum in [2], and was modelled
using agents by various authors [20, 19, 11]. The aim of this protocol is to allow the
anonymous broadcasting of messages, and it is usually introduced using the following
scenario (wording from [2]):

“Three cryptographers are sitting down to dinner at their favorite three-star restau-
rant. Their waiter informs them that arrangements have beenmade with the maitre
d’hotel for the bill to be paid anonymously. One of the cryptographers might be paying
for dinner, or it might have been NSA (U.S. National SecurityAgency). The three cryp-
tographers respect each other’s right to make an anonymous payment, but they wonder
if NSA is paying. They resolve their uncertainty fairly by carrying out the following
protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the
cryptographer on his right, so that only the two of them can see the outcome. Each

7

cryptographer then states aloud whether the two coins he cansee–the one he flipped
and the one his left-hand neighbor flipped–fell on the same side or on different sides.
If one of the cryptographers is the payer, he states the opposite of what he sees. An
odd number of differences uttered at the table indicates that a cryptographer is paying;
an even number indicates that NSA is paying (assuming that dinner was paid for only
once). Yet if a cryptographer is paying, neither of the othertwo learns anything from
the utterances about which cryptographer it is”

The same procedure can also be used for any numbern of cryptographers greater
than three. This scenario is encoded as an interpreted system by introducingn agents
C1, . . . , Cn, and one agentE to represent the environment (which selects the payer
and the result of coin tosses at the beginning of each run, non-deterministically).

The local state of cryptographerCi is modelled using three variablesequali, paidi, eveni,
representing respectively whether the coins thatCi can see are equal or different,
whetherCi is the payer, and whether the number of different utterancesreported is
even.5 The list of actions for each cryptographer includes the actionsdo nothing,
say equal, andsay different, performed in compliance with the description
provided above. In the initial state the variables for each cryptographer are initialised
to a null value, and they are updated in the first time step, to reflect the environment’s
configuration. At this point, each cryptographer utters theappropriate phrase (say
equal orsay different) and the instance terminates with the update of the vari-
able storing the value of “different” utterances (either even or odd).

The key properties of this scenario are easy to express usingCTLK. For instance:

(odd ∧ ¬paid1) → AX(KC1(paid2 ∨ paid3)
∧¬KC1(paid2) ∧ ¬KC1(paid3))

(4)

even → AX(KC1(¬paid2 ∧ ¬paid3)) (5)

Formula 4 expresses the property that, if the first cryptographer did not pay for
the dinner and there is an odd number of utterances, then, upon update of his local
state, the first cryptographerknowsthat someone of the remaining cryptographers paid
for the dinner, but the first cryptographer does not know who the payer is. Formula 5
expresses the property that if the number of utterances is even, the first cryptographers
knows that nobody paid for the dinner.

We have encoded this scenario using the language presented in Section 4.3 and we
have been able to verify the example for up to nine cryptographers6. Experimental
results are reported in the next section.

6 Experimental results

Table 1 reports the time results obtained in the verificationof the example presented
in the previous section, as a function of the number of cryptographers (first column).
The third column reports the time required for the verification of the formulae 4 and 5

5We refer to [11] for other possible encodings of the same protocol. Our choice here is motivated by the
need of comparing our experimental results with the ones in [19, 11].

6The source code for these examples is available fromhttp://www.geocities.com/ijcai07/dincrypt-code.zip.

8

N. crypt Bool vars NUSMV MCMAS VERICS

3 61 0.34s 0.67s 84s
4 78 0.46s 2.09s 730s
5 99 0.86s 8.91s 1h5m
6 116 2.95s 19.5s 8h32m
7 137 1m15s 2m29s N/A
8 156 6m34s 2h59m N/A
9 175 49m5s N/A N/A

Table 1: Average experimental results.

(appropriately translated into ARCTL formulae). The second column reports the num-
ber of Boolean variables required to encode the example (see[4] for more details on
this technique), and provides an estimate for the size of themodel; for instance, 137
Boolean variables are required to encode an example with 7 cryptographers, corre-
sponding to a maximal state space of size2137 ≈ 1041.

The fourth and fifth columns report the time results obtainedin the verification of
the protocol of the dining cryptographers using the model checkersMCMAS and Verics,
as reported in [19, 11], for the verification of the same formulae mentioned above, as a
function of the number of cryptographers. Notice that, in the case ofMCMAS, the veri-
fication time does not depend on the formula being verified andit is usually a fraction
of the time spent in reading and parsing the model (the opposite is true for NuSMV,
because of different implementation choices). The last column reports the time results
for Verics. Differently from the previous two cases, Verics’s results are based on an
implementation of Bounded Model Checking for CTLK. [18]. Due to this, Verics’s
performance for this two formulae is worse than the other twomodel checkers, but
Verics is capable of finding counterexamples for false formulae efficiently: in [11] it is
shown that certain false formulae can be verified in scenarios with up to 100 cryptog-
raphers. NeitherMCMAS nor the technique of this article can handle this magnitude of
state spaces.

6.1 Discussion

A comparison of the results obtained with the three model checkers is reported in Fig-
ure 3. Clearly for the formulae considered here the approachpresented here performs
moderately better thanMCMAS and VERICS. The better performance is due to the
optimisation techniques implemented in NuSMV (such as on-the-fly model checking
and caching). Obviously, experimental results depend on the examples tested and it
is not appropriate to draw final conclusions on one example only. Additionally, we
would expect VERICS to outperform the approach presented here when trying to fal-
sify formulas on very large state spaces. Nevertheless, we think the discussion above
shows that the technique presented here can significantly complement the other model
checkers in many instances.

We could not compare our methodology to other existing approaches based on ex-
isting model checkers (see Section 3). Indeed, such approaches often require a manual

9

0 . 111 01 0 01 0 0 01 0 0 0 01 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 1 0N . C r y p t

Time(s) N u S M Vm c m a sV e r i c s
Figure 3: Comparison of the experimental results.

intervention in the translation from their specific programming language into the pro-
gramming language of the temporal model checkers, and this is not feasible for large
examples such as the one considered here.

7 Conclusion

In this paper we have presented a novel technique for model checking CTLK that relies
on the translation of this logic into action-based temporallogic and model checking of
this logic with NuSMV. The approach is sound and complete andour implementation
shows experimental results that are in line with or better than existing specialised tools.

The use of macros for extending the NuSMV language has allowed for easy pro-
totyping but limits the syntactic flexibility. A more natural syntax could be supported
with more involved translation facilities. Further work includes investigating optimi-
sation of the verification scheme, both at the level of the translation from CTLK to
ARCTL and through additional extensions or optimizations of NuSMV itself. Another
important issue to be addressed is the handling of witness traces generated by NuSMV,
which need to be formulated back in terms of the original CTLKmodel. We would
also like to investigate using NuSMV’s SAT-based bounded model checking capabil-
ities rather than the current OBDD-based approach. Given the limitation of NuSMV,
this requires shifting frombranchingto linear temporal logic, requiring a new and more
restrictive encoding scheme for CTLK properties. The feasibility and applicability of
such a scheme remains to be explored.

References

[1] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In J. S. Rosenschein, T. Sandholm, W. Michael, and M. Yokoo, ed-

10

itors, Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-agent systems (AAMAS-03), pages 409–416. ACM Press, 2003.

[2] D. Chaum. The dining cryptographers problem: Unconditional sender and recip-
ient untraceability.Journal of Cryptology, 1(1):65–75, 1988.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NUSMV2: An open-source tool for sym-
bolic model checking. InProceedings of the 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 ofLNCS, pages 359–364.
Springer-Verlag, 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

[6] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowl-
edge. InProceedings of 16th International Conference on Computer Aided Verifi-
cation (CAV’04), volume 3114 ofLNCS, pages 479–483. Springer-Verlag, 2004.

[7] J. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief.Artificial Intelligence, 54:319–379, 1992.

[8] J. Halpern and M. Vardi. Model checking vs. theorem proving: A manifesto.
In Proceedings of the 2nd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’91), pages 325–334. Morgan Kaufmann,
April 1991.

[9] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
SPIN 2002 – Proceedings of the Ninth International SPIN Workshop on Model
Checking of Software, Grenoble, France, April 2002.

[10] G. J. Holzmann. The model checker SPIN.IEEE transaction on software engi-
neering, 23(5):279–295, 1997.

[11] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek,F. Raimondi, and
M. Szreter. Comparing BDD and SAT based techniques for modelchecking
Chaum’s dining cryptographers protocol.Fundamenta Informaticae, 2006. to
appear.

[12] B.W. Kernighan and D.M. Ritchie.The M4 Macro Processor. Bell Laboratories,
1977.

[13] R. van der Meyden. Axioms for knowledge and time in distributed systems
with perfect recall. InProceedings, Ninth Annual IEEE Symposium on Logic in
Computer Science, pages 448–457, Paris, France, 1994. IEEE Computer Society
Press.

11

[14] R. van der Meyden and K. Wong. Complete axiomatizationsfor reasoning about
knowledge and branching time.Studia Logica, 75(1):93–123, 2003.

[15] J.-J. Ch. Meyer and W. van der Hoek.Epistemic Logic for AI and Computer
Science, volume 41 ofCambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1995.

[16] W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola,and M. Szreter. VerICS

2004: A model checker for real time and multi-agent systems.In Proceedings
of the International Workshop on Concurrency, Specification and Programming
(CS&P’04), volume 170 ofInformatik-Berichte, pages 88–99. Humboldt Univer-
sity, 2004.

[17] C. Pecheur and F. Raimondi. Symbolic model checking of logics with actions. In
Proceedings of MoChArt 2006, Lecture Notes in Artificial Intelligence. Springer
Verlag, August 2006. to appear.

[18] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent sys-
tems via bounded model checking.Fundamenta Informaticae, 55(2):167–185,
2003.

[19] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems
by model checking via OBDDs.Journal of Applied Logic, 2005. To appear in
Special issue on Logic-based agent verification.

[20] R. van der Meyden and Kaile Su. Symbolic model checking the knowledge of
the dining cryptographers. InProceedings of the 17th IEEE Computer Secu-
rity Foundations Workshop (CSFW’04), pages 280–291, Washington, DC, USA,
2004. IEEE Computer Society.

[21] M. Wooldridge. Computationally grounded theories of agency. In E. Durfee,
editor,Proceedings of ICMAS, International Conference of Multi-Agent Systems,
pages 13–22. IEEE Press, 2000.

[22] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multia-
gent systems with MABLE. InProceedings of the First International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-02), pages 952–959,
Bologna, Italy, July 2002.

[23] M. Wooldridge and A. Lomuscio. Multi-agentVSK logic. In M. Ojeda-Aciego,
I. P. de Guzmán, G. Brewka, and L. Moniz Pereira, editors,Logics in Artificial In-
telligence — Proceedings of the Seventh European Workshop,JELIA 2000 (LNAI
Volume 1919), pages 300–312. Springer-Verlag, 2000.

12

