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spei�ations. Spei�ally, deonti interpreted systems an be used to interpret alanguage that inludes CTL modalities AU;EU;EX [2℄, epistemi modalities Ki[3℄, modalities representing orret funtioning behaviour Oi, and modalities bKjirepresenting knowledge under the assumption of orret behaviour. Automatimodel heking tools for deonti interpreted systems have been developed [9, 8℄supporting the automati veri�ation of state spaes of the region of 1040 andbeyond [10, 11, 13, 8℄.While the above results onern spei�ation patters, veri�ation tools, andonrete senarios, important theoretial issues have so far been left open. Inpartiular, the axiomatisation of deonti interpreted systems originally providedin [6℄was limited to a language that did not inlude temporal operators. Further-more, the bi-indexed modality bKji , whose importane in pratial veri�ation isnow well reognised, was not inluded in the language.The diÆulty of the problem is linked to two issues. First, the modalitybKji is de�ned in terms of the intersetion between two relations with di�erentproperties: modalities like these are known to be hard to treat. Seond, anyaxiomatisation for deonti interpreted systems would have to inlude a logi forbranhing-time, but the standard proedure for axiomatising CTL involves anon-standard �ltration proedure [2℄.The ontribution of the present work is to solve the problem left open in[6℄, i.e., to provide a omplete axiomatisation of deonti interpreted systems ona language that inludes full CTL as well as the Ki, Oi and bKji modalities.Additionally we show that the logi employed enjoys the �nite model property,hene it is deidable. To show these results we extend the tehnique originallypresented by Halpern and Emerson in [2℄ to the riher language above.The rest of the paper is organised as follows. In Setion 2 we present syn-tax and semantis of the logi. Setion 3 is devoted to the onstrution of theunderlying mahinery to prove the main results of the paper. Setions 4 and 5present a deidability theorem and a ompleteness proof for the logi.2 Deonti interpreted systemsDeonti interpreted systems [6℄ onstitute a semantis to interpret epistemi,orretness and temporal operators in a omputational setting. They extend theframework of interpreted systems [3℄, popularised by Halpern and olleagues inthe 90s to reason about knowledge, to modalities expressing orretness andknowledge under assumptions of orretness. Tehnially, deonti interpretedsystems provide an interpretation to the operators Oi (Oi� representing \when-ever agent i is working orretly � is the ase") and bKji (bKji� representing \agenti knows that � under the assumption that agent j is working orretly") as wellas the standard epistemi operators Ki and branhing time operators of CTLalready supported by interpreted systems. Semantially this is ahieved simplyby assuming that the loal states of the agents are omposed by two disjoint setsof allowed (or \green") and disallowed (or \red") loal states. Loosely speakingan agent \is working orretly" whenever it is following its protool (de�ned in2



interpreted systems as a funtion from loal states to sets of ations) in its hoieof ations. Given that the fous of this paper is to axiomatise the result traebased semantis resulting from this we refer to [6℄ and related papers for moredetails.Let IN = f0; 1; 2; : : :g, IN+ = f1; 2; : : :g, PV be a set of propositional variables,and AG = f1; : : : ; ng a set of agents, for n 2 IN+.De�nition 1 (Syntax). Let p 2 PV and i 2 AG. The language L is de�ned bythe following grammar:' := p j :' j ' _ ' j EX' j E('U') j A('U') j Ki' j Oi' j bKji'The language above extends CTL [1℄ with a standard epistemi operatorKi [3℄, and two further modalities: Oi and bKji [6℄. The formula EX� is read as\there exists a omputation path suh that at the next step of the path � holds",E(�U�) is read as \there exists a omputation path suh that � eventually oursand � ontinuously holds until then", Ki� is read as \agent i knows that �", Oi�is read as \whenever agent i is funtioning orretly � holds", and bKji� is readas \agent i knows that � under the assumption that the agent j is funtioningorretly".The remaining operators an be introdued via abbreviations as usual, i.e.,�^� def= :(:�_:�), �) � def= :�_�, �, � def= (�) �)^(� ) �), AX� def= :EX:�,EF� def= E(>U�), AF� def= A(>U�), EG� def= :AF:�, AG� def= :EF:�, A(�W�) def=:E(:�U:�), E(�W�) def= :A(:�U:�), Ki� def= :Ki(:�), Oi� def= :Oi(:�).Sine most of the proofs of the paper are by indution on the length of theformula, below we give a de�nition of length that will be used throughout thepaper.De�nition 2 (Length). Let ' 2 L. The length of ' (denoted by j'j) is de�nedindutively as follows:� If ' 2 PV, then j'j = 1,� If ' is of the form :�, Ki�, Oi�, or bKji�, then j'j = j�j+ 1,� If ' is of the form EX�, then j'j = j�j+ 2,� If ' is of the form � _ � then j'j = j�j+ j�j+ 1,� If ' is of the form A(�U�) or E(�U�), then j'j = j�j+ j�j+ 2.Let ' and  be L formulas. We say that  is a subformula of ' and denote by 2 Sub(') if either (a)  = '; or (b) ' is of the form :�, EX�, Ki�, Oi�,or bKji�, and  is a subformula of �; or () ' is of the form � _ �, E(�U�), orA(�U�) and  is a subformula of either � or �.Following [6℄ we interpret L on deonti interpreted systems. Whenever reason-ing about models and other semanti strutures (suh as Hintikka's struturesbelow) we assume that eah agent i 2 AG (respetively the environment e) isassoiated with a set of loal states Li (respetively Le). These are partitionedinto allowed (or green) Gi (respetively Ge) and disallowed (red) Ri (respetivelyRe) states. The seletion and exeution of ations on global states generates bymeans of a transition funtion runs, or omputational paths, that are repre-sented below by means of the temporal relation T . Given our urrent interest is3



presently onerned with axiomatisations we will fous at the level of models asde�ned below. For more details on what below we refer to [3, 6℄.De�nition 3 (Deonti Interpreted Systems). A deonti interpreted system(or a model) is a tuple M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) where Sis a set of states; T � S � S is a serial relation on S; RKi � S � S is anequivalene relation for eah agent i 2 AG; ROi � S�S is a serial, i-jEulideanand transitive relation for eah agent i 2 AG; Rji � S � S is a relation for eahagent i 2 AG de�ned by: (s; s0) 2 Rji i� (s; s0) 2 RKi \ ROj ; V : S �! 2PV isa valuation funtion, whih assigns to eah state a set of proposition variablesthat are assumed to be true at that state.We all F = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG) a frame.Note that in the above de�nition of the deonti interpreted system we do notimpose any onditions on the set of states, and do not speify how the epistemiand deonti relations are de�ned. We do this, beause we an always onstrutloal and environmental states to put any set S, with any equivalene relationon it, in the form traditionaly used in the multi-agent systems; namly to de�neS to be a subset of the produt of loal sets of states, one per eah agent, anda set of states for environemnt [5, 6℄.A path in M is an in�nite sequene � = (s0; s1; : : :) of states suh that(si; si+1) 2 T for eah i 2 IN. For a path � = (s0; s1; : : :), we take �(k) = sk. By�(s) we denote the set of all the paths starting at s 2 S.De�nition 4 (Satisfation). Let M be a model, s a state, and �, � 2 L. Thesatisfation relation j=, indiating truth of a formula in model M at state s, isde�ned indutively as follows:(M; s) j= p i� p 2 V(s), (M; s) j= � ^ � i� (M; s) j= � and (M; s) j= �,(M; s) j= :� i� (M; s) 6j= �; (M; s) j= EX� i� (9� 2 �(s))(M;�(1)) j= �,(M; s) j= E(�U�) i� (9� 2 �(s))(9m � 0)[(M;�(m)) j= � and (8j < m)(M;�(j)) j= �℄,(M; s) j= A(�U�) i� (8� 2 �(s))(9m � 0)[(M;�(m)) j= � and (8j < m)(M;�(j)) j= �℄,(M; s) j= Ki� i� (8s0 2 S) (sRKi s0 implies (M; s0) j= �),(M; s) j= Oi� i� (8s0 2 S) (sROi s0 implies (M; s0) j= �),(M; s) j= bKji� i� (8s0 2 S) (sRjis0 implies (M; s0) j= �).We onlude this setion with a de�nition of validity/satis�ability problems.De�nition 5 (Validity and Satis�ability). Let M be a model and ' 2 L.(a) ' is valid in M (written M j= '), if M; s j= ' for all states s 2 S. (b) 'is satis�able in M , if M; s j= ' for some state s 2 S. () ' is valid (writtenj= '), if ' is valid in all the models M . (d) ' is satis�able if it is satis�able insome model M . In this ase M is said to be a model for '.In the next setion we prove that L has the �nite model property (FMP), thatis, we show that any satis�able L formula is also satis�able on a �nite model.This result allows us to provide a deidability algorithm for L (see Setion 4),whih we use later on to prove that the language has a omplete axiomatisystem. 4



3 Finite Model Property (FMP)The standard proedure for showing the FMP in modal logi is to onstruta �ltration of an arbitrary model of a satis�able formula and show that this�ltrated model is itself a model for the formula. As it is well-known, while thisproedure produes the intended result for a number of logis, it fails in others,for instane in the ase of CTL. More re�ned tehniques for showing the FMPexist; notably the onstrution given in [2℄ via Hintikka strutures guaranteesthe result. Indeed, given that the logi in study here is an extension of CTL, herewe follow the proedure given in [2℄ and show it an be extended to extensionsof CTL.We start by de�ning two auxiliary strutures: a Hintikka struture for a givenL formula, and the quotient struture for a given model. As in the previoussetion and in rest of the paper we assume to be dealing with a set of agentsde�ned on loal states, and protools.De�nition 6 (Hintikka struture). A Hintikka struture for ' is a tupleH = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) where S is a set of states, T ,RKi , ROi and Rji are binary relations on S, and L : S ! 2L is a labelling funtionassigning a set of formulas to eah state suh that ' 2 L(s) for some s 2 S andthe following onditions are satis�ed:H.1. if :� 2 L(s), then � 62 L(s)H.2. if ::� 2 L(s), then � 2 L(s)H.3. if (� ^ �) 2 L(s), then � 2 L(s) and � 2 L(s)H.4. if :(� ^ �) 2 L(s), then :� 2 L(s) or :� 2 L(s)H.5. if E(�U�) 2 L(s), then � 2 L(s) or � ^ EXE(�U�) 2 L(s)H.6. if :E(�U�) 2 L(s), then :� ^ :� 2 L(s) or :� ^ :EXE(�U�) 2 L(s)H.7. if A(�U�) 2 L(s), then � 2 L(s) or � ^ :EX(:A(�U�)) 2 L(s)H.8. if :A(�U�) 2 L(s), then :� ^ :� 2 L(s) or :� ^ EX(:A(�U�)) 2 L(s)H.9. if EX� 2 L(s), then (9t 2 S)((s; t) 2 T and � 2 L(t))H.10. if :EX� 2 L(s), then (8t 2 S)((s; t) 2 T implies :� 2 L(t))H.11. if E(�U�) 2 L(s), then (9� 2 �(s))(9n � 0)(� 2 L(�(n))and (8j < n)� 2 L(�(j)))H.12. if A(�U�) 2 L(s), then (8� 2 �(s))(9n � 0)(� 2 L(�(n))and (8j < n)� 2 L(�(j)))H.13. if Ki� 2 L(s) and sRKi t, then � 2 L(t)H.14. if :Ki� 2 L(s), then there exists t 2 S suh that (sRKi t and :� 2 L(t))H.15. if Ki� 2 L(s), then � 2 L(s)H.16. if Ki� 2 L(s) and sRKi t, then Ki� 2 L(t)H.17. if sRKi t and sRKi u and Ki� 2 L(t), then both � 2 L(u) and Ki� 2 L(u)H.18. if Oi� 2 L(s) and sROi t, then � 2 L(t)H.19. if :Oi� 2 L(s), then there exists t 2 S suh that (sROi t and :� 2 L(t))H.20. if Oi� 2 L(s) and (sROi t), then Oi� 2 L(t)H.21. if sROi t and sROj u and Oi� 2 L(u), then both � 2 L(t) and Oi� 2 L(u)H.22. if bKji� 2 L(s) and sRji t, then � 2 L(t)H.23. if bKji� 2 L(s) and sRji t, then bKji� 2 L(t)5



H.24. if sRji t and sRjiu and bKji� 2 L(t), then both � 2 L(u) and bKji� 2 L(u)H.25. if Ki� 2 L(s), then bKji� 2 L(s)H.26. if Oj� 2 L(s), then bKji� 2 L(s)Note that the set of formulas L(s) is a propositional tableau [4℄ for eah states. Note also that, intuitively, the rules H14, H15, H16 and H17 orrespond tothe seriality, reexivity, transitivity and Eulidean property for the epistemiase, respetively; the rules H19, H20 and H21 orrespond to the seriality, tran-sitivity and i-jEulidean property for the deonti ase, respetively; and therules H23 and H24 orrespond to the transitivity and Eulidean property for theintersetion of epistemi and deonti onepts, respetively. Note further thatthe Hintikka struture di�ers from a the deonti interpreted system in that theassignment L is not restrited to propositional variables, nor it is required toontain p or :p for any p 2 PV.We have the following result:Lemma 1 (Hintikka's Lemma for L). A formula ' 2 L is satis�able (i.e.,' has a model) if and only if there is a Hintikka struture for '.Proof. It is easy to hek that any model M = (S; T; (RKi )i2AG; (ROi )i2AG;(Rji )i;j2AG;V) for ' is a Hintikka struture for ', when we extend V to over allformulae whih are true in a state, i.e., in M we replae V by L that is de�nedas: � 2 L(s) if (M; s) j= �, for all s 2 S.For the onverse, suppose thatH = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L)is an Hintikka struture for '. Let M = (S; T 0; (R0Ki )i2AG; (R0Oi )i2AG;(R0ji )i;j2AG;V), where T 0 is serial losure of T ; R0Ki is reexive and Eulideanlosure of RKi ; R0Oi is serial, transitive and i-jEulidean losure of ROi ; andR0ji is transitive and Eulidean losure of Rji ; V : S ! 2PV is de�ned byV(s) = fp j p 2 L(s)g. We now show by the indution on the struture offormulas that if  2 Sub('), then  2 L(s) implies M; s j=  and : 2 L(s)implies M; s j= : .1.  is a primitive proposition p. The result follows diretly from the de�nitionof V and the fat that L(s) is a propositional tableau, so we annot haveboth p and :p in L(s).2.  is of the form :� or �^�. Then, the result follows easily using the indutionhypothesis and the fat that L(s) is a propositional tableau.3.  is of the form EX�. If EX� 2 L(s) then by the rule H9 of the de�nitionof the Hintikka struture H , there is some state t suh that (s; t) 2 T and� 2 L(t). So, by the indution hypothesis we have thatM; t j= �, and therebywe have that M; s j= EX�. If :EX� 2 L(s), then by the rule H10 of thede�nition of the Hintikka struture H , for all state t suh that (s; t) 2 T wehave that :� 2 L(t). So, by the indution hypothesis we have thatM; t j= :�for all state t suh that (s; t) 2 T , and thereby we have that M; s j= :EX�.4.  is of the form E(�U�). If E(�U�) 2 L(s), then by the rule H11 of thede�nition of the Hintikka struture H , there exist a path � that starts atstate s and a state �(n) with n � 0 suh that � 2 L(�(n)) and � 2 L(�(j))6



for all j < n. Sine by the indution hypothesis we have that M;�(n) j= �and M;�(j) j= � for all j < n, we must have that M; s j= E(�U�). If:E(�U�) 2 L(s), then by the rule H6 we have that :� ^ :� 2 L(s) or:� ^ :EXE(�U�) 2 L(s). Let suppose that :� ^ :� 2 L(s). Then by rulesH1�H4 and by the indution hypothesis we have thatM; s j= :�^:�, whihimplies that M; s j= :E(�U�). Let suppose now that :� ^ :EXE(�U�) 2L(s). By the rule H3 and by the indution hypothesis we have that M; s j=:� and M; s j= :EXE(�U�), whih implies that M; s j= :E(�U�).5. � is of the form A(�U�2). If A(�U�2) 2 L(s), then by the rule H12 of thede�nition of the Hintikka struture H , for all paths � that start at state sthere exists a state �(n) with n � 0 suh that � 2 L(�(n)) and � 2 L(�(j))for all j < n. Sine by the indution hypothesis we have that M;�(n) j= �and M;�(j) j= � for all j < n and path � that start at s, we must havethat M; s j= A(�U�). If :A(�U�) 2 L(s), then by the rule H8 we havethat :� ^ :� 2 L(s) or :� ^ EX(:A(�U�)) 2 L(s). Let suppose that:� ^ :� 2 L(s). Then by rules H1 � H4 and by the indution hypothesiswe have that M; s j= :� ^ :�, whih implies that M; s j= :A(�U�). Letsuppose now that :� ^ EX(:A(�U�)) 2 L(s). By the rule H3 and by theindution hypothesis we have that M; s j= :� and M; s j= EX(:A(�U�)),whih implies that M; s j= :A(�U�).6.  is of the form Ki�. Let supose that Ki� 2 L(s). We want to show thatM; s j= Ki�. It suÆes to show thatM; t j= � for all state t suh that sR0Ki t.But sine R0Ki is a reexive and Eulidean losure of RKi , if sR0Ki t then either(a) sRKi t, or (b) there exists a state v suh that vRKi s and vRKi t. Let �rstassume that (a) holds. Sine Ki� 2 L(s), by rule H13 we have that � 2 L(t).Let assume now that (b) holds. Sine Ki� 2 L(s), by rule H17, we have that� 2 L(t). So, by the indution hypothesis we have that M; t j= �. Sine thisholds for an arbitary t suh that sR0Ki t we an onlude that M; s j= Ki�.Now, let supose that :Ki� 2 L(s). By the rule H14 of the de�nition of theHintikka struture H , there exists state t suh that sRKi t and :� 2 L(t).Sine RKi � R0Ki , and sine by the indution hypothesis we have thatM; t j=:�, we must have M; s j= :Ki�.7.  is of the form Oi�. Let supose that Oi� 2 L(s). We want to show thatM; s j= Oi�. It suÆes to show thatM; t j= � for all state t suh that sR0Oi t.But sine R0Oi is a serial, transitive and i-jEulidean losure of ROi , if sR0Oi tthen there exists k > 0 and there exists a sequene of states x0; : : : ; xk suhthat s = x0, t = xk, and for all n 2 f0; : : : ; k � 1g either xnR0ixn+1, orthere exists a state v suh that vROi xn and vROj xn+1. An intution on n,using rules H18, H20 and H21 shows that we must have Oi� 2 L(xn ) for alln 2 f0; : : : ; kg, and � 2 L(xn ) for all n 2 f1; : : : ; kg. In partiular, we havethat Oi� 2 L(t) and � 2 L(t). So, by the indution hypothesis we have thatM; t j= �. Sine this holds for an arbitary t suh that sR0Oi t we an onludethat M; s j= Oi�.Now, let supose that :Oi� 2 L(s). By the ruleH19, we have that there existsstate t suh that sROi t and :� 2 L(t). Sine ROi � R0Oi , and sine by theindution hypothesis we have that M; t j= :�, we must have M; s j= :Oi�.7



8.  is of the form bKji�. Let supose that bKji� 2 L(s). We want to show thatM; s j= bKji�. It suÆes to show that M; t j= � for all state t suh thatsR0ji t. But sine R0ji is a transitive and Eulidean losure of Rji , if sR0Oi t thenthere exists k > 0 and there exists a sequene of states x0; : : : ; xk suh thats = x0, t = xk, and for all n 2 f0; : : : ; k�1g either xnRjixn+1, or there existsa state v suh that vRjixn and vRjjxn+1. An intution on n, using rules H23and H24 shows that we must have bKji� 2 L(xn ) for all n 2 f0; : : : ; kg, and� 2 L(xn ) for all n 2 f1; : : : ; kg. In partiular, we have that bKji� 2 L(t) and� 2 L(t). So, by the indution hypothesis we have that M; t j= �. Sine thisholds for an arbitary t suh that sR0ji t we an onlude that M; s j= bKji�.Now, let supose that :bKji� 2 L(s). By the ruleH1, we have that bKji� 62 L(s).Sine any model for a given formula is a Hintikka struture for the formula,by the Contrapostion Law, we have that M; s j= :bKji�. �We now proeed to de�ne a quotient struture for a given model. The quotientonstrution depends on an equivalene relation of states on a given model. Tode�ne this we use the Fisher-Ladner losure of a formula ' 2 L (denoted byFL(')) as FL(') = CL(') [ f:� j � 2 CL(')g, where CL(') is the smallestset of formulas that ontains ' and satisfy the following onditions:(a). if :� 2 CL('), then � 2 CL('),(b). if � ^ � 2 CL('), then �; � 2 CL('),(). if E(�U�) 2 CL('), then �; �;EXE(�U�) 2 CL('),(d). if A(�U�) 2 CL('), then �; �;AXA(�U�) 2 CL('),(e). if EX� 2 CL('), then � 2 CL('),(g). if Oi� 2 CL('), then � 2 CL('),(f). if Ki� 2 CL('), then � 2 CL('),(h). if bKji� 2 CL('), then � 2 CL(').Observe that for a given formula ' 2 L, FL(') forms a �nite set of formulae,as the following lemma shows (the size of a �nite set A | denoted by Card(A)| is de�ned as the number of elements of A).Lemma 2. Given a formula ' 2 L, Card(FL(')) � 2(j'j).Proof. Straightforward by indution on the length of '. �De�nition 7 (Fisher-Ladner's equivalene relation). Let ' 2 L andM = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) be a model for '. The relation$FL(') on a set of states S is de�ned as follows:s$FL(') s0 if (8� 2 FL('))((M; s) j= � i� (M; s0) j= �)By [s℄ we denote the set fw 2 S j w $FL(') sg.Observe that $FL(') is indeed an equivalene relation, so using it we an de�nethe quotient struture for a given model for L.8



De�nition 8 (Quotient struture). Let ' 2 L, M = (S; T; (RKi )i2AG;(ROi )i2AG; (Rji )i;j2AG;V) be a model for ', and$FL(') a Fisher-Ladner's equiv-alene relation. The quotient struture of M by $FL(') is the tuple M$FL(') =(S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ), where{ S0 = f[s℄ j s 2 Sg,{ T 0 = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) suh that (w;w0) 2 Tg,{ R0Ki be a transitive losure of f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄)suh that (w;w0) 2 RKi g,{ R0Oi = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) suh that (w;w0) 2 ROi g,{ R0ji = f([s℄; [s0℄) 2 S0 � S0 j (8w 2 [s℄)(8w0 2 [s0℄) suh that (w;w0) 2 Rjig,{ L0 : S0 ! 2FL(') is de�ned by: L0 ([s℄) = f� 2 FL(') j (M; s) j= �g.Note that the set S0 is �nite as it is the result of ollapsing states satisfy-ing formulas that belong to the �nite set FL('). In fat we have Card(S0) �2Card(FL(')). Note also that the relation T 0 is serial, R0Ki is reexive, symmetriand transitive (i.e., it is an equivalene relation), R0Oi is serial, transitive and i�jEulidean, and R0ji is transitive and Eulidean. Further, sine L is an extensionof CTL, the resulting quotient struture may not be a model. In partiular, thefollowing lemma holds.Lemma 3. The quotient onstrution does not preserve satis�ability of formulasof the form A(�U�), where �; � 2 L. In partiular, there is a model M forA(>Up) with p 2 PV suh that M$FL(') is not a model for A(>Up).Proof. [Sketh℄ Consider the following model M = (S; T;RK1 ; RO1 ; R11;V) forA(>Up), where S = fs0; s1; : : : ; g, T = f(s0; s0)g [ f(si; si�1) j i > 0g, RK1 =RO1 = R11 = f(si; si) j i � 0g, p 2 V(s0) and p 62 V(si) for all i > 0. It iseasy to observe that in the quotient struture of M , i.e., in M$FL(A(>Up)) , twodistint states si and sj , for all i; j > 0, will be identi�ed. As a result of that,a yle along whih p is always false will appear in M$FL(A(>Up)) . This impliesthat A(>Up) does not hold along the yle. �Although the quotient struture of a given model M by $FL(') may not bea model, it satis�es another important property, whih allows us to view it asa pseudo-model; it an be unwound into a proper model. This observation anbe used to show that the language L has the FMP property. To make this ideapreise, we introdue the following auxiliary de�nitions.An interior (respetively frontier) node of a direted ayli graph (DAG)1is one whih has (respetively does not have) a T -suessor. The root of a DAGis the node (if it exists) from whih all other nodes are reahable via the Trelation. A fragment M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) of aHintikka struture is a struture suh that (S0; T 0) generates a �nite DAG whoseinterior nodes satisfy H1-H10 and H13-H26, and the frontier nodes satisfy H1-H8 and H13-H26. Given M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) andM 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ), we say thatM is ontained1 Reall that a direted ayli graph is a direted graph suh that for any node v,there is no nonempty direted path starting and ending on v.9



in M 0, and write M � M 0, if S � S0, T = T 0 \ (S � S), RKi = R0Ki \ (S � S),ROi = R0Oi \ (S � S), Rji = R0ji \ (S � S), L = L0 jS.De�nition 9 (Pseudo-model). Let ' 2 L. A pseudo-model M = (S; T;(RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) for ' is de�ned in the same manner as aHintikka struture for ' in De�nition 6, exept that ondition H12 is replaedby the following ondition H 012: (8s 2 S) if A(�U�) 2 L(s), then there is a frag-ment (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) � M suh that: (a) (S0; T 0)generates a �nite DAG with root s; (b) for all frontier nodes t 2 S0, � 2 L0 (t);() for all interior nodes u 2 S0, � 2 L0 (u).We have the following.Lemma 4. Let ' 2 L, FL(') be the Fisher-Ladner losure of ', M = (S; T;(RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;V) a model for ', and M$FL(') = (S0; T 0;(R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L) the quotient struture of M by $FL(').Then, M$FL(') is a pseudo-model for '.Proof. This an be shown by indution on the struture of '. The proof for theCTL part of L follows immediately from Lemma 3.8 in [2℄. Consider now ' tobe of the following forms:H.13 . ' = Ki�. Let Ki� 2 L([s℄) and [s℄R0Ki [t℄ for an arbitrary [t℄ 2 S0. Sine[s℄R0Ki [t℄, by the de�nition of R0Ki there exists k > 0 and there exists asequene [x0℄ : : : [xk ℄ of states suh that [s℄ = [x0℄, [xk ℄ = [t℄ and [xj ℄Ri[xj+1℄with Ri = f([s℄; [s0℄) 2 S0 � S0 j (9w 2 [s℄)(9w0 2 [s0℄) suh that (w;w0) 2RKi g for all j 2 f0; : : : ; k � 1g. We will �rst show that if Ki� 2 L([x0 ℄) and[x0℄Ri[x1℄, then Ki� 2 L([x1 ℄) and � 2 L([x1 ℄).Sine [x0℄Ri[x1℄, by the de�nition of Ri we have that there exist x00 2 [x0℄and x01 2 [x1℄ suh that x00RKi x01. Without losing of generality we an takex00 = x0 and x01 = x1, and thereby we have thatx0RKi x1 (1)Sine Ki� 2 L([x0 ℄), by the de�nition of$FL(') and L we have thatM;x0 j=Ki� (in fat we have M;x j= Ki� for all x 2 [x0℄). Thus, by the de�nitionof j= we have thatM; t j= � for all state t suh that x0RKi t (2)So, in pariular, sine (1) holds, we have that M;x1 j= �. Thus by thede�nitions of $FL(') and L, we have that � 2 L([x1 ℄). Now, onsider anystate y suh that x1RKi y. Sine (1) holds and the relation RKi is transitive,we have that x0RKi y. Thus, sine (2) holds we have that M; y j= �. Sinethis holds for any y suh that x1RKi y, we have that M;x1 j= Ki�. Thus,by the de�nitions of $FL(') and L, we have that Ki� 2 L([x1 ℄). Now, byindution on 0 � j < k, we onlude that if Ki� 2 L([xj ℄) and [xj ℄Ri[xj+1℄,then Ki� 2 L([xj+1 ℄) and � 2 L([xj+1 ℄). This implies that Ki� 2 L([t℄) and� 2 L([t℄). So, onditions H13 and H16 are ful�lled.10



H.14 . ' = :Ki�. Let :Ki� 2 L([s℄). Then, by the de�nitions of $FL(') and L,we have that M; s j= :Ki� (in fat we have M; s0 j= :Ki� for all the states0 2 [s℄). So, by the de�nition of j=, we have that there exists t 2 S suhthat sRKi t and (M; t) j= :�. Consider an equivalene lass of $FL(') thatis generated by t, i.e., the state [t℄ of S0. Sine sRKi t, by the de�nition ofR0Ki we have that [s℄R0Ki [t℄. Sine (M; t) j= :�, by the de�nitions of $FL(')and L, we have that :� 2 L([t℄). Therefore, we an onlude that thereexists state [t℄ 2 S0 suh that [s℄R0Ki [t℄ and :� 2 L([t℄). So, ondition H14is ful�lled.H.15 . ' = Ki�. Let Ki� 2 L([s℄). Then, by the de�nitions of $FL(') and L, wehave thatM; s j= Ki� (in fat we haveM; s0 j= Ki� for all the state s0 2 [s℄).Thus, by the de�nition of j= we have thatM; t j= � for all state t suh that sRKi t (3)So, sine RKi is reexive, we have that M; s j= �. Then, by the de�nitions of$FL(') and L, we have that � 2 L([s℄), whih implies that ondition H15is ful�lled.H.17 . Let [s℄R0Ki [t℄, [s℄R0Ki [u℄ and Ki� 2 L([u℄). Sine [s℄R0Ki [u℄ and R0Ki is sym-metri, we have that [u℄R0Ki [s℄. Further, sine R0Ki is transitive and [u℄R0Ki [s℄and [s℄R0Ki [t℄, we have that [u℄R0Ki [t℄. Thus, sine Ki� 2 L([u℄), by ase H.13of the proof, we have that � 2 L([t℄) and Ki� 2 L([t℄) . So, ondition H17is ful�lled.H.18 . ' = Oi�. Let Oi� 2 L([s℄) and [s℄R0Oi [t℄ for an arbitrary [t℄ 2 S0. Sine[s℄R0Oi [t℄, by the de�nition of R0Oi , there exist states s0 2 [s℄ and t0 2 [t℄suh that s0ROi t0. Sine Oi� 2 L([s℄), by the de�nitions of $FL(') andL we have that M; s00 j= Oi� for all s00 2 [s℄. So, in partiular we havethat (M; s0) j= Oi�. By the de�nition of j=, we have that (M; t00) j= �for all t00 2 S suh that s0ROi t00. In partiular, sine s0ROi t0, we have that(M; t0) j= �. Thus, sine [t0℄ = [t℄, by the de�nitions of $FL(') and L wehave that � 2 L([t℄). So, the ondition H18 is ful�lled.H.19 . ' = :Oi�. Let :Oi� 2 L([s℄). Then, by the de�nitions of $FL(') and L,we have that M; s j= :Oi� (in fat we have M; s0 j= :Oi� for all the states0 2 [s℄). So, by the de�nition of j=, we have that there exists a state t 2 Ssuh that sROi t and (M; t) j= :�. Consider an equivalene lass of $FL(')that is generated by t, i.e., the state [t℄ of S0. Sine sROi t, by the de�nition ofR0Oi we have that [s℄R0Oi [t℄. Sine (M; t) j= :�, by the de�nitions of $FL(')and L, we have that :� 2 L([t℄). Therefore, we an onlude that thereexists state [t℄ 2 S0 suh that [s℄R0Oi [t℄ and :� 2 L([t℄). So, ondition H19is ful�lled.H.20 . Let [s℄R0Oi [t℄ and Oi� 2 L([s℄). By ase H.18 of the proof, we have that� 2 L([t℄). Now, onsider any [t0℄ 2 S0 suh that [t℄R0Oi [t0℄. Sine R0Oi istransitive, we have that [s℄R0Oi [t0℄. So, again by ase H.18 , we have that� 2 L([t0 ℄) for eah [t0℄ suh that [t℄R0Oi [t0℄. Thus, by the de�nition of$FL('),L and j=, we an onlude that Oi� 2 L([t℄). So, ondition H20 is ful�lled.H.21 . Let [s℄R0Oi [t℄ and [s℄R0Oj [u℄, and Oi� 2 L([u℄). Sine R0Oi is i � jEulidean,we have that [u℄R0Oi [t℄. Thus, sine Oi� 2 L([u℄) holds, by ase H.18 we11



have � 2 L([t℄), and by ase H.20 we have Oi� 2 L([t℄). So, ondition H21is ful�lled.H.22 . ' = bKji�. Let bKji� 2 L([s℄) and [s℄R0ji [t℄ for an arbitrary [t℄ 2 S0. Sine[s℄R0ji [t℄, by the de�nition of R0ji we have that s0Rji t0 for all states s0 2 [s℄and t0 2 [t℄. Sine bKji� 2 L([s℄), by the de�nition of $FL(') and L we havethat M; s0 j= bKji� for all s0 2 [s℄. Thus, by the de�nition of j= we have thatM;x j= � for all states x suh that s0Rjix. So, sine s0Rji t0 for all t0 2 [t℄, wean onlude thatM; t0 j= �. Thus, sine t0 2 [t℄, by the de�nition of$FL(')and L we have that � 2 L([t℄). Therefore, we an onlude that onditionH22 is ful�lled.H.23 . Let [s℄R0ji [t℄ and bKji� 2 L([s℄). By ase H.22 of the proof, we have that� 2 L([t℄). Now, onsider any [t0℄ 2 S0 suh that [t℄R0ji [t0℄. Sine R0ji istransitive, we have that [s℄R0ji [t0℄. So again by ase H.22 , we have that� 2 L([t0 ℄) for eah [t0℄ suh that [t℄R0ji [t0℄. Thus, by the de�nition of$FL('),L and j=, we an onlude that bKji� 2 L([t℄). So, ondition H23 is ful�lled.H.24 . Let [s℄R0ji [t℄ and [s℄R0ji [u℄, and bKji� 2 L([u℄). Sine R0ji is eulidean, we havethat [u℄R0ji [t℄. Sine bKji� 2 L([u℄) holds, by ase H.22 of the proof, we have� 2 L([t℄), and by ase H.23 we have bKji� 2 L([t℄). So, ondition H24 isful�lled.H.25 . ' = Ki�. Let (M; s) j= Ki�, and Ki� 2 L([s℄). By the de�nition of j=, wehave that (M; t) j= � for all t 2 S suh that sRKi t. Consider the followingtwo setsK(s; i) = ft j (sRKi t) and (M; t) j= �g and O(s; i; j) = ft 2 K(s; i) j(sROj t)g, where i; j 2 f1 : : : ; ng. By the de�nition of K(s; i) and O(s; j), wehave that O(s; i; j) = ft j (sRji t) and M; t j= �g. Therefore, by the de�nitionof j= we have that (M; s) j= bKji�. Thus, by the de�nitions of $FL(') and L,we have that bKji� 2 L([s℄). So, ondition H25 is ful�lled.H.26 . ' = Oj�. Let (M; s) j= Oj�, and Oj� 2 L([s℄). By the de�nition of j=, wehave that (M; t) j= � for all t 2 S suh that sROj t. Consider the following twosets O(s; j) = ft j (sROj t) and (M; t) j= �g and K(s; i; j) = ft 2 O(s; j) j(sRKi t)g, where i; j 2 f1 : : : ; ng. By the de�nition ofK(s; i; j) and O(s; i), wehave that K(s; i; j) = ft j (sRji t) and M; t j= �g. Therefore, by the de�nitionof j= we have that (M; s) j= bKji�. Thus, by the de�nitions of $FL(') and L,we have that bKji� 2 L([s℄). So, ondition H26 is ful�lled. �We an now prove the main laim of the setion, i.e., the fat that L has the�nite model property.Theorem 1 (FMP for L). Let ' 2 L. Then the following are equivalent: (1)' is satis�able; (2) There is a �nite pseudo-model for '; (3) There is a Hintikkastruture for '.Proof. [sketh℄ (3) ) (1) follows from Lemma 1. (1) ) (2) follows from Lemma4. To prove (2) ) (3) it is enough to onstrut a Hintikka struture for ' by12



\unwinding" the pseudo-model for '. This an be done in the same way as isdesribed in [2℄ for the proof of Theorem 4.1. �4 Deidability for LLet ' be a L formula, and FL(') the Fisher-Ladner losure of '. We de�ne� � FL(') to be maximal if for every formula � 2 FL('), either � 2 � or:� 2 �.Theorem 2. There is an algorithm for deiding whether any L formula is sat-is�able.Proof. Given a formula ' 2 L, we will onstrut a �nite pseudo-model for ' ofsize less or equal 22�j'j. We proeed as follows.1. Build a struture M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) in thefollowing way:{ S0 = f� j � � FL(') and � is maximal and satis�es rules H1-H8,H13, H24, H25g;{ T 0 � S0�S0 is a relation suh that (�1; �2) 2 T 0 i� :EX� 2 �1 impliesthat :� 2 �2;{ for eah agent i 2 AG, R0Ki � S0 � S0 is a relation suh that (�1; �2) 2R0Ki i� f� j Ki� 2 �1g � �2;{ for eah agent i 2 AG, R0Oi � S0 � S0 is a relation suh that (�1; �2) 2R0Oi i� f� j Oi� 2 �1g � �2;{ for eah agent i; j 2 AG, R0ji � S0�S0 is a relation suh that (�1; �2) 2R0ji i� f� j bKji� 2 �1g � �2;{ L0 : S ! 2FL(') is a funtion de�ned by L0 (�) = �.It is easy to observe that M 0, as onstruted above, satis�es propertiesH1-H8, H15, H25, H26; properties H10, H13, H18, and H22 (beauseof the de�nition of T 0, R0Ki , R0Oi , and R0ji respetively). Note also that sineCard(FL(')) � 2 � j'j (see Lemma 2), S0 has at most 22�j'j elements.2. Test the above struture M 0 for ful�lment of the properties H9, H11, H 012,H14, H16, H17, H19-H21, H23 and H24 by repeatedly applying the fol-lowing deletion rules until no more states in M 0 an be deleted.H9 Delete any state whih has no T -suessors.H11-H12' Delete any state�1 2 S0 suh that E(�U�) 2 �1 (respetively A(�U�) 2�1) and there does not exist a fragmentM 00 �M 0 suh that: (i) (S00; T 00)generates a �nite DAG with root �1; (ii) for all frontier nodes �2 2 S00,� 2 �2; (iii) for all interior nodes �3 2 S00, � 2 �3.H14 Delete any state �1 2 S0 suh that :Ki� 2 �1, and �1 does not haveany R0Ki suessor �2 2 S0 with :� 2 �2.H16 Delete any state�1 2 S0 suh that�1R0Ki �2 and Ki� 2 �1 and :Ki� 2�2.H17 Delete any state �1 2 S0 suh that �1R0Ki �2 and �1R0Ki �3 and � 2 �2and Ki:� 2 �3 13



H19 Delete any state �1 2 S0 suh that :Oi� 2 �1, and �1 does not haveany R0Oi suessor �2 2 S0 with :� 2 �2.H20 Delete any state �1 2 S0 suh that �1R0Oi �2 and Oi� 2 �1 and :Oi� 2�2.H21 Delete any state �1 2 S0 suh that �1ROi �2 and �1ROj �3 and Oi:� 2�3 and � 2 �2.H23 Delete any state �1 2 S0 suh that �1R0ji �2 and bKji� 2 �1 and :bKji� 2�2.H24 Delete any state �1 2 S0 suh that �1R0ji �2 and �1R0ji �3 and � 2 �2and bKji:� 2 �3.We all the above two points a deidability algorithm for L.Claim (1). The deidability algorithm for L terminates.Proof. The termination is obvious given that the initial set S0 is �nite.Claim (2). Let M = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) be the resultingstruture of the algorithm. The formula ' 2 L is satis�able i� ' 2 s, for somes 2 S.Proof. In order to show the part right-to-left of the above property, note thateither the resulting struture is a pseudo-model for ', or S = ; (this an beshown indutively on the struture of the algorithm). So, if ' 2 s for somes 2 S, ' is satis�able by Theorem 1.Conversely, if ' is satis�able, then there exists a model M� suh that M� j='. Let M�$FL(') = M 0 = (S0; T 0; (R0Ki )i2AG; (R0Oi )i2AG; (R0ji )i;j2AG;L0 ) be thequotient struture of M� by $FL('). By Theorem 1 we have that M 0 is apseudo-model for '. Moreover, by the de�nition of L0 in the quotient stru-ture, L0 (s) is maximal with respet to FL(') for all s 2 S0. Now, let M 00 =(S00; T 00; (R00Ki )i2AG; (R00Oi )i2AG; (R00ji )i;j2AG;L00 ) be a struture de�ned by step 1of the deidability algorithm, and f : S0 ! S00 a funtion de�ned by f(s) = L0 (s).The following onditions hold:1. If (s; t) 2 T 0, then (f(s); f(t)) 2 T 00;Proof (via ontradition): Let (s; t) 2 T 0 and (f(s); f(t)) 62 T 00. By thede�nition of T 00 we have that :EX� 2 f(s) and � 2 f(t). Then, by thede�nition of f , we have that :EX� 2 L0 (s) and � 2 L0 (t). So, by thede�nition of L0 in the quotient struture we have that M�; s j= :EX� andM�; t j= �, whih ontradit the fat that (s; t) 2 T 0.2. If (s; t) 2 R0Ki , then (f(s); f(t)) 2 R00Ki ;Proof (via ontradition): Let (s; t) 2 R0Ki and (f(s); f(t)) 62 R00Ki . By thede�nition of R00Ki we have that Ki� 2 f(s) and � 62 f(t). Then, by thede�nition of f , we have that Ki� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient struture we have that M�; s j= Ki� and M�; t j= :�,whih ontradit the fat that (s; t) 2 R0Ki .3. If (s; t) 2 R0Oi , then (f(s); f(t)) 2 R00Oi ;Proof (via ontradition): Let (s; t) 2 R0Oi and (f(s); f(t)) 62 R00Oi . By thede�nition of R00Oi we have that Oi� 2 f(s) and � 62 f(t). Then, by the14



de�nition of f , we have that Oi� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient struture we have that M�; s j= Oi� and M�; t j= :�,whih ontradit the fat that (s; t) 2 R0Oi .4. If (s; t) 2 R0ji , then (f(s); f(t)) 2 R00ji ;Proof (via ontradition): Let (s; t) 2 R0ji and (f(s); f(t)) 62 R00ji . By thede�nition of R00ji we have that bKji� 2 f(s) and � 62 f(t). Then, by thede�nition of f , we have that bKji� 2 L0 (s) and � 62 L0 (t). So, by the de�nitionof L0 in the quotient struture we have that M�; s j= bKji� and M�; t j= :�,whih ontradit the fat that (s; t) 2 R0ji .Thus, the image ofM 0 under f is ontained inM 00, i.e.,M 0 �M 00. It remainsto show that if s 2 S0, then f(s) 2 S00 will not be eliminated in step 2 of thedeidability algorithm. This an be heked by indution on the order in whihstates of S00 are eliminated. For instane, assume that s 2 S0, and A(�U�) 2f(s). By the de�nition of f , we have that A(�U�) 2 L0 (s). Now, sine M 0 is apseudo-model, by De�nition 9 we have that there exists a fragment rooted at sthat is ontained in M 0 and it satis�es property H 012. Thus, sine f preservesthe above ondition (a), we have that there exists a fragment rooted at f(s) thatis ontained in M 00 and it satis�es property H 012. This implies that f(s) 2 S00will not be eliminated in step 2b of the deidability algorithm. Other ases anbe proven similarly. Therefore, it follows that for some s 2 S we have ' 2 L(s).�5 A Complete Axiomati System for LAn axiomati system onsists of a olletion of axioms and inferene rules. Anaxiom is a formula, and an inferene rule has the form \from formulas '1; : : : ; 'minfer formula '". We say that ' is provable (written ` ') if there is a sequene offormulas ending with ', suh that eah formula is either an instane of an axiom,or follows from other provable formulas by applying an inferene rule. We saythat a formula ' is onsistent if :' is not provable. A �nite set f'1; : : : ; 'mg offormulas is onsistent if and only if the onjuntion '1 ^ : : :^'m of its membersis onsistent, and an in�nite set of formulas is onsistent if all of its �nite subsetsare onsistent. A set F of formulas is a maximal onsistent set if it is onsistentand for all ' 62 F , the set F [ f'g is inonsistent. An axiom system is sound(resp. omplete) with respet to the lass of models, if ` ' implies j= ' (resp. ifj= ' implies ` ').De�nition 10 (Axiomatisation of deonti interpreted systems). Let i 2f1; : : : ; ng. Consider the following axiomati system for L:PC: All substitution instanes of lassial tautologies.X1. EX>X2. EX(� _ �), EX� _ EX�U1. E(�U�), � _ (� ^ EXE(�U�))15



U2. A(�U�) , � _ (� ^ AXA(�U�))KKi . (Ki� ^Ki(�) �))) Ki�TKi . Ki�) �4Ki . Ki�) KiKi�5Ki . :Ki�) Ki:Ki�KOi . (Oi� ^Oi(�) �))) Oi�DOi . Oi�) :Oi:�4Oi : Oi�) OiOi�5i�jOi : :Oi�) Oj:Oi�KbKji : (bKji� ^ bKji (�) �))) bKji�4bKji : bKji�) bKji bKji�5bKji : :bKji�) bKji:bKji�O� bKji: Oj�) bKji�K� bKji: Ki�) bKji�MP. From � and �) � infer �,NeKi. From � infer Ki�,NeOi : From � infer Oi�,R1X. From �) � infer EX�) EX�R2X : From  ) (:� ^ EX) infer  ) :A(�U�)R3X. From  ) (:� ^ AX( _ :E(�U�))) infer  ) :E(�U�)We note that the system above inludes the axiomatisation for CTL [2℄, S5[3℄ for Ki and KD45i�j [6℄ for Oi. The fragment for the operators bKji , previouslynot explored, is K45. In line with the traditional interpretation of these axiomsin an epistemi setting these are to be interpreted from the point of view ofan external observer asribing properties to the system. They both seem in linewith the interpretation of the modality of knowledge under the assumption oforret behaviour. Further note that axioms 4bKji , and 5bKji are to be expetedgiven that both the underlying relations are transitive and Eulidean.The interation axioms Oi � bKji and Ki � bKji regulate the relationship be-tween Oi;Ki and bKji . They were both disussed in [6℄ and orrespond to ourintuition regarding the meaning of the modalities. Note also that they loselymath the interation axioms for distributed versus standard knowledge, whihagain on�rms our intuition given that distributed knowledge is de�ned on theintersetion of the relations for standard knowledge.The inferene rules for all the omponents are also entirely expeted | notethat while Neessitation for bKji is not expliitly listed, it may easily be deduedfrom NeKi or NeOi .Theorem 3. The axiomati system for L is sound and omplete with respet tothe deonti interpreted systems, i.e. j= ' i� ` ', for any formula ' 2 L.Proof. Soundness an be heked indutively as standard. For ompleteness, weshow that any onsistent formula ' is satis�able. To do this, we �rst onsider thestrutureM = (S; T; (RKi )i2AG; (ROi )i2AG; (Rji )i;j2AG;L) for ' as de�ned in step16



1 of the deidability algorithm. We then exeute step 2 of the algorithm, obtain-ing a pseudo-model for '. Cruially we show below that if a state s 2 S is elim-inated at step 2 of the algorithm, then the formula  s = V�2s � is inonsistent.Observe now that that for any � 2 FL(') we have ` � , W fs j � 2 s and s is onsistentg  s.In partiular, ` ', W fs j ' 2 s and s is onsistentg  s. Thus, if ' is onsistent, then  s is on-sistent as well for some s 2 S. It follows by Claim 2 of Theorem 2 that thispartiular s is present in the pseudo-model resulting from the exeution of thealgorithm. So, by Theorem 1, ' is satis�able. Note that pseudo-models sharethe strutural properties of models, i.e., their underlying frames have the sameproperties.It remains to show that if a state s 2 S is eliminated at step 2 of thealgorithm then the formula  s is inonsistent. Before we do it, we need someauxiliary laims.Claim (3). Let s 2 S and � 2 FL('). Then, � 2 s i� `  s ) �.Proof. ('if'). Let � 2 s. By the de�nition of S, we have that any s in S ismaximal. Thus, :� 62 s. So, `  s ) �.('only if'). Let `  s ) �. So, sine s is maximal we have that � 2 s. �Claim (4). Let s; t 2 S, both of them be maximal and propositionally onsistent,and sRKi t (respetively sROi t and sRji t ). If � 2 t, then :Ki:� 2 s (respetively:Oi:� 2 s and :bKji:� 2 s).Proof.[By ontraposition℄ Let � 2 t and :Ki:� =2 s. Then, sine s is maximalwe have that Ki:� 2 s. Thus, sine sRKi t, we have that :� 2 t. This ontraditsthe fat that � 2 t, sine t is propositionally onsistent.The same proof applies to Oi and bKji . �Claim (5). Let s 2 S be a maximal and onsistent set of formulas and � suhthat ` �. Then � 2 s.Proof. Suppose � 62 s and ` �. Sine s is maximal then :� 2 s. So :� ^  s isonsistent where  s where  s 2 s. So by de�nition of onsisteny we have that6` :(:� ^  s), so 6` � _ : s. But we have ` � _  s, so this is a ontradition.� We now show, by indution on the struture of the deidability algorithmfor L, that if a state s 2 S is eliminated at step 2 of the deidability algorithm,then ` : s.Claim (6). If  s is onsistent, then s is not eliminated at step 2 of the deidabilityalgorithm for L.Proof.H9 Let EX� 2 s and  s be onsistent. By the same reasoning as in the proof ofClaim 4(a) in [2℄, we onlude that s satis�es H9. So s is not eliminated.H11-H'12 Let E(�U�) 2 s (resp. A(�U�) 2 s) and suppose s is eliminated at step 2beause H11 (resp. H 012) is not satis�ed. Then  s is inonsistent. The proofshowing that fat is the same as the proof of Claim 4() (resp. Claim 4(d))in [2℄. 17



H14 Let :Ki� 2 s and  s be onsistent. Consider the set S:� = f:�g[f� j Ki� 2sg. We will show that S:� is onsistent. Suppose that S:� is inonsistent.Then, ` �1 ^ : : : ^ �m ) �, where �j 2 f� j Ki� 2 sg for j 2 f1; : : : ;mg.By rule NeKi we have ` Ki((�1 ^ : : : ^ �m) ) �). By axioms KKi andPC we have ` (Ki�1 ^ : : : ^ Ki�m) ) Ki�. Thus, sine eah Ki�j 2 s forj 2 f1; : : : ;mg and s is maximal and onsistent, we have Ki� 2 s. Thisontradits the fat that  s is onsistent. So, S:� is onsistent. Now, sineeah set of formulas an be extended to a maximal one, we have that S:�is ontained in some maximal set t. Thus :� 2 t, and moreover, by thede�nition of RKi in M and the de�nition of S:� we have that sRKi t. Thus,s satis�es H14, and it is not eliminated by step (H14) of the deidabilityalgorithm.H16 Suppose that  s is onsistent and s is eliminated at step (H16) of the deid-ability algorithm. Then, we have that sRKi t, Ki� 2 s and :Ki� 2 t. Thus,sine s and t are maximal and propositionally onsistent, by Claim 4 we havethat :KiKi� 2 s. By axiom 4Ki and Claim 5 we have that Ki�) KiKi� 2 s.So, sine Ki� 2 s we have that KiKi� 2 s. So s is inonsistent. Therefore sannot be eliminated at step (H16) of the deidability algorithm.H17 Suppose that s is onsistent and it is eliminated at step (f) of the deidabilityalgorithm. Thus, we have that sRKi t, sRKi u, � 2 t, and Ki:� 2 u. So, sinesRKi t, � 2 t, s and t are maximal and propositionally onsistent, by Claim 4we have that :Ki:� 2 s. Sine s is maximal and onsistent, by axiom 5Kiand Claim 5, we have that :Ki:�) Ki:Ki:� 2 s. Therefore, we have thatKi:Ki:� 2 s. Thus, sine sRKi u, we have that :Ki:� 2 u. But this is aontraditions given that Ki:� 2 u an u is propositionally onsistent. So s isinonsistent. Therefore s annot be eliminated at step (f) of the deidabilityalgorithm.H19 Let :Oi� 2 s and  s be onsistent. Consider the set S:� = f:�g[f� j Oi� 2sg. We will show that S:� is onsistent. Suppose that S:� is inonsistent.Then, ` �1 ^ : : :^ �m ) �, where �j 2 f� j Oi� 2 sg for j 2 f1; : : : ;mg. Byrule NeOi we have ` Oi((�1 ^ : : : ^ �m)) �). By axioms KOi and PC wehave ` (Oi�1 ^ : : : ^Oi�m) ) Oi�. Sine eah Oi�j 2 s for j 2 f1; : : : ;mgand s is maximal and onsistent, we have Oi� 2 s. This ontradits the fatthat  s is onsistent. So, S:� is onsistent. Now, sine eah set of formulasan be extended to a maximal one, we have that S:� is ontained in somemaximal set t. Thus :� 2 t, and moreover, by the de�nition of ROi in Mand the de�nition of S:� we have that sROi t. Thus, s satis�es H19, and itis not eliminated by step (H19) of the deidability algorithm.H20 Suppose that  s is onsistent and s is eliminated at step (g) of the deidabil-ity algorithm. Then, we have that sROi t, Oi� 2 s and :Oi� 2 t. Thus, sines and t are maximal and propositionally onsistent, by Claim 4 we have that:OiOi� 2 s. By axiom 4Oi and Claim 5 we have that Oi� ) OiOi� 2 s.So, sine Oi� 2 s we have that OiOi� 2 s. So s is inonsistent. Therefore sannot be eliminated at step (H20) of the deidability algorithm.18



H21 If  s is onsistent, s annot be eliminated at step (H21) of the deidabilityalgorithm. The proof an be done similarly to the one in (H17) by usingaxiom 5i�jOi .H23 If  s is onsistent, s annot be eliminated at step (H24) of the deidabilityalgorithm. The proof an be done similarly to the one in (H20) by usingaxiom 4bKji .H24 If  s is onsistent, s annot be eliminated at step (H25) of the deidabilityalgorithm. The proof an be done similarly to the one in (H17) by usingaxiom 5bKji . �We have now shown that only states s with  s inonsistent are eliminated.This ends the ompleteness proof. �6 ConlusionWe have given a omplete axiomatisation of deonti interpreted systems on alanguage that inludes full CTL as well as the the Ki; Oi and bKji modalities.Thereby, we have solved the problem left open in [6℄. Further, we have shownthat the language onsidered here has the �nite model property, so it is deidable.The bKji modality an be straightforwardly extended to bKXi [6℄ representingknowledge of i under the assumption of orretness of all agents in X. We believethat the tehnique of this paper an be extended to bKXi without diÆulty. Forlarity this is not presented in this paper.Referenes1. E. Clarke and E. Emerson. Design and synthesis of synhronization skeletons forbranhing-time temporal logi. In Proeedings of Workshop on Logi of Programs,volume 131 of LNCS, pages 52{71. Springer-Verlag, 1981.2. E. A. Emerson and J. Y. Halpern. Deision proedures and expressiveness inthe temporal logi of branhing time. Journal of Computer and System Sienes,30(1):1{24, 1985.3. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.MIT Press, Cambridge, 1995.4. J. Halpern and Y. Moses. A guide to ompleteness and omplexity for modal logisof knowledge and belief. Arti�ial Intelligene, 54:319{379, 1992.5. A. Lomusio and M. Ryan. On the relation between interpreted systems andKripke models. In M. Pagnuo, W. R. Wobke, and C. Zhang, editors, Agent andMulti-Agent Systems - Proeedings of the AI97 Workshop on the theoretial andpratial foundations of intelligent agents and agent-oriented systems, volume 1441of LNAI. Springer Verlag, May 1998.6. A. Lomusio and M. Sergot. Deonti interpreted systems. Studia Logia, 75(1):63{92, 2003. 19
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