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t. We solve the problem left open in [6℄ by providing a 
om-plete axiomatisation of deonti
 interpreted systems on a language thatin
ludes full CTL as well as the Ki, Oi and bKji modalities. Addition-ally we show that the logi
 employed enjoys the �nite model property,hen
e de
idability is guaranteed. To a
hieve these results we follow thete
hnique used by Halpern and Emerson in [2℄.1 Introdu
tionCon
epts based on deonti
 notions are in
reasingly being used in spe
i�
ationand veri�
ation of large multi-agent systems. Be
ause of their open and self-interested nature it is unrealisti
 to assume that a team of engineers in a singleorganisation may maintain 
ontrol of a whole multi-agent system. This makes itdiÆ
ult, even a priori, to verify either o�-line or at runtime that ea
h individualagent 
omplies with a set of spe
i�
ations. It seems more feasible, instead, topermit the agents to perform in
orre
t/unwanted/undesirable a
tions, only to
ag all unwanted behaviours and reason about the properties that these maybring about in the system.In other words, by adding a suitable set of deonti
 notions we 
an aim toverify not only what properties the system enjoys when ea
h individual agentis performing following the intended spe
i�
ations (as it is traditionally done inSoftware Engineering), but also what 
onsequen
es result from the violation ofsome of these spe
i�
ations by some agents. This shift to a more liberal, �nergrained approa
h requires the introdu
tion of suitable formal ma
hinery both interms of spe
i�
ation languages and veri�
ation tools.Deonti
 interpreted systems [6℄ have re
ently been introdu
ed for this obje
-tive. In their basi
 form they provide a 
omputationally grounded semanti
s [12℄to interpret a logi
 
apturing epistemi
, temporal and 
orre
tness notions. By us-ing this formalism it is possible to give a semanti
al des
ription of key s
enarios[7℄ and use the logi
 to 
he
k whether or not parti
ular properties hold on these? The authors a
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spe
i�
ations. Spe
i�
ally, deonti
 interpreted systems 
an be used to interpret alanguage that in
ludes CTL modalities AU;EU;EX [2℄, epistemi
 modalities Ki[3℄, modalities representing 
orre
t fun
tioning behaviour Oi, and modalities bKjirepresenting knowledge under the assumption of 
orre
t behaviour. Automati
model 
he
king tools for deonti
 interpreted systems have been developed [9, 8℄supporting the automati
 veri�
ation of state spa
es of the region of 1040 andbeyond [10, 11, 13, 8℄.While the above results 
on
ern spe
i�
ation patters, veri�
ation tools, and
on
rete s
enarios, important theoreti
al issues have so far been left open. Inparti
ular, the axiomatisation of deonti
 interpreted systems originally providedin [6℄was limited to a language that did not in
lude temporal operators. Further-more, the bi-indexed modality bKji , whose importan
e in pra
ti
al veri�
ation isnow well re
ognised, was not in
luded in the language.The diÆ
ulty of the problem is linked to two issues. First, the modalitybKji is de�ned in terms of the interse
tion between two relations with di�erentproperties: modalities like these are known to be hard to treat. Se
ond, anyaxiomatisation for deonti
 interpreted systems would have to in
lude a logi
 forbran
hing-time, but the standard pro
edure for axiomatising CTL involves anon-standard �ltration pro
edure [2℄.The 
ontribution of the present work is to solve the problem left open in[6℄, i.e., to provide a 
omplete axiomatisation of deonti
 interpreted systems ona language that in
ludes full CTL as well as the Ki, Oi and bKji modalities.Additionally we show that the logi
 employed enjoys the �nite model property,hen
e it is de
idable. To show these results we extend the te
hnique originallypresented by Halpern and Emerson in [2℄ to the ri
her language above.The rest of the paper is organised as follows. In Se
tion 2 we present syn-tax and semanti
s of the logi
. Se
tion 3 is devoted to the 
onstru
tion of theunderlying ma
hinery to prove the main results of the paper. Se
tions 4 and 5present a de
idability theorem and a 
ompleteness proof for the logi
.2 Deonti
 interpreted systemsDeonti
 interpreted systems [6℄ 
onstitute a semanti
s to interpret epistemi
,
orre
tness and temporal operators in a 
omputational setting. They extend theframework of interpreted systems [3℄, popularised by Halpern and 
olleagues inthe 90s to reason about knowledge, to modalities expressing 
orre
tness andknowledge under assumptions of 
orre
tness. Te
hni
ally, deonti
 interpretedsystems provide an interpretation to the operators Oi (Oi� representing \when-ever agent i is working 
orre
tly � is the 
ase") and bKji (bKji� representing \agenti knows that � under the assumption that agent j is working 
orre
tly") as wellas the standard epistemi
 operators Ki and bran
hing time operators of CTLalready supported by interpreted systems. Semanti
ally this is a
hieved simplyby assuming that the lo
al states of the agents are 
omposed by two disjoint setsof allowed (or \green") and disallowed (or \red") lo
al states. Loosely speakingan agent \is working 
orre
tly" whenever it is following its proto
ol (de�ned in2



interpreted systems as a fun
tion from lo
al states to sets of a
tions) in its 
hoi
eof a
tions. Given that the fo
us of this paper is to axiomatise the result tra
ebased semanti
s resulting from this we refer to [6℄ and related papers for moredetails.Let IN = f0; 1; 2; : : :g, IN+ = f1; 2; : : :g, PV be a set of propositional variables,and AG = f1; : : : ; ng a set of agents, for n 2 IN+.De�nition 1 (Syntax). Let p 2 PV and i 2 AG. The language L is de�ned bythe following grammar:' := p j :' j ' _ ' j EX' j E('U') j A('U') j Ki' j Oi' j bKji'The language above extends CTL [1℄ with a standard epistemi
 operatorKi [3℄, and two further modalities: Oi and bKji [6℄. The formula EX� is read as\there exists a 
omputation path su
h that at the next step of the path � holds",E(�U�) is read as \there exists a 
omputation path su
h that � eventually o

ursand � 
ontinuously holds until then", Ki� is read as \agent i knows that �", Oi�is read as \whenever agent i is fun
tioning 
orre
tly � holds", and bKji� is readas \agent i knows that � under the assumption that the agent j is fun
tioning
orre
tly".The remaining operators 
an be introdu
ed via abbreviations as usual, i.e.,�^� def= :(:�_:�), �) � def= :�_�, �, � def= (�) �)^(� ) �), AX� def= :EX:�,EF� def= E(>U�), AF� def= A(>U�), EG� def= :AF:�, AG� def= :EF:�, A(�W�) def=:E(:�U:�), E(�W�) def= :A(:�U:�), Ki� def= :Ki(:�), Oi� def= :Oi(:�).Sin
e most of the proofs of the paper are by indu
tion on the length of theformula, below we give a de�nition of length that will be used throughout thepaper.De�nition 2 (Length). Let ' 2 L. The length of ' (denoted by j'j) is de�nedindu
tively as follows:� If ' 2 PV, then j'j = 1,� If ' is of the form :�, Ki�, Oi�, or bKji�, then j'j = j�j+ 1,� If ' is of the form EX�, then j'j = j�j+ 2,� If ' is of the form � _ � then j'j = j�j+ j�j+ 1,� If ' is of the form A(�U�) or E(�U�), then j'j = j�j+ j�j+ 2.Let ' and  be L formulas. We say that  is a subformula of ' and denote by 2 Sub(') if either (a)  = '; or (b) ' is of the form :�, EX�, Ki�, Oi�,or bKji�, and  is a subformula of �; or (
) ' is of the form � _ �, E(�U�), orA(�U�) and  is a subformula of either � or �.Following [6℄ we interpret L on deonti
 interpreted systems. Whenever reason-ing about models and other semanti
 stru
tures (su
h as Hintikka's stru
turesbelow) we assume that ea
h agent i 2 AG (respe
tively the environment e) isasso
iated with a set of lo
al states Li (respe
tively Le). These are partitionedinto allowed (or green) Gi (respe
tively Ge) and disallowed (red) Ri (respe
tivelyRe) states. The sele
tion and exe
ution of a
tions on global states generates bymeans of a transition fun
tion runs, or 
omputational paths, that are repre-sented below by means of the temporal relation T . Given our 
urrent interest is3



presently 
on
erned with axiomatisations we will fo
us at the level of models asde�ned below. For more details on what below we refer to [3, 6℄.De�nition 3 (Deonti
 Interpreted Systems). A deonti
 interpreted system(or a model) is a tuple M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) where Sis a set of states; T � S � S is a serial relation on S; RKi � S � S is anequivalen
e relation for ea
h agent i 2 AG; ROi � S�S is a serial, i-jEu
lideanand transitive relation for ea
h agent i 2 AG; Rji � S � S is a relation for ea
hagent i 2 AG de�ned by: (s; s0) 2 Rji i� (s; s0) 2 RKi \ ROj ; V : S �! 2PV isa valuation fun
tion, whi
h assigns to ea
h state a set of proposition variablesthat are assumed to be true at that state.We 
all F = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG) a frame.Note that in the above de�nition of the deonti
 interpreted system we do notimpose any 
onditions on the set of states, and do not spe
ify how the epistemi
and deonti
 relations are de�ned. We do this, be
ause we 
an always 
onstru
tlo
al and environmental states to put any set S, with any equivalen
e relationon it, in the form traditionaly used in the multi-agent systems; namly to de�neS to be a subset of the produ
t of lo
al sets of states, one per ea
h agent, anda set of states for environemnt [5, 6℄.A path in M is an in�nite sequen
e � = (s0; s1; : : :) of states su
h that(si; si+1) 2 T for ea
h i 2 IN. For a path � = (s0; s1; : : :), we take �(k) = sk. By�(s) we denote the set of all the paths starting at s 2 S.De�nition 4 (Satisfa
tion). Let M be a model, s a state, and �, � 2 L. Thesatisfa
tion relation j=, indi
ating truth of a formula in model M at state s, isde�ned indu
tively as follows:(M; s) j= p i� p 2 V(s), (M; s) j= � ^ � i� (M; s) j= � and (M; s) j= �,(M; s) j= :� i� (M; s) 6j= �; (M; s) j= EX� i� (9� 2 �(s))(M;�(1)) j= �,(M; s) j= E(�U�) i� (9� 2 �(s))(9m � 0)[(M;�(m)) j= � and (8j < m)(M;�(j)) j= �℄,(M; s) j= A(�U�) i� (8� 2 �(s))(9m � 0)[(M;�(m)) j= � and (8j < m)(M;�(j)) j= �℄,(M; s) j= Ki� i� (8s0 2 S) (sRKi s0 implies (M; s0) j= �),(M; s) j= Oi� i� (8s0 2 S) (sROi s0 implies (M; s0) j= �),(M; s) j= bKji� i� (8s0 2 S) (sRjis0 implies (M; s0) j= �).We 
on
lude this se
tion with a de�nition of validity/satis�ability problems.De�nition 5 (Validity and Satis�ability). Let M be a model and ' 2 L.(a) ' is valid in M (written M j= '), if M; s j= ' for all states s 2 S. (b) 'is satis�able in M , if M; s j= ' for some state s 2 S. (
) ' is valid (writtenj= '), if ' is valid in all the models M . (d) ' is satis�able if it is satis�able insome model M . In this 
ase M is said to be a model for '.In the next se
tion we prove that L has the �nite model property (FMP), thatis, we show that any satis�able L formula is also satis�able on a �nite model.This result allows us to provide a de
idability algorithm for L (see Se
tion 4),whi
h we use later on to prove that the language has a 
omplete axiomati
system. 4



3 Finite Model Property (FMP)The standard pro
edure for showing the FMP in modal logi
 is to 
onstru
ta �ltration of an arbitrary model of a satis�able formula and show that this�ltrated model is itself a model for the formula. As it is well-known, while thispro
edure produ
es the intended result for a number of logi
s, it fails in others,for instan
e in the 
ase of CTL. More re�ned te
hniques for showing the FMPexist; notably the 
onstru
tion given in [2℄ via Hintikka stru
tures guaranteesthe result. Indeed, given that the logi
 in study here is an extension of CTL, herewe follow the pro
edure given in [2℄ and show it 
an be extended to extensionsof CTL.We start by de�ning two auxiliary stru
tures: a Hintikka stru
ture for a givenL formula, and the quotient stru
ture for a given model. As in the previousse
tion and in rest of the paper we assume to be dealing with a set of agentsde�ned on lo
al states, and proto
ols.De�nition 6 (Hintikka stru
ture). A Hintikka stru
ture for ' is a tupleH = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) where S is a set of states, T ,RKi , ROi and Rji are binary relations on S, and L : S ! 2L is a labelling fun
tionassigning a set of formulas to ea
h state su
h that ' 2 L(s) for some s 2 S andthe following 
onditions are satis�ed:H.1. if :� 2 L(s), then � 62 L(s)H.2. if ::� 2 L(s), then � 2 L(s)H.3. if (� ^ �) 2 L(s), then � 2 L(s) and � 2 L(s)H.4. if :(� ^ �) 2 L(s), then :� 2 L(s) or :� 2 L(s)H.5. if E(�U�) 2 L(s), then � 2 L(s) or � ^ EXE(�U�) 2 L(s)H.6. if :E(�U�) 2 L(s), then :� ^ :� 2 L(s) or :� ^ :EXE(�U�) 2 L(s)H.7. if A(�U�) 2 L(s), then � 2 L(s) or � ^ :EX(:A(�U�)) 2 L(s)H.8. if :A(�U�) 2 L(s), then :� ^ :� 2 L(s) or :� ^ EX(:A(�U�)) 2 L(s)H.9. if EX� 2 L(s), then (9t 2 S)((s; t) 2 T and � 2 L(t))H.10. if :EX� 2 L(s), then (8t 2 S)((s; t) 2 T implies :� 2 L(t))H.11. if E(�U�) 2 L(s), then (9� 2 �(s))(9n � 0)(� 2 L(�(n))and (8j < n)� 2 L(�(j)))H.12. if A(�U�) 2 L(s), then (8� 2 �(s))(9n � 0)(� 2 L(�(n))and (8j < n)� 2 L(�(j)))H.13. if Ki� 2 L(s) and sRKi t, then � 2 L(t)H.14. if :Ki� 2 L(s), then there exists t 2 S su
h that (sRKi t and :� 2 L(t))H.15. if Ki� 2 L(s), then � 2 L(s)H.16. if Ki� 2 L(s) and sRKi t, then Ki� 2 L(t)H.17. if sRKi t and sRKi u and Ki� 2 L(t), then both � 2 L(u) and Ki� 2 L(u)H.18. if Oi� 2 L(s) and sROi t, then � 2 L(t)H.19. if :Oi� 2 L(s), then there exists t 2 S su
h that (sROi t and :� 2 L(t))H.20. if Oi� 2 L(s) and (sROi t), then Oi� 2 L(t)H.21. if sROi t and sROj u and Oi� 2 L(u), then both � 2 L(t) and Oi� 2 L(u)H.22. if bKji� 2 L(s) and sRji t, then � 2 L(t)H.23. if bKji� 2 L(s) and sRji t, then bKji� 2 L(t)5



H.24. if sRji t and sRjiu and bKji� 2 L(t), then both � 2 L(u) and bKji� 2 L(u)H.25. if Ki� 2 L(s), then bKji� 2 L(s)H.26. if Oj� 2 L(s), then bKji� 2 L(s)Note that the set of formulas L(s) is a propositional tableau [4℄ for ea
h states. Note also that, intuitively, the rules H14, H15, H16 and H17 
orrespond tothe seriality, re
exivity, transitivity and Eu
lidean property for the epistemi

ase, respe
tively; the rules H19, H20 and H21 
orrespond to the seriality, tran-sitivity and i-jEu
lidean property for the deonti
 
ase, respe
tively; and therules H23 and H24 
orrespond to the transitivity and Eu
lidean property for theinterse
tion of epistemi
 and deonti
 
on
epts, respe
tively. Note further thatthe Hintikka stru
ture di�ers from a the deonti
 interpreted system in that theassignment L is not restri
ted to propositional variables, nor it is required to
ontain p or :p for any p 2 PV.We have the following result:Lemma 1 (Hintikka's Lemma for L). A formula ' 2 L is satis�able (i.e.,' has a model) if and only if there is a Hintikka stru
ture for '.Proof. It is easy to 
he
k that any model M = (S; T; (RKi )i2AG; (ROi )i2AG;(Rji )i;j2AG;V) for ' is a Hintikka stru
ture for ', when we extend V to 
over allformulae whi
h are true in a state, i.e., in M we repla
e V by L that is de�nedas: � 2 L(s) if (M; s) j= �, for all s 2 S.For the 
onverse, suppose thatH = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L)is an Hintikka stru
ture for '. Let M = (S; T 0; (R0Ki )i2AG; (R0Oi )i2AG;(R0ji )i;j2AG;V), where T 0 is serial 
losure of T ; R0Ki is re
exive and Eu
lidean
losure of RKi ; R0Oi is serial, transitive and i-jEu
lidean 
losure of ROi ; andR0ji is transitive and Eu
lidean 
losure of Rji ; V : S ! 2PV is de�ned byV(s) = fp j p 2 L(s)g. We now show by the indu
tion on the stru
ture offormulas that if  2 Sub('), then  2 L(s) implies M; s j=  and : 2 L(s)implies M; s j= : .1.  is a primitive proposition p. The result follows dire
tly from the de�nitionof V and the fa
t that L(s) is a propositional tableau, so we 
annot haveboth p and :p in L(s).2.  is of the form :� or �^�. Then, the result follows easily using the indu
tionhypothesis and the fa
t that L(s) is a propositional tableau.3.  is of the form EX�. If EX� 2 L(s) then by the rule H9 of the de�nitionof the Hintikka stru
ture H , there is some state t su
h that (s; t) 2 T and� 2 L(t). So, by the indu
tion hypothesis we have thatM; t j= �, and therebywe have that M; s j= EX�. If :EX� 2 L(s), then by the rule H10 of thede�nition of the Hintikka stru
ture H , for all state t su
h that (s; t) 2 T wehave that :� 2 L(t). So, by the indu
tion hypothesis we have thatM; t j= :�for all state t su
h that (s; t) 2 T , and thereby we have that M; s j= :EX�.4.  is of the form E(�U�). If E(�U�) 2 L(s), then by the rule H11 of thede�nition of the Hintikka stru
ture H , there exist a path � that starts atstate s and a state �(n) with n � 0 su
h that � 2 L(�(n)) and � 2 L(�(j))6



for all j < n. Sin
e by the indu
tion hypothesis we have that M;�(n) j= �and M;�(j) j= � for all j < n, we must have that M; s j= E(�U�). If:E(�U�) 2 L(s), then by the rule H6 we have that :� ^ :� 2 L(s) or:� ^ :EXE(�U�) 2 L(s). Let suppose that :� ^ :� 2 L(s). Then by rulesH1�H4 and by the indu
tion hypothesis we have thatM; s j= :�^:�, whi
himplies that M; s j= :E(�U�). Let suppose now that :� ^ :EXE(�U�) 2L(s). By the rule H3 and by the indu
tion hypothesis we have that M; s j=:� and M; s j= :EXE(�U�), whi
h implies that M; s j= :E(�U�).5. � is of the form A(�U�2). If A(�U�2) 2 L(s), then by the rule H12 of thede�nition of the Hintikka stru
ture H , for all paths � that start at state sthere exists a state �(n) with n � 0 su
h that � 2 L(�(n)) and � 2 L(�(j))for all j < n. Sin
e by the indu
tion hypothesis we have that M;�(n) j= �and M;�(j) j= � for all j < n and path � that start at s, we must havethat M; s j= A(�U�). If :A(�U�) 2 L(s), then by the rule H8 we havethat :� ^ :� 2 L(s) or :� ^ EX(:A(�U�)) 2 L(s). Let suppose that:� ^ :� 2 L(s). Then by rules H1 � H4 and by the indu
tion hypothesiswe have that M; s j= :� ^ :�, whi
h implies that M; s j= :A(�U�). Letsuppose now that :� ^ EX(:A(�U�)) 2 L(s). By the rule H3 and by theindu
tion hypothesis we have that M; s j= :� and M; s j= EX(:A(�U�)),whi
h implies that M; s j= :A(�U�).6.  is of the form Ki�. Let supose that Ki� 2 L(s). We want to show thatM; s j= Ki�. It suÆ
es to show thatM; t j= � for all state t su
h that sR0Ki t.But sin
e R0Ki is a re
exive and Eu
lidean 
losure of RKi , if sR0Ki t then either(a) sRKi t, or (b) there exists a state v su
h that vRKi s and vRKi t. Let �rstassume that (a) holds. Sin
e Ki� 2 L(s), by rule H13 we have that � 2 L(t).Let assume now that (b) holds. Sin
e Ki� 2 L(s), by rule H17, we have that� 2 L(t). So, by the indu
tion hypothesis we have that M; t j= �. Sin
e thisholds for an arbitary t su
h that sR0Ki t we 
an 
on
lude that M; s j= Ki�.Now, let supose that :Ki� 2 L(s). By the rule H14 of the de�nition of theHintikka stru
ture H , there exists state t su
h that sRKi t and :� 2 L(t).Sin
e RKi � R0Ki , and sin
e by the indu
tion hypothesis we have thatM; t j=:�, we must have M; s j= :Ki�.7.  is of the form Oi�. Let supose that Oi� 2 L(s). We want to show thatM; s j= Oi�. It suÆ
es to show thatM; t j= � for all state t su
h that sR0Oi t.But sin
e R0Oi is a serial, transitive and i-jEu
lidean 
losure of ROi , if sR0Oi tthen there exists k > 0 and there exists a sequen
e of states x0; : : : ; xk su
hthat s = x0, t = xk, and for all n 2 f0; : : : ; k � 1g either xnR0ixn+1, orthere exists a state v su
h that vROi xn and vROj xn+1. An intu
tion on n,using rules H18, H20 and H21 shows that we must have Oi� 2 L(xn ) for alln 2 f0; : : : ; kg, and � 2 L(xn ) for all n 2 f1; : : : ; kg. In parti
ular, we havethat Oi� 2 L(t) and � 2 L(t). So, by the indu
tion hypothesis we have thatM; t j= �. Sin
e this holds for an arbitary t su
h that sR0Oi t we 
an 
on
ludethat M; s j= Oi�.Now, let supose that :Oi� 2 L(s). By the ruleH19, we have that there existsstate t su
h that sROi t and :� 2 L(t). Sin
e ROi � R0Oi , and sin
e by theindu
tion hypothesis we have that M; t j= :�, we must have M; s j= :Oi�.7



8.  is of the form bKji�. Let supose that bKji� 2 L(s). We want to show thatM; s j= bKji�. It suÆ
es to show that M; t j= � for all state t su
h thatsR0ji t. But sin
e R0ji is a transitive and Eu
lidean 
losure of Rji , if sR0Oi t thenthere exists k > 0 and there exists a sequen
e of states x0; : : : ; xk su
h thats = x0, t = xk, and for all n 2 f0; : : : ; k�1g either xnRjixn+1, or there existsa state v su
h that vRjixn and vRjjxn+1. An intu
tion on n, using rules H23and H24 shows that we must have bKji� 2 L(xn ) for all n 2 f0; : : : ; kg, and� 2 L(xn ) for all n 2 f1; : : : ; kg. In parti
ular, we have that bKji� 2 L(t) and� 2 L(t). So, by the indu
tion hypothesis we have that M; t j= �. Sin
e thisholds for an arbitary t su
h that sR0ji t we 
an 
on
lude that M; s j= bKji�.Now, let supose that :bKji� 2 L(s). By the ruleH1, we have that bKji� 62 L(s).Sin
e any model for a given formula is a Hintikka stru
ture for the formula,by the Contrapostion Law, we have that M; s j= :bKji�. �We now pro
eed to de�ne a quotient stru
ture for a given model. The quotient
onstru
tion depends on an equivalen
e relation of states on a given model. Tode�ne this we use the Fis
her-Ladner 
losure of a formula ' 2 L (denoted byFL(')) as FL(') = CL(') [ f:� j � 2 CL(')g, where CL(') is the smallestset of formulas that 
ontains ' and satisfy the following 
onditions:(a). if :� 2 CL('), then � 2 CL('),(b). if � ^ � 2 CL('), then �; � 2 CL('),(
). if E(�U�) 2 CL('), then �; �;EXE(�U�) 2 CL('),(d). if A(�U�) 2 CL('), then �; �;AXA(�U�) 2 CL('),(e). if EX� 2 CL('), then � 2 CL('),(g). if Oi� 2 CL('), then � 2 CL('),(f). if Ki� 2 CL('), then � 2 CL('),(h). if bKji� 2 CL('), then � 2 CL(').Observe that for a given formula ' 2 L, FL(') forms a �nite set of formulae,as the following lemma shows (the size of a �nite set A | denoted by Card(A)| is de�ned as the number of elements of A).Lemma 2. Given a formula ' 2 L, Card(FL(')) � 2(j'j).Proof. Straightforward by indu
tion on the length of '. �De�nition 7 (Fis
her-Ladner's equivalen
e relation). Let ' 2 L andM = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) be a model for '. The relation$FL(') on a set of states S is de�ned as follows:s$FL(') s0 if (8� 2 FL('))((M; s) j= � i� (M; s0) j= �)By [s℄ we denote the set fw 2 S j w $FL(') sg.Observe that $FL(') is indeed an equivalen
e relation, so using it we 
an de�nethe quotient stru
ture for a given model for L.8



De�nition 8 (Quotient stru
ture). Let ' 2 L, M = (S; T; (RKi )i2AG;(ROi )i2AG; (Rji )i;j2AG;V) be a model for ', and$FL(') a Fis
her-Ladner's equiv-alen
e relation. The quotient stru
ture of M by $FL(') is the tuple M$FL(') =(S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ), where{ S0 = f[s℄ j s 2 Sg,{ T 0 = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) su
h that (w;w0) 2 Tg,{ R0Ki be a transitive 
losure of f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄)su
h that (w;w0) 2 RKi g,{ R0Oi = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) su
h that (w;w0) 2 ROi g,{ R0ji = f([s℄; [s0℄) 2 S0 � S0 j (8w 2 [s℄)(8w0 2 [s0℄) su
h that (w;w0) 2 Rjig,{ L0 : S0 ! 2FL(') is de�ned by: L0 ([s℄) = f� 2 FL(') j (M; s) j= �g.Note that the set S0 is �nite as it is the result of 
ollapsing states satisfy-ing formulas that belong to the �nite set FL('). In fa
t we have Card(S0) �2Card(FL(')). Note also that the relation T 0 is serial, R0Ki is re
exive, symmetri
and transitive (i.e., it is an equivalen
e relation), R0Oi is serial, transitive and i�jEu
lidean, and R0ji is transitive and Eu
lidean. Further, sin
e L is an extensionof CTL, the resulting quotient stru
ture may not be a model. In parti
ular, thefollowing lemma holds.Lemma 3. The quotient 
onstru
tion does not preserve satis�ability of formulasof the form A(�U�), where �; � 2 L. In parti
ular, there is a model M forA(>Up) with p 2 PV su
h that M$FL(') is not a model for A(>Up).Proof. [Sket
h℄ Consider the following model M = (S; T;RK1 ; RO1 ; R11;V) forA(>Up), where S = fs0; s1; : : : ; g, T = f(s0; s0)g [ f(si; si�1) j i > 0g, RK1 =RO1 = R11 = f(si; si) j i � 0g, p 2 V(s0) and p 62 V(si) for all i > 0. It iseasy to observe that in the quotient stru
ture of M , i.e., in M$FL(A(>Up)) , twodistin
t states si and sj , for all i; j > 0, will be identi�ed. As a result of that,a 
y
le along whi
h p is always false will appear in M$FL(A(>Up)) . This impliesthat A(>Up) does not hold along the 
y
le. �Although the quotient stru
ture of a given model M by $FL(') may not bea model, it satis�es another important property, whi
h allows us to view it asa pseudo-model; it 
an be unwound into a proper model. This observation 
anbe used to show that the language L has the FMP property. To make this ideapre
ise, we introdu
e the following auxiliary de�nitions.An interior (respe
tively frontier) node of a dire
ted a
y
li
 graph (DAG)1is one whi
h has (respe
tively does not have) a T -su

essor. The root of a DAGis the node (if it exists) from whi
h all other nodes are rea
hable via the Trelation. A fragment M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) of aHintikka stru
ture is a stru
ture su
h that (S0; T 0) generates a �nite DAG whoseinterior nodes satisfy H1-H10 and H13-H26, and the frontier nodes satisfy H1-H8 and H13-H26. Given M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) andM 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ), we say thatM is 
ontained1 Re
all that a dire
ted a
y
li
 graph is a dire
ted graph su
h that for any node v,there is no nonempty dire
ted path starting and ending on v.9



in M 0, and write M � M 0, if S � S0, T = T 0 \ (S � S), RKi = R0Ki \ (S � S),ROi = R0Oi \ (S � S), Rji = R0ji \ (S � S), L = L0 jS.De�nition 9 (Pseudo-model). Let ' 2 L. A pseudo-model M = (S; T;(RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) for ' is de�ned in the same manner as aHintikka stru
ture for ' in De�nition 6, ex
ept that 
ondition H12 is repla
edby the following 
ondition H 012: (8s 2 S) if A(�U�) 2 L(s), then there is a frag-ment (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) � M su
h that: (a) (S0; T 0)generates a �nite DAG with root s; (b) for all frontier nodes t 2 S0, � 2 L0 (t);(
) for all interior nodes u 2 S0, � 2 L0 (u).We have the following.Lemma 4. Let ' 2 L, FL(') be the Fis
her-Ladner 
losure of ', M = (S; T;(RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) a model for ', and M$FL(') = (S0; T 0;(R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L) the quotient stru
ture of M by $FL(').Then, M$FL(') is a pseudo-model for '.Proof. This 
an be shown by indu
tion on the stru
ture of '. The proof for theCTL part of L follows immediately from Lemma 3.8 in [2℄. Consider now ' tobe of the following forms:H.13 . ' = Ki�. Let Ki� 2 L([s℄) and [s℄R0Ki [t℄ for an arbitrary [t℄ 2 S0. Sin
e[s℄R0Ki [t℄, by the de�nition of R0Ki there exists k > 0 and there exists asequen
e [x0℄ : : : [xk ℄ of states su
h that [s℄ = [x0℄, [xk ℄ = [t℄ and [xj ℄Ri[xj+1℄with Ri = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) su
h that (w;w0) 2RKi g for all j 2 f0; : : : ; k � 1g. We will �rst show that if Ki� 2 L([x0 ℄) and[x0℄Ri[x1℄, then Ki� 2 L([x1 ℄) and � 2 L([x1 ℄).Sin
e [x0℄Ri[x1℄, by the de�nition of Ri we have that there exist x00 2 [x0℄and x01 2 [x1℄ su
h that x00RKi x01. Without losing of generality we 
an takex00 = x0 and x01 = x1, and thereby we have thatx0RKi x1 (1)Sin
e Ki� 2 L([x0 ℄), by the de�nition of$FL(') and L we have thatM;x0 j=Ki� (in fa
t we have M;x j= Ki� for all x 2 [x0℄). Thus, by the de�nitionof j= we have thatM; t j= � for all state t su
h that x0RKi t (2)So, in pari
ular, sin
e (1) holds, we have that M;x1 j= �. Thus by thede�nitions of $FL(') and L, we have that � 2 L([x1 ℄). Now, 
onsider anystate y su
h that x1RKi y. Sin
e (1) holds and the relation RKi is transitive,we have that x0RKi y. Thus, sin
e (2) holds we have that M; y j= �. Sin
ethis holds for any y su
h that x1RKi y, we have that M;x1 j= Ki�. Thus,by the de�nitions of $FL(') and L, we have that Ki� 2 L([x1 ℄). Now, byindu
tion on 0 � j < k, we 
on
lude that if Ki� 2 L([xj ℄) and [xj ℄Ri[xj+1℄,then Ki� 2 L([xj+1 ℄) and � 2 L([xj+1 ℄). This implies that Ki� 2 L([t℄) and� 2 L([t℄). So, 
onditions H13 and H16 are ful�lled.10



H.14 . ' = :Ki�. Let :Ki� 2 L([s℄). Then, by the de�nitions of $FL(') and L,we have that M; s j= :Ki� (in fa
t we have M; s0 j= :Ki� for all the states0 2 [s℄). So, by the de�nition of j=, we have that there exists t 2 S su
hthat sRKi t and (M; t) j= :�. Consider an equivalen
e 
lass of $FL(') thatis generated by t, i.e., the state [t℄ of S0. Sin
e sRKi t, by the de�nition ofR0Ki we have that [s℄R0Ki [t℄. Sin
e (M; t) j= :�, by the de�nitions of $FL(')and L, we have that :� 2 L([t℄). Therefore, we 
an 
on
lude that thereexists state [t℄ 2 S0 su
h that [s℄R0Ki [t℄ and :� 2 L([t℄). So, 
ondition H14is ful�lled.H.15 . ' = Ki�. Let Ki� 2 L([s℄). Then, by the de�nitions of $FL(') and L, wehave thatM; s j= Ki� (in fa
t we haveM; s0 j= Ki� for all the state s0 2 [s℄).Thus, by the de�nition of j= we have thatM; t j= � for all state t su
h that sRKi t (3)So, sin
e RKi is re
exive, we have that M; s j= �. Then, by the de�nitions of$FL(') and L, we have that � 2 L([s℄), whi
h implies that 
ondition H15is ful�lled.H.17 . Let [s℄R0Ki [t℄, [s℄R0Ki [u℄ and Ki� 2 L([u℄). Sin
e [s℄R0Ki [u℄ and R0Ki is sym-metri
, we have that [u℄R0Ki [s℄. Further, sin
e R0Ki is transitive and [u℄R0Ki [s℄and [s℄R0Ki [t℄, we have that [u℄R0Ki [t℄. Thus, sin
e Ki� 2 L([u℄), by 
ase H.13of the proof, we have that � 2 L([t℄) and Ki� 2 L([t℄) . So, 
ondition H17is ful�lled.H.18 . ' = Oi�. Let Oi� 2 L([s℄) and [s℄R0Oi [t℄ for an arbitrary [t℄ 2 S0. Sin
e[s℄R0Oi [t℄, by the de�nition of R0Oi , there exist states s0 2 [s℄ and t0 2 [t℄su
h that s0ROi t0. Sin
e Oi� 2 L([s℄), by the de�nitions of $FL(') andL we have that M; s00 j= Oi� for all s00 2 [s℄. So, in parti
ular we havethat (M; s0) j= Oi�. By the de�nition of j=, we have that (M; t00) j= �for all t00 2 S su
h that s0ROi t00. In parti
ular, sin
e s0ROi t0, we have that(M; t0) j= �. Thus, sin
e [t0℄ = [t℄, by the de�nitions of $FL(') and L wehave that � 2 L([t℄). So, the 
ondition H18 is ful�lled.H.19 . ' = :Oi�. Let :Oi� 2 L([s℄). Then, by the de�nitions of $FL(') and L,we have that M; s j= :Oi� (in fa
t we have M; s0 j= :Oi� for all the states0 2 [s℄). So, by the de�nition of j=, we have that there exists a state t 2 Ssu
h that sROi t and (M; t) j= :�. Consider an equivalen
e 
lass of $FL(')that is generated by t, i.e., the state [t℄ of S0. Sin
e sROi t, by the de�nition ofR0Oi we have that [s℄R0Oi [t℄. Sin
e (M; t) j= :�, by the de�nitions of $FL(')and L, we have that :� 2 L([t℄). Therefore, we 
an 
on
lude that thereexists state [t℄ 2 S0 su
h that [s℄R0Oi [t℄ and :� 2 L([t℄). So, 
ondition H19is ful�lled.H.20 . Let [s℄R0Oi [t℄ and Oi� 2 L([s℄). By 
ase H.18 of the proof, we have that� 2 L([t℄). Now, 
onsider any [t0℄ 2 S0 su
h that [t℄R0Oi [t0℄. Sin
e R0Oi istransitive, we have that [s℄R0Oi [t0℄. So, again by 
ase H.18 , we have that� 2 L([t0 ℄) for ea
h [t0℄ su
h that [t℄R0Oi [t0℄. Thus, by the de�nition of$FL('),L and j=, we 
an 
on
lude that Oi� 2 L([t℄). So, 
ondition H20 is ful�lled.H.21 . Let [s℄R0Oi [t℄ and [s℄R0Oj [u℄, and Oi� 2 L([u℄). Sin
e R0Oi is i � jEu
lidean,we have that [u℄R0Oi [t℄. Thus, sin
e Oi� 2 L([u℄) holds, by 
ase H.18 we11



have � 2 L([t℄), and by 
ase H.20 we have Oi� 2 L([t℄). So, 
ondition H21is ful�lled.H.22 . ' = bKji�. Let bKji� 2 L([s℄) and [s℄R0ji [t℄ for an arbitrary [t℄ 2 S0. Sin
e[s℄R0ji [t℄, by the de�nition of R0ji we have that s0Rji t0 for all states s0 2 [s℄and t0 2 [t℄. Sin
e bKji� 2 L([s℄), by the de�nition of $FL(') and L we havethat M; s0 j= bKji� for all s0 2 [s℄. Thus, by the de�nition of j= we have thatM;x j= � for all states x su
h that s0Rjix. So, sin
e s0Rji t0 for all t0 2 [t℄, we
an 
on
lude thatM; t0 j= �. Thus, sin
e t0 2 [t℄, by the de�nition of$FL(')and L we have that � 2 L([t℄). Therefore, we 
an 
on
lude that 
onditionH22 is ful�lled.H.23 . Let [s℄R0ji [t℄ and bKji� 2 L([s℄). By 
ase H.22 of the proof, we have that� 2 L([t℄). Now, 
onsider any [t0℄ 2 S0 su
h that [t℄R0ji [t0℄. Sin
e R0ji istransitive, we have that [s℄R0ji [t0℄. So again by 
ase H.22 , we have that� 2 L([t0 ℄) for ea
h [t0℄ su
h that [t℄R0ji [t0℄. Thus, by the de�nition of$FL('),L and j=, we 
an 
on
lude that bKji� 2 L([t℄). So, 
ondition H23 is ful�lled.H.24 . Let [s℄R0ji [t℄ and [s℄R0ji [u℄, and bKji� 2 L([u℄). Sin
e R0ji is eu
lidean, we havethat [u℄R0ji [t℄. Sin
e bKji� 2 L([u℄) holds, by 
ase H.22 of the proof, we have� 2 L([t℄), and by 
ase H.23 we have bKji� 2 L([t℄). So, 
ondition H24 isful�lled.H.25 . ' = Ki�. Let (M; s) j= Ki�, and Ki� 2 L([s℄). By the de�nition of j=, wehave that (M; t) j= � for all t 2 S su
h that sRKi t. Consider the followingtwo setsK(s; i) = ft j (sRKi t) and (M; t) j= �g and O(s; i; j) = ft 2 K(s; i) j(sROj t)g, where i; j 2 f1 : : : ; ng. By the de�nition of K(s; i) and O(s; j), wehave that O(s; i; j) = ft j (sRji t) and M; t j= �g. Therefore, by the de�nitionof j= we have that (M; s) j= bKji�. Thus, by the de�nitions of $FL(') and L,we have that bKji� 2 L([s℄). So, 
ondition H25 is ful�lled.H.26 . ' = Oj�. Let (M; s) j= Oj�, and Oj� 2 L([s℄). By the de�nition of j=, wehave that (M; t) j= � for all t 2 S su
h that sROj t. Consider the following twosets O(s; j) = ft j (sROj t) and (M; t) j= �g and K(s; i; j) = ft 2 O(s; j) j(sRKi t)g, where i; j 2 f1 : : : ; ng. By the de�nition ofK(s; i; j) and O(s; i), wehave that K(s; i; j) = ft j (sRji t) and M; t j= �g. Therefore, by the de�nitionof j= we have that (M; s) j= bKji�. Thus, by the de�nitions of $FL(') and L,we have that bKji� 2 L([s℄). So, 
ondition H26 is ful�lled. �We 
an now prove the main 
laim of the se
tion, i.e., the fa
t that L has the�nite model property.Theorem 1 (FMP for L). Let ' 2 L. Then the following are equivalent: (1)' is satis�able; (2) There is a �nite pseudo-model for '; (3) There is a Hintikkastru
ture for '.Proof. [sket
h℄ (3) ) (1) follows from Lemma 1. (1) ) (2) follows from Lemma4. To prove (2) ) (3) it is enough to 
onstru
t a Hintikka stru
ture for ' by12



\unwinding" the pseudo-model for '. This 
an be done in the same way as isdes
ribed in [2℄ for the proof of Theorem 4.1. �4 De
idability for LLet ' be a L formula, and FL(') the Fis
her-Ladner 
losure of '. We de�ne� � FL(') to be maximal if for every formula � 2 FL('), either � 2 � or:� 2 �.Theorem 2. There is an algorithm for de
iding whether any L formula is sat-is�able.Proof. Given a formula ' 2 L, we will 
onstru
t a �nite pseudo-model for ' ofsize less or equal 22�j'j. We pro
eed as follows.1. Build a stru
ture M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) in thefollowing way:{ S0 = f� j � � FL(') and � is maximal and satis�es rules H1-H8,H13, H24, H25g;{ T 0 � S0�S0 is a relation su
h that (�1; �2) 2 T 0 i� :EX� 2 �1 impliesthat :� 2 �2;{ for ea
h agent i 2 AG, R0Ki � S0 � S0 is a relation su
h that (�1; �2) 2R0Ki i� f� j Ki� 2 �1g � �2;{ for ea
h agent i 2 AG, R0Oi � S0 � S0 is a relation su
h that (�1; �2) 2R0Oi i� f� j Oi� 2 �1g � �2;{ for ea
h agent i; j 2 AG, R0ji � S0�S0 is a relation su
h that (�1; �2) 2R0ji i� f� j bKji� 2 �1g � �2;{ L0 : S ! 2FL(') is a fun
tion de�ned by L0 (�) = �.It is easy to observe that M 0, as 
onstru
ted above, satis�es propertiesH1-H8, H15, H25, H26; properties H10, H13, H18, and H22 (be
auseof the de�nition of T 0, R0Ki , R0Oi , and R0ji respe
tively). Note also that sin
eCard(FL(')) � 2 � j'j (see Lemma 2), S0 has at most 22�j'j elements.2. Test the above stru
ture M 0 for ful�lment of the properties H9, H11, H 012,H14, H16, H17, H19-H21, H23 and H24 by repeatedly applying the fol-lowing deletion rules until no more states in M 0 
an be deleted.H9 Delete any state whi
h has no T -su

essors.H11-H12' Delete any state�1 2 S0 su
h that E(�U�) 2 �1 (respe
tively A(�U�) 2�1) and there does not exist a fragmentM 00 �M 0 su
h that: (i) (S00; T 00)generates a �nite DAG with root �1; (ii) for all frontier nodes �2 2 S00,� 2 �2; (iii) for all interior nodes �3 2 S00, � 2 �3.H14 Delete any state �1 2 S0 su
h that :Ki� 2 �1, and �1 does not haveany R0Ki su

essor �2 2 S0 with :� 2 �2.H16 Delete any state�1 2 S0 su
h that�1R0Ki �2 and Ki� 2 �1 and :Ki� 2�2.H17 Delete any state �1 2 S0 su
h that �1R0Ki �2 and �1R0Ki �3 and � 2 �2and Ki:� 2 �3 13



H19 Delete any state �1 2 S0 su
h that :Oi� 2 �1, and �1 does not haveany R0Oi su

essor �2 2 S0 with :� 2 �2.H20 Delete any state �1 2 S0 su
h that �1R0Oi �2 and Oi� 2 �1 and :Oi� 2�2.H21 Delete any state �1 2 S0 su
h that �1ROi �2 and �1ROj �3 and Oi:� 2�3 and � 2 �2.H23 Delete any state �1 2 S0 su
h that �1R0ji �2 and bKji� 2 �1 and :bKji� 2�2.H24 Delete any state �1 2 S0 su
h that �1R0ji �2 and �1R0ji �3 and � 2 �2and bKji:� 2 �3.We 
all the above two points a de
idability algorithm for L.Claim (1). The de
idability algorithm for L terminates.Proof. The termination is obvious given that the initial set S0 is �nite.Claim (2). Let M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) be the resultingstru
ture of the algorithm. The formula ' 2 L is satis�able i� ' 2 s, for somes 2 S.Proof. In order to show the part right-to-left of the above property, note thateither the resulting stru
ture is a pseudo-model for ', or S = ; (this 
an beshown indu
tively on the stru
ture of the algorithm). So, if ' 2 s for somes 2 S, ' is satis�able by Theorem 1.Conversely, if ' is satis�able, then there exists a model M� su
h that M� j='. Let M�$FL(') = M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) be thequotient stru
ture of M� by $FL('). By Theorem 1 we have that M 0 is apseudo-model for '. Moreover, by the de�nition of L0 in the quotient stru
-ture, L0 (s) is maximal with respe
t to FL(') for all s 2 S0. Now, let M 00 =(S00; T 00; (R00Ki )i2AG; (R00Oi )i2AG; (R00ji )i;j2AG;L00 ) be a stru
ture de�ned by step 1of the de
idability algorithm, and f : S0 ! S00 a fun
tion de�ned by f(s) = L0 (s).The following 
onditions hold:1. If (s; t) 2 T 0, then (f(s); f(t)) 2 T 00;Proof (via 
ontradi
tion): Let (s; t) 2 T 0 and (f(s); f(t)) 62 T 00. By thede�nition of T 00 we have that :EX� 2 f(s) and � 2 f(t). Then, by thede�nition of f , we have that :EX� 2 L0 (s) and � 2 L0 (t). So, by thede�nition of L0 in the quotient stru
ture we have that M�; s j= :EX� andM�; t j= �, whi
h 
ontradi
t the fa
t that (s; t) 2 T 0.2. If (s; t) 2 R0Ki , then (f(s); f(t)) 2 R00Ki ;Proof (via 
ontradi
tion): Let (s; t) 2 R0Ki and (f(s); f(t)) 62 R00Ki . By thede�nition of R00Ki we have that Ki� 2 f(s) and � 62 f(t). Then, by thede�nition of f , we have that Ki� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient stru
ture we have that M�; s j= Ki� and M�; t j= :�,whi
h 
ontradi
t the fa
t that (s; t) 2 R0Ki .3. If (s; t) 2 R0Oi , then (f(s); f(t)) 2 R00Oi ;Proof (via 
ontradi
tion): Let (s; t) 2 R0Oi and (f(s); f(t)) 62 R00Oi . By thede�nition of R00Oi we have that Oi� 2 f(s) and � 62 f(t). Then, by the14



de�nition of f , we have that Oi� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient stru
ture we have that M�; s j= Oi� and M�; t j= :�,whi
h 
ontradi
t the fa
t that (s; t) 2 R0Oi .4. If (s; t) 2 R0ji , then (f(s); f(t)) 2 R00ji ;Proof (via 
ontradi
tion): Let (s; t) 2 R0ji and (f(s); f(t)) 62 R00ji . By thede�nition of R00ji we have that bKji� 2 f(s) and � 62 f(t). Then, by thede�nition of f , we have that bKji� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient stru
ture we have that M�; s j= bKji� and M�; t j= :�,whi
h 
ontradi
t the fa
t that (s; t) 2 R0ji .Thus, the image ofM 0 under f is 
ontained inM 00, i.e.,M 0 �M 00. It remainsto show that if s 2 S0, then f(s) 2 S00 will not be eliminated in step 2 of thede
idability algorithm. This 
an be 
he
ked by indu
tion on the order in whi
hstates of S00 are eliminated. For instan
e, assume that s 2 S0, and A(�U�) 2f(s). By the de�nition of f , we have that A(�U�) 2 L0 (s). Now, sin
e M 0 is apseudo-model, by De�nition 9 we have that there exists a fragment rooted at sthat is 
ontained in M 0 and it satis�es property H 012. Thus, sin
e f preservesthe above 
ondition (a), we have that there exists a fragment rooted at f(s) thatis 
ontained in M 00 and it satis�es property H 012. This implies that f(s) 2 S00will not be eliminated in step 2b of the de
idability algorithm. Other 
ases 
anbe proven similarly. Therefore, it follows that for some s 2 S we have ' 2 L(s).�5 A Complete Axiomati
 System for LAn axiomati
 system 
onsists of a 
olle
tion of axioms and inferen
e rules. Anaxiom is a formula, and an inferen
e rule has the form \from formulas '1; : : : ; 'minfer formula '". We say that ' is provable (written ` ') if there is a sequen
e offormulas ending with ', su
h that ea
h formula is either an instan
e of an axiom,or follows from other provable formulas by applying an inferen
e rule. We saythat a formula ' is 
onsistent if :' is not provable. A �nite set f'1; : : : ; 'mg offormulas is 
onsistent if and only if the 
onjun
tion '1 ^ : : :^'m of its membersis 
onsistent, and an in�nite set of formulas is 
onsistent if all of its �nite subsetsare 
onsistent. A set F of formulas is a maximal 
onsistent set if it is 
onsistentand for all ' 62 F , the set F [ f'g is in
onsistent. An axiom system is sound(resp. 
omplete) with respe
t to the 
lass of models, if ` ' implies j= ' (resp. ifj= ' implies ` ').De�nition 10 (Axiomatisation of deonti
 interpreted systems). Let i 2f1; : : : ; ng. Consider the following axiomati
 system for L:PC: All substitution instan
es of 
lassi
al tautologies.X1. EX>X2. EX(� _ �), EX� _ EX�U1. E(�U�), � _ (� ^ EXE(�U�))15



U2. A(�U�) , � _ (� ^ AXA(�U�))KKi . (Ki� ^Ki(�) �))) Ki�TKi . Ki�) �4Ki . Ki�) KiKi�5Ki . :Ki�) Ki:Ki�KOi . (Oi� ^Oi(�) �))) Oi�DOi . Oi�) :Oi:�4Oi : Oi�) OiOi�5i�jOi : :Oi�) Oj:Oi�KbKji : (bKji� ^ bKji (�) �))) bKji�4bKji : bKji�) bKji bKji�5bKji : :bKji�) bKji:bKji�O� bKji: Oj�) bKji�K� bKji: Ki�) bKji�MP. From � and �) � infer �,Ne
Ki. From � infer Ki�,Ne
Oi : From � infer Oi�,R1X. From �) � infer EX�) EX�R2X : From 
 ) (:� ^ EX
) infer 
 ) :A(�U�)R3X. From 
 ) (:� ^ AX(
 _ :E(�U�))) infer 
 ) :E(�U�)We note that the system above in
ludes the axiomatisation for CTL [2℄, S5[3℄ for Ki and KD45i�j [6℄ for Oi. The fragment for the operators bKji , previouslynot explored, is K45. In line with the traditional interpretation of these axiomsin an epistemi
 setting these are to be interpreted from the point of view ofan external observer as
ribing properties to the system. They both seem in linewith the interpretation of the modality of knowledge under the assumption of
orre
t behaviour. Further note that axioms 4bKji , and 5bKji are to be expe
tedgiven that both the underlying relations are transitive and Eu
lidean.The intera
tion axioms Oi � bKji and Ki � bKji regulate the relationship be-tween Oi;Ki and bKji . They were both dis
ussed in [6℄ and 
orrespond to ourintuition regarding the meaning of the modalities. Note also that they 
loselymat
h the intera
tion axioms for distributed versus standard knowledge, whi
hagain 
on�rms our intuition given that distributed knowledge is de�ned on theinterse
tion of the relations for standard knowledge.The inferen
e rules for all the 
omponents are also entirely expe
ted | notethat while Ne
essitation for bKji is not expli
itly listed, it may easily be dedu
edfrom Ne
Ki or Ne
Oi .Theorem 3. The axiomati
 system for L is sound and 
omplete with respe
t tothe deonti
 interpreted systems, i.e. j= ' i� ` ', for any formula ' 2 L.Proof. Soundness 
an be 
he
ked indu
tively as standard. For 
ompleteness, weshow that any 
onsistent formula ' is satis�able. To do this, we �rst 
onsider thestru
tureM = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) for ' as de�ned in step16



1 of the de
idability algorithm. We then exe
ute step 2 of the algorithm, obtain-ing a pseudo-model for '. Cru
ially we show below that if a state s 2 S is elim-inated at step 2 of the algorithm, then the formula  s = V�2s � is in
onsistent.Observe now that that for any � 2 FL(') we have ` � , W fs j � 2 s and s is 
onsistentg  s.In parti
ular, ` ', W fs j ' 2 s and s is 
onsistentg  s. Thus, if ' is 
onsistent, then  s is 
on-sistent as well for some s 2 S. It follows by Claim 2 of Theorem 2 that thisparti
ular s is present in the pseudo-model resulting from the exe
ution of thealgorithm. So, by Theorem 1, ' is satis�able. Note that pseudo-models sharethe stru
tural properties of models, i.e., their underlying frames have the sameproperties.It remains to show that if a state s 2 S is eliminated at step 2 of thealgorithm then the formula  s is in
onsistent. Before we do it, we need someauxiliary 
laims.Claim (3). Let s 2 S and � 2 FL('). Then, � 2 s i� `  s ) �.Proof. ('if'). Let � 2 s. By the de�nition of S, we have that any s in S ismaximal. Thus, :� 62 s. So, `  s ) �.('only if'). Let `  s ) �. So, sin
e s is maximal we have that � 2 s. �Claim (4). Let s; t 2 S, both of them be maximal and propositionally 
onsistent,and sRKi t (respe
tively sROi t and sRji t ). If � 2 t, then :Ki:� 2 s (respe
tively:Oi:� 2 s and :bKji:� 2 s).Proof.[By 
ontraposition℄ Let � 2 t and :Ki:� =2 s. Then, sin
e s is maximalwe have that Ki:� 2 s. Thus, sin
e sRKi t, we have that :� 2 t. This 
ontradi
tsthe fa
t that � 2 t, sin
e t is propositionally 
onsistent.The same proof applies to Oi and bKji . �Claim (5). Let s 2 S be a maximal and 
onsistent set of formulas and � su
hthat ` �. Then � 2 s.Proof. Suppose � 62 s and ` �. Sin
e s is maximal then :� 2 s. So :� ^  s is
onsistent where  s where  s 2 s. So by de�nition of 
onsisten
y we have that6` :(:� ^  s), so 6` � _ : s. But we have ` � _  s, so this is a 
ontradi
tion.� We now show, by indu
tion on the stru
ture of the de
idability algorithmfor L, that if a state s 2 S is eliminated at step 2 of the de
idability algorithm,then ` : s.Claim (6). If  s is 
onsistent, then s is not eliminated at step 2 of the de
idabilityalgorithm for L.Proof.H9 Let EX� 2 s and  s be 
onsistent. By the same reasoning as in the proof ofClaim 4(a) in [2℄, we 
on
lude that s satis�es H9. So s is not eliminated.H11-H'12 Let E(�U�) 2 s (resp. A(�U�) 2 s) and suppose s is eliminated at step 2be
ause H11 (resp. H 012) is not satis�ed. Then  s is in
onsistent. The proofshowing that fa
t is the same as the proof of Claim 4(
) (resp. Claim 4(d))in [2℄. 17



H14 Let :Ki� 2 s and  s be 
onsistent. Consider the set S:� = f:�g[f� j Ki� 2sg. We will show that S:� is 
onsistent. Suppose that S:� is in
onsistent.Then, ` �1 ^ : : : ^ �m ) �, where �j 2 f� j Ki� 2 sg for j 2 f1; : : : ;mg.By rule Ne
Ki we have ` Ki((�1 ^ : : : ^ �m) ) �). By axioms KKi andPC we have ` (Ki�1 ^ : : : ^ Ki�m) ) Ki�. Thus, sin
e ea
h Ki�j 2 s forj 2 f1; : : : ;mg and s is maximal and 
onsistent, we have Ki� 2 s. This
ontradi
ts the fa
t that  s is 
onsistent. So, S:� is 
onsistent. Now, sin
eea
h set of formulas 
an be extended to a maximal one, we have that S:�is 
ontained in some maximal set t. Thus :� 2 t, and moreover, by thede�nition of RKi in M and the de�nition of S:� we have that sRKi t. Thus,s satis�es H14, and it is not eliminated by step (H14) of the de
idabilityalgorithm.H16 Suppose that  s is 
onsistent and s is eliminated at step (H16) of the de
id-ability algorithm. Then, we have that sRKi t, Ki� 2 s and :Ki� 2 t. Thus,sin
e s and t are maximal and propositionally 
onsistent, by Claim 4 we havethat :KiKi� 2 s. By axiom 4Ki and Claim 5 we have that Ki�) KiKi� 2 s.So, sin
e Ki� 2 s we have that KiKi� 2 s. So s is in
onsistent. Therefore s
annot be eliminated at step (H16) of the de
idability algorithm.H17 Suppose that s is 
onsistent and it is eliminated at step (f) of the de
idabilityalgorithm. Thus, we have that sRKi t, sRKi u, � 2 t, and Ki:� 2 u. So, sin
esRKi t, � 2 t, s and t are maximal and propositionally 
onsistent, by Claim 4we have that :Ki:� 2 s. Sin
e s is maximal and 
onsistent, by axiom 5Kiand Claim 5, we have that :Ki:�) Ki:Ki:� 2 s. Therefore, we have thatKi:Ki:� 2 s. Thus, sin
e sRKi u, we have that :Ki:� 2 u. But this is a
ontradi
tions given that Ki:� 2 u an u is propositionally 
onsistent. So s isin
onsistent. Therefore s 
annot be eliminated at step (f) of the de
idabilityalgorithm.H19 Let :Oi� 2 s and  s be 
onsistent. Consider the set S:� = f:�g[f� j Oi� 2sg. We will show that S:� is 
onsistent. Suppose that S:� is in
onsistent.Then, ` �1 ^ : : :^ �m ) �, where �j 2 f� j Oi� 2 sg for j 2 f1; : : : ;mg. Byrule Ne
Oi we have ` Oi((�1 ^ : : : ^ �m)) �). By axioms KOi and PC wehave ` (Oi�1 ^ : : : ^Oi�m) ) Oi�. Sin
e ea
h Oi�j 2 s for j 2 f1; : : : ;mgand s is maximal and 
onsistent, we have Oi� 2 s. This 
ontradi
ts the fa
tthat  s is 
onsistent. So, S:� is 
onsistent. Now, sin
e ea
h set of formulas
an be extended to a maximal one, we have that S:� is 
ontained in somemaximal set t. Thus :� 2 t, and moreover, by the de�nition of ROi in Mand the de�nition of S:� we have that sROi t. Thus, s satis�es H19, and itis not eliminated by step (H19) of the de
idability algorithm.H20 Suppose that  s is 
onsistent and s is eliminated at step (g) of the de
idabil-ity algorithm. Then, we have that sROi t, Oi� 2 s and :Oi� 2 t. Thus, sin
es and t are maximal and propositionally 
onsistent, by Claim 4 we have that:OiOi� 2 s. By axiom 4Oi and Claim 5 we have that Oi� ) OiOi� 2 s.So, sin
e Oi� 2 s we have that OiOi� 2 s. So s is in
onsistent. Therefore s
annot be eliminated at step (H20) of the de
idability algorithm.18



H21 If  s is 
onsistent, s 
annot be eliminated at step (H21) of the de
idabilityalgorithm. The proof 
an be done similarly to the one in (H17) by usingaxiom 5i�jOi .H23 If  s is 
onsistent, s 
annot be eliminated at step (H24) of the de
idabilityalgorithm. The proof 
an be done similarly to the one in (H20) by usingaxiom 4bKji .H24 If  s is 
onsistent, s 
annot be eliminated at step (H25) of the de
idabilityalgorithm. The proof 
an be done similarly to the one in (H17) by usingaxiom 5bKji . �We have now shown that only states s with  s in
onsistent are eliminated.This ends the 
ompleteness proof. �6 Con
lusionWe have given a 
omplete axiomatisation of deonti
 interpreted systems on alanguage that in
ludes full CTL as well as the the Ki; Oi and bKji modalities.Thereby, we have solved the problem left open in [6℄. Further, we have shownthat the language 
onsidered here has the �nite model property, so it is de
idable.The bKji modality 
an be straightforwardly extended to bKXi [6℄ representingknowledge of i under the assumption of 
orre
tness of all agents in X. We believethat the te
hnique of this paper 
an be extended to bKXi without diÆ
ulty. For
larity this is not presented in this paper.Referen
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