
Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 1 of 9

Research Note
RN/06/15

PNORMS: Platonic solid derived Normals for error bound
compression

18th May 2006

João Fradinho Oliveira

Bernard Buxton

Abstract

3D models of millions of triangles invariably repeatedly use the same 12-byte unit normals. Several
bit-wise compression algorithms exist for efficient storage and progressive transmission and
visualization of normal vectors. However such methods often incur a reconstruction time penalty,
which in the absence of dedicated hardware acceleration, make real-time rendering with such
compression/reconstruction methods prohibitive. We present a new method for the compression of
normals that does not require reconstruction, hence allowing for real-time rendering; normals are
simply looked up from a table of representative normals at run-time. Our method follows an analogy
with GIF image compression rather than with JPEG. We create Hierarchical databases of normals
derived from 5 subdivided Platonic solids for a target application error and for a set normal index byte
length. We study their respective distributions of normals, and associated error bounds. We present a
fast method for encoding a normal as computer from the vertices of a triangle in the model to a
representative normal in the database, which can be used at run-time for example to dynamically
encode new normals of large sets of modified triangles in the context a modelling task, and a method
that is slower but more accurate. Different levels of a database allow for different cartoon like shading
effects. The advantages of these databases are that they can be re-used for any object with bounds on
the maximum errors independent of the object. In particular we show that subdividing the icosahedron
gives a smaller maximum and mean error than its counterparts Platonic solids. We present results
using 2-byte indices for a target max error of 1.3˚ degrees and 4-byte for a max error of <0.1˚.

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 2 of 9

PNORMS: Platonic solid derived Normals for error bound
compression

João Fradinho Oliveira* Bernard Buxton*
* - Department of Computer Science, University College London

Figure 1: left: Flat-shaded rendering of the original 12-byte 10 million triangle normals; centre:with a max error of 2.5
degrees, using 27300 12-byte normals from a 2-byte index icosahedron database (encoding in 95secs) right: colour coded
error distribution, max error in red.

Abstract
3D models of millions of triangles invariably repeatedly use the same 12-byte unit normals. Several bit-wise compression
algorithms exist for efficient storage and progressive transmission and visualization of normal vectors. However such
methods often incur a reconstruction time penalty, which in the absence of dedicated hardware acceleration, make real-time
rendering with such compression/reconstruction methods prohibitive. We present a new method for the compression of
normals that does not require reconstruction, hence allowing for real-time rendering; normals are simply looked up from a
table of representative normals at run-time. Our method follows an analogy with GIF image compression rather than with
JPEG. We create Hierarchical databases of normals derived from 5 subdivided Platonic solids for a target application error
and for a set normal index byte length. We study their respective distributions of normals, and associated error bounds. We
present a fast method for encoding a normal as computer from the vertices of a triangle in the model to a representative
normal in the database, which can be used at run-time for example to dynamically encode new normals of large sets of
modified triangles in the context a modelling task, and a method that is slower but more accurate. Different levels of a
database allow for different cartoon like shading effects. The advantages of these databases are that they can be re-used for
any object with bounds on the maximum errors independent of the object. In particular we show that subdividing the
icosahedron gives a smaller maximum and mean error than its counterparts Platonic solids. We present results using 2-byte
indices for a target max error of 1.3˚ degrees and 4-byte for a max error of <0.1˚.

CR Categories: I.3.0 [Computer Graphics]: General

1 Introduction

Many applications such as global models of fluid flow in
meteorology and oceanography employ spherical geodesic
grids that are based on a subdivided icosahedron, which
leads to a quasi-uniform distribution of points without
singularities at the poles [RRH*02]. Each triangle of a
icosahedron, octahedron or tetrahedron (Figure 2) can be
subdivided to create 4 new sub-triangles, by inserting 3
new vertices at the midpoints of a triangle’s edges
[WDS99]. The vectors representing these midpoints can
then be normalized to unit length, and hence projected onto
a sphere (Figure 3). The normals of these sub-triangles
constitute a finite set of normals with different distribution
characteristics for each solid. Normals within these sets can
be re-used by several triangles or vertices of an object for
both flat, and Gouraud shading. We study these
distributions in the context of using lookup databases for
surface normal compression. The presented method allows
for 83.4% memory savings of normal attributes, with a
bounded imperceptible max error of 2.5 degrees, without

any reconstruction time. Several compression strategies
exist for efficient compression of mesh geometry,
connectivity/topology, and attributes. These methods are
very useful for saving hard disk space when storing large
meshes, and for progressive transmission and visualisation
of compressed meshes over a limited network. However
these methods require reconstruction time in order to
retrieve and decompress the original data which might be
run-length encoded along with other, different compressed
attributes such as geometry, connectivity and colour,
making the decompression process in a real-time setting
prohibitive in the absence of dedicated hardware support.

Figure 2: base Platonic solids; a) icosahedron b)
octahedron c) tetrahedron d) cube e) dodecahedron

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 3 of 9

This paper follows an analogy with GIF image
compression rather than JPEG. The GIF image format sets
the colour index to one single byte, to access 256 colours in
a table, rather than utilising a variable bit length, for
example, to exploit patterns which could be run-length
compressed. The latter approaches tend to lead to
complicated coding and decoding procedures which can
prohibit real-time reconstruction. Non web-browser
viewers of animated GIFs are able to render and switch
images at a very fast rate, by just looking up colour indices
in a table for the each pixel colour. In contrast, JPEG
images are able to provide a fast overview of the full
image, but require more time to switch between two full
resolution images. Similarly we build lookup databases of a
finite set of normals, following the observation that meshes
of high resolution scanned data repeatedly use the same
unit normals amongst their triangles. Unlike GIF, our tables
contain coarse normals of a base solid, along with finer
normals of deeper subdivisions in the same table so as to
allow fast multi-resolution querying of normals in our
encoding phase. Once the original true normals computed
from the vertices of the triangles comprising a model have
had a normal index assigned in the encoding phase, then 12
byte normals are simply looked-up at run-time for
rendering. We have created several hierarchical databases
of normals by subdivision of triangular nets based on the 5
Platonic solids. We created databases for 2 byte normal
indices (216 = 65536 possible look up normals in the table)
and 4 byte (232 = 4.294.967.295 normals). Different
Platonic solids produce different numbers of triangles at
each level when we repeatedly quadruple the number of
their initial triangles. In Table 1, the row labelled zero on
the left, shows the number of initial triangles of each base
Platonic solids, whilst subsequent rows show the number
obtained on subdivision. This paper shows which of the 5
solids yields the best bang per buck, in terms of which one
achieves the smallest representation error, given a
restriction on the number of normals each solid can
generate so as to not overflow the number of possible
normals accessible with 2 bytes or with 4 bytes.

We briefly review related work in section 2. In section 3
we study various subdivisions. In section 4 we present a
fast and a slower but more accurate method of encoding a
normal into a database with a bounded max error of 2.5
degrees, using a 5 times subdivided icosahedron, with 2
byte normal ids rather than the conventional 12 bytes. This
error we found suitable for visualization of 3D models.
The fast method is quick enough to allow dynamic re-
encoding of large sets of modified triangles for example, in
a modelling task. The slower but more accurate method is
for applications that require sub-degree precision. We note
that the encodings produced by both methods can be
accessed at the same speed at run-time. In section 5 we
present results, in section 6 we discuss a fair comparison
between the distribution of normals derived from the
different Platonic solids, and conclude in section 7.

2 Related Work

Compression of mesh geometry [Cho97], connectivity
[TR98], and attributes [BPZ99] is a mature field. In this
section we review methods that specifically compress
normal attributes.

Storing a database of normals for lookup in a GPU is not
new, Deering [Der95] uses 18 bits for each triangle normal
index, we present bounded normal errors using 2 bytes/16
bits. Taubin et. al [THL*98] and [Der95] parameterize a
sphere, which essentially equates to using an octahedron.
They subdivide each base triangle of the octahedron into 4,
and compress the normal id associated with the last sub
triangles. We note that such compression imposes a
reconstruction time; which can be prohibitive for real-time
rendering of large meshes without dedicated hardware. Our
method stores the normals of all subdivision levels, so as to
allow for hierarchical querying of normals in the encoding
phase, once normals are assigned to a representative
normal, no reconstruction is necessary.

Deok-So et. al, [DYH04] note that, in previous work,
normal ids are created independently of the concentration
of normals in a model. They also note that a triangle
normal is bound to be refered in neighboring triangles, they
use normal clustering to find representative normals,
furthermore they use a relative indexing scheme to further
compress the sequence of normals. It would be desirable to
encode on the fly large sets of new triangle normals, for
example when one modifies a mesh, it is not clear that such
high compression methods, can be used in such run-time
context. Deok-So also notes that whilst several excellent
compression methods developed in the past decade achieve
excellent compression rates, not much attention has been
given to the errors incurred in such normals, we refer the
reader to a more extensive review in [DYH04].

Guskove et. al [GVSS00] parameterize a subdivision
surface, where multiple level of details can be obtained
from a base coarse mesh and a corresponding offset value.
Each vertex can be stored with just one single float. This
representation requires the mesh to be semi-regular, which
in some cases requires the mesh to be remeshed, and is not
suitable for non-manifold meshes, or CAD objects. This
problem is often shared also by approaches that look for
sequences of triangle strips [BPZ99]. Some methods such
as [Cho97] store a compressed representation in main
memory, and use a fast decoder to render in real-time. It is
not clear whether this approach allows for encoding at run-
time large triangle sets.

3 Platonic normals

Our compression method consists on 3 different phases, the
first phase; which is only performed once, consists on the
subdivision of Platonic solids and construction of
hierarchical databases that once created and saved can be
used for any object, with bounds on the max error. The
second phase is an encoding phase, which consists on
finding a representative normal in the database for each

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 4 of 9

true normal computed from the objects geometry. Once a
representative normal is found, an id denoting the position
of the representative normal in the database is stored. These
normals ids, along with the database can be readily saved
to file. The third and final phase, just looks up the normal
ids at run-time for retrieving the full 12 byte normals for
rendering. We show that there is no penalty in this lookup
in section 5.2.

All 5 Platonic solids described by the Greek philosopher
Plato (icosahedron, octahedron, tetrahedron, cube, and
dodecahedron Figure 2), share the following interesting
properties: The vertices of each solid all lie on a sphere;
each solid has the same dihedral angle between its adjacent
polygons (138.190˚, 109.471˚, 70.529˚, 90˚, 116.565˚
respectively); their polygons are regular; all their vertices
are surrounded by the same number of faces; and their solid
angle is equivalent, e.g. the area on a sphere of the
projected solids surface is equivalent [Wei06]. We use
some of these properties in different parts of PNORMS.
For example, the property that all vertices lie on a sphere,
allows one to divide or parameterize a sphere into different
manageable parts; this in turn helps the subdivision (Figure
3) and construction phase of the hierarchical databases of
representative normals described in section 3.1. The
property of a Platonic solid having the same dihedral angle
amongst all adjacent polygons helps the encoding phase of
the accurate approach presented in section 4.2. We mention
polygons, rather than triangles, because the dodecahedron
is made of pentagons, and the cube is made of quads.
Nevertheless in section 3, we have triangulated quads and
pentagons into different triangle arrangements or polygon
nets so as to be able to subdivide and study more
distributions of normals.

3.1 Subdivision: Hierarchical database
construction of representative normals

In this section we describe how to create hierarchical
databases of representative normals. We note that contrary
to other methods, we store the normals of every subdivision
level. This strategy allows one to make fast hierarchical
queries of the database at run-time for encoding new true
normals on the fly. If we insert and normalize new vertices
at edge midpoints for each base triangle as illustrated for
triangle ABC in Figure 3, we obtain 4 sub triangles which
can be used to compute 4 finer grain representative normals
for the sphere projected area covered by the base triangle.

Figure 3: subdivision of the base triangle ABC of the
icosahedron, into triangles ADF, DBE, ECF, and FDE;
inserted vertices at the midpoint of edges AB, BC, CA are
normalized/projected to a unit sphere to form triangles
AD’F’, D’BE’, E’CF’, and F’D’E’.

Each Platonic solid, is formed by a different number of
base polygons; 20, 8, 4, 6, 12 for respectively the
isosahedron, octahedron, tetrahedron, cube, and
dodecahedron. Before we can subdivide the cube and
dodecahedron, we need to create triangle tessellations of
their quads and pentagons respectively. These triangle
tessellations or polygon nets are arrangements of triangles
that can affect the resulting normal distributions; the nets
we studied are shown in Figure 6. After tessellation, the
cube consists of 12 base triangles, and the dodecahedron of
36 base triangles.

Subdividing a Platonic solid at run-time would require
connectivity information, geometric updates and memory
management, hence run-time overheads. We opt for
creating these subdivided models once, offline, and store
only the generated representative normals in an orderly
fashion in an array, this is similar to a GIF file’s colour
palette/array that gets saved in the header file of a gif
image. Unlike GIF, we store the hierarchical databases
separately from an object, in order to be able to re-use the
same database for multiple objects. The first 20 base
normals of an icosahedron occupy the first 20 positions of
the array, the four subdivided normals of the first base
triangle are added to the array next, and occupy positions
20, 21, 22, 23. The four subdivided normals of the second
base triangle, are stored next in 24, 25, 26, 27, further
levels of subdivision are added in the same manner to the
array.

After subdividing each solid 5 times (Figure 4), one can see
how uniform a distribution is, by observing how uniform
the resulting triangles are in size, and how regular the
tessellation is. The number of generated representative
triangle normals may or might not contribute to lower
errors as we will show in section 5. We note that the 5
times subdivided icosahedron in Figure 4, generates 20480
representative normals (first column of Table 1, row 6, the
first row has the number of base triangles, and is not a
subdivision), whilst the five times subdivided octahedron
generates significantly less normals (8192 representative
normals, second column of Table 1, row 6). However we
can see from Figure 5, that the 4 times subdivided
icosahedron with 5120 representative normals, is shown to
be already more regular than the 5 times octahedron. Figure
4 and 5 also show that the different polygonal nets (shown
in Figure 6) for the cube and dodecahedron did not vary
significantly the overall characteristics of their
distributions. The tetrahedron appears to generate the least
regular distribution.

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 5 of 9

Figure 4: platonic solids subdivided 5 times; a) icosahedron b) octahedron c) tetrahedron d) cube (using polygonal net 6c) e)
dodecahedron (using polygonal net 6a)

Figure 5: a) icosahedron subdivided 4 times b) octahedron subdivided 5 times c) to e) solids subdivided 5 times c)
tetrahedron d) cube (using polygonal net 6d) e) dodecahedron (using polygonal net 6b)

accurate encoding - cascaded tolerance formula
9 subdivided PNORMS

icosaheron octahedron tetrahedron
d M me m2 M me m2 M me m2
0 37.1 18.1 32 54.6 31.4 54.2 70.1 37.5 69
1 19.2 9.6 17.7 30.3 16 29.4 45.9 22,9 44.3
2 10 4.7 8.68 16.1 8 14.6 27.4 10.8 21.1
3 5.33 2.31 4.29 9.27 4 7.35 29.9 8.88 18.6
4 2.69 1.15 2.14 4.87 2.01 3.7 31.1 7.31 17.7
5 1.32 0.58 1.08 3.13 1.03 1.93 32.1 6.82 18.3
6 0.66 0.29 0.54 2.49 0.53 1.07 32.7 6.68 18.9
7 0.36 0.14 0.27 2.27 0.28 0.69 33.0 6.6 19.2
8 0.18 0.07 0.13 2.19 0.15 0.54 33.2 6.64 19.4
9 0.09 0.03 0.07 2.15 0.09 0.48 33.3 6.64 19.4

Table 2: maximum error (M), mean errors(me), and the error of 2 standard deviations from the mean(m2) for the Stanford
bunny using accurate encoding; icos.(left), octa.(middle), tetra.(right)

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 6 of 9

A developer can use 2 byte or 4 byte index databases of
representative normals, depending on his application
requirements. If we use 2 bytes for each triangle normal
index, instead of the 12 bytes of the original normal, the
statue of Lucy with 28 million triangles takes 56 Mbytes
instead of 336 Mbytes. Storing the 5 levels of an
icosahedon da tabase i s no t expens ive
(20+80+320+1280+20480=27300x12bytes=327 Kbytes),
but has to be taken into account in the total number of
accessible normals for 2 bytes shown in brackets for each
solid in Table 1. In all 83.4% memory can be saved. We
address error in section 5.

icosa-
hedron

octa-
hedron

tetra-
hedron

cube dodeca-
hedron

0 20 8 4 12 36
1 80 32 16 48 144
2 320 128 64 192 576
3 1280 512 256 768 2304
4 5120 2048 1024 3072 9216
5 20480

(27300)
8192 4096 12288 36864

(49140)
6 81920 32768

(43688)
16384

(21844)
49152

(65532)
147456

7 327680 131072 65536 196608 589824
8 1310720 524288 262144 786432 2359296
9 5242880 2097152 1048576 3145728 9437184

Table 1: Maximum indexable normals in curved brackets
including all normals of each subdivision level for each
Platonic solid, for 2 byte indices (216=65536). For 4 byte
indices (232 =4.294.967.295) are indexable. The number
of triangle normals of the last subdivision level for 2
bytes is highlighted in bold.

An icosahedron can only be subdivided 5 times before
overflowing the number of indexable normals with 2
bytes: 20 (base normals)+80+320+1280+5120+20480 =
27300) < 65536 normals representable with 2-bytes. A
sixth subdivion, first column row 7, would create 81920
which would exceed the 65536 budget. We were excited
to see that the cube achieves a number of triangle
normals very close to the theoretical limit of accessable
normals for 2 bytes, in other words, very little address
s p a c e i s w a s t e d :
12+48+192+768+3072+12288+49152=65532 < 65536,
unfortunately more normals does not translate directly
into less error, as we shall see in section 5.

In an attempt to maximize the address space of 2 byte
indices, we created a Master object of normals, that
included two rotated hiearchical databases of a 5 times
subdivided icosahedron (54600<65532). Each of the two
databases of normals of the Master object of normals had
an offset to their starting position in the array. The
Master Object would query both databases to search for
the best representative normal for a given true normal,
and would return the corresponding normal id.
We tried different rotations, and noted that whilst the
mean error did decrease with more representable normals
available, the maximum error did not. This is due to the
fact that large portions of the second sphere successively

reduced the error for several normals affecting the mean
error, but ultimately the placing of the second database
will align with the first database at places, and hence not
contribute in reducing the maximum error in those
places.

The polygonal nets that we built for converting the quads
and pentagons of the cube and dodecahedron of figure 4
and 5, were connected with two criterias in mind, the
encouragement of local uniformity around the most
number of vertices possible (Figure 6; 6a and 6c) and a
global uniform criteria (Figure 6; 6b and 6d). As can be
seen in Figure 4, and 5 (4th and 5th subfigures from
left)), these tessellations unfortunately did not improve
the overall distribution characteristics of the subdivided
cube and dodecaherdron.

Figure 6: polygonal nets 6a) dodecahedron 6b)
dodecahedron 6c) cube 6d) cube

4 Encoding
Now that we have created the hierarchical databases, we
present two methods for encoding or finding a
representative normal in the database for a given
computed true normal. We present a fast method suitable
for encoding large sets of triangle normals at run-time,
and a slower but more accurate method for applications
that require more precision.

4.1 Fast encoding
For each triangle of a model, typically during reading the
model from a file we readily compute its true normal
with a cross product of its vertex pairs. We then dot
product this 12 byte true normal with all the normals of
the base unsubdivided platonic solid. Note that the
normals in the database are full 12 byte normals, and that
the base normals occupy the first positions in the array
database. The inverse cosine of this dot product will
indicate which of the base normals has the smallest angle
error with the true normal, and hence approximates it
better. If subdivided normals exist in the database we
further compare the true normal with the 4 finer grain
normals of the base triangle normal that had smallest

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 7 of 9

error. In order to assist the querying process, we
precompute the start and end offsets for the beginning
and end of each level in the database. For example the
start offset for the 5th level of subdivision of the
icosahedron is the sum of the base triangle normals plus
all normals generated from the previous levels. The
advantage of storing these start offsets, is that we can use
a simple relative indexing to access the 4 normals that we
are interested in at each level simply by knowing the
level, the start offset, and the number of the triangle from
the previous level.
normalid = levelstartid + ((previous level triangle no x 4)
-1) + subtriangle id(ranging from 0-3)).

Two nice features of this encoding scheme, is that it only
requires 36 dot products for finding a representative
normal amongst 27300. (20 base triangle dot products+
4levels*4 dot products). Since we are only interested in
the relative smallest error normal at each level, we do not
need to find the actual corresponding angle of the dot
produtct, encoding Lucy’s 28 million triangle normals
took 303 seconds (Table 3, 5th column) on a PowerPC
500MGhz with 1 GByte of RAM, timings for several
models are also available in the top row of Table 3 in
section 5. Note that the same database produces a
maximum error of not more than 2.5 degrees with all
models, and that the time varies linearly with the input
model. 1 million triangle normals took 9.6s (Table 3, 2nd
column), this indicates that if we were to encode at run-
time a set half as large it would take approximately 4-5
seconds.

Another nice feature is that no tolerances are required to
produce a max error of 2.5 degrees with a 5 level
subdivided icosahedron, Once a representative normal is
chosen, the triangle gets the id of that representative
normal’s position in the array. In a profile mode, all the
errors incurred are added, and divided by the number of
triangles in the model to compute the mean average error,
and two standard deviations from the mean. We also keep
track of the largest error occurred as the max error.
Figure 1, right shows the colour coding and distribution
of errors in normals, with the maximum error in red, and
blues with small errors.

4.2 Accurate encoding
In the previous section we presented a method based on
offsets for hierarchically finding a representative normal
for a true normal in a database. One problem with the fast
approach is that a subdivided triangle will have a degree
of symmetry with its 4 sub triangles, this symmetry
cannot be captured with the previous approach. The
problem lies when a true normal is centered or almost co-
linear with a normal in the database. The 4 subdivided
representative normals will have arbitrary small errors
with the true normal. To cater for symmetry, we extend
the previous offsetting approach to include a tolerance
test, if a normal is inside the tolerance it is added to a list
of triangle normals, all the subdivided normals from this
list will be considered too.
From Figure 3, we observe that any horizontal line
crossing the subdivided triangle, can cross at most 3
triangles. The dihedral angle between adjacent polygons
of each Platonic solid is: 138.190˚, 109.471˚, 70.529˚,
90˚, and 116.565˚ for the icosahedron, octahedron,
tetrahedron, cube and dodecahedron respectively. We use

the supplementary angles in our calculations: 41.8˚,
70.5˚, 109.4˚, 90˚,and 63.4˚ respectively.
The tolerances are set as an inverted cascaded pyramid of
decreasing values. The initial dihedral angle is divided by
3 at each subdivision level. The final angle tolerance for
a given level uses the value that is divided by three at
each level and multiplies it by 1.5 to cater for just below
two full triangle normal angle deviations. Since we are
dealing with angle tolerances, we need to find the inverse
cosine of the dots products. The same tolerance formula
allowed us to study the numerical error of all Platonic
solids.

We note that an arbitrary large tolerance can significantly
slow down encoding, as more triangle normals are
considered in the lists at each level. We did exhaustive
searching of angle tolerances to optimize for speed the
accurate approach for different solids, the timings of the
accurate approach in the bottom row of Table 3 used set
radian tolerances for level 0-5 of: 0.05; 0.05; 0.02; 0.02;
0.01; 0.01, instead of using the cascaded tolerance
formula. We note that the maximum error was not
affected with this optimization, the Stanford Bunny
model has a bounded maximum error of 1.3 degrees in
Table 3, first column, bottom row, and in Table 2, first
column, sixth row, it has a maximum error of 1.32 using
the cascaded tolerance formula. In the next section we
present results of both methods.

5 Results

5.1 Angle error analysis
Table 2 shows errors for the subdivided icosahedron,
octahedron, and the tetrahedron, using accurate encoding
with the same cascaded tolerance, starting with dehidral
angles (41.8˚, 70.5˚, 109.4˚ respectively). Specifically it
shows for each subdivision depth (d), the maximum error
(M), the mean error (me), and the error for two standard
deviations from the mean ~98% (m2). Figures 4 and 5,
show that the cube and dodecahedron were too irregular,
for subdivision, and produced errors too large to be
considered. Similarly the tetrahedron shows very large
and small triangles in the same mesh, this is consistent
with all of its subdivision levels, we include it’s results in
Table 2.
The next table compares the time and maximum error of
the fast encoding versus the fine tuned accurate encoding,
for several models, using a x5 subdivided icosahedron
database. It can be seen that the time varies linearly in
both cases with the size of the input model.

Table 3: max error & time for fast(top row) and accurate
(bottom row.) encoding, with 2 byte normal indexing of
x5 subdivided icosahedron

fast versus accurate encoding - tuned tolerance
5 subdivided icosahedron, 2 byte index database

Bunny
69k tri∆

Happy
1x106 ∆

Thai
10x106 ∆

PowerP.
13x106 ∆

Lucy
28x106 ∆

2.5˚0.6s 2.5˚ 9.6s 2.5˚ 95s 2.4˚ 110s 2.5˚ 303s

1.3˚3.6s 1.3˚ 53s 1.3˚ 535s 1.3˚ 948s 1.3˚
1501s

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 8 of 9

5.2 Run-time performance

We used a PowerBook G4 500 MGhz, with 1 GB RAM
for all the experiments in this paper. Figure 7 shows the
frame rate of direct conventional rendering of normals
versus PNORMS lookup when rendering the camera
sequence of Figure 8. In particular it shows that there is
no significant difference in frame rate from conventional
rendering of true 12 byte normals, and run-time looked
up PNORMS whilst using the graphics card with a
window resolution 600x600, and rendering in software
with a window size of 1142x718.

Figure 7: frame rate of direct conventional rendering of
normals versus PNORMS lookup and then rendering of
camera sequence of Figure 7.

Figure 8: camera view direction sequence for timings of
Figure 7.

5.3 Shading effects
Figures 9 and 10 show different shading effects by using
representative normals of different subdivision levels of a
5 subdivided icosahedron, with the 8 million triangle
normals of the of Michael Angelo’s statue of David
encoded with accurate encoding.

Figure 9: Shading effects of the Statue of David, using 2
byte normal indices of different levels of a x5 subdivided
icosahedron database. Normals encoded with accurate
approach. top row: from left to right: subdivision level,
and maximum error in curved brackets 0(37.3˚);
1(19.3˚); 2(10˚); bottom row: from left to right 3(5.3˚);
4(2.7˚); original/true normals(0˚).

Figure 10: Shading effects of the Statue of David, using 2
byte normal indices of different levels of a x5 subdivided
icosahedron database. Normals encoded with accurate
approach, from left to right: subdivision level, and
maximum error in curved brackets 0(37.3˚); 1(19.3˚);
2(10˚); 3(5.3˚); 4(2.7˚); original/true normals(0˚).

Table 2 shows that the icosahedron leads to the most
accurate results, by cross referencing the number of
accessible normals for 2 byte and 4 byte indices of
differenent solids, with the errors in Table 2, it can be
seen that the more regular icosahedron also generates the
most bang per buck. Using 2 byte index normals and 1
byte for colour lookup (the colour coding of Figure 1 was
achieved in this manner), the Lucy model takes
739Mbytes instead of 1.3Gbytes.

6 Discussion
We would like to assess how successful our cascading
tolerance formula used in Table 2 was in comparing and
using the different Platonic solid databases.
Looking at the mean error pattern of the icosaheron and
the octahedron we can see that it follows the pattern of
steady halving of error in both solids (row 0 downwards
of Table 2), this would not be possible if the formula was
not catering enough symmetrical normals at each level.
We note that there is no hole of 33 degrees at depth 9 of
the tetrahedron as suggested by Table2. Figure 4 shows
that at level 5 the tetrahedron has larger subdivided
triangles and less regular than the other solids, but the
solid angle of these triangles is smaller than 33 degrees.

Tech Report - RN/06/15 PNORMS: Platonic solid derived Normals for error bound compression © João Oliveira and
Bernard Buxton. Department of Computer Science, University College London, page 9 of 9

This error is partially due to the distortion of this solid, if
an error is created higher up, the symmetry tolerance can
not make up for a different normal bucket. If one
considers a true normal that happens to be almost
coinciding with a base normal, then the next 4 subdivided
normals will have similar error, the fast method falls for
this as it considers only the smallest angle, but the
tolerance method can consider all 4 normals. The
problem arises when an error is made higher up, the
tolerances at the bottom cannot make up for incorrect
binning.

We did not expect better results for other solids due to
the inherent large and irregular triangles. We tried
different triangle nets patterns/tessellations for both the
cube and dodecahedron but they created even more
distorted subdivided triangles than the presented
tetrahedron. We note that the results achieved with the
fast encoding algorithm presented in Figure 1 did not
require any tolerance measure. The top row of Figure 9,
shows images that are not dissimilar to GIF’s 256
quantization of grey levels.

7 Conclusions

We showed that the number of generated normals
resulting from the subdivision of platonic solids, does not
necessarily equate to smaller errors in all solids. We
presented hierarchical databases that could be used to
save memory from normal attributes of up to 83%
without any reconstruction time penalty at run-time. The
performance of the fast encoding approach allows one to
dynamically encode new true normals of large sets of
modified triangles.

The presented hierarchical databases have upper bounds
on the maximum error and mean error, and can be used
by multiple objects simultaneously. We presented results
using scanned statues, and the UNC power plant CAD
model. We presented a fast encoding scheme that does
not require tolerances, and a more accurate encoding
method that caters symmetry with cascading tolerances.
The icosahedron generated the best maximum and mean
errors of the 5 platonic solids. We plan to make the 2
byte and 4 byte databases of normals available online.
The 2 byte (x5 subdivided icosahedron, can be used to
accurate encode normals with a max error bound of 1.3˚,
or fast encode normals with a max error bound of 2.5˚)
and the 4 byte (x9 subdivided icosahedron, can be used to
accurate encode normals with a max error bound of
<0.1˚, or fast encode normals with a max error bound not
better than the fast encoding using x5 subdivided of
2.5˚,this is due to symmetry errors made higher up).
Acknowledgements

We would like to thank Matt Hall. credits: Stanford
University (scanned models) University of North
Carolina and Chapel Hill (Power Plant model).

References

[BPZ99] BAJAJ, C. L., PASCUCCI, V., and ZHUANG,
G., Single resolution compression of arbitrary triangular
meshes with properties, Computational Geometry:
Theory and Application, Vol. 14, 1999, pp. 167-186 .

[Cho97] CHOW, M. M. 97, Optimized Geometry
Compression for Real-Time Rendering. In Proceedings
of IEEE Visualization, pp. 347-354.

 [Der95] DEERING,M.1995,Geometry Compression, In
Proc. SIGGRAPH’95 (1995), pp. 13-20.

[DYH04] DEOK-SOO, K., YOUNGSONG, C., AND
HYUN, K. 2004, Normal vector compression of 3D
mesh model based on clustering and relative indexing.
Future Generation Computer Systems, Vol .20 pp.
1241-50.

[Wei06] WEISSTEIN, E. W. 2006, Platonic Solid, From
MathWorld-- A Wolfram Web Resource
http://mathworld.wolfram.com/PlatonicSolid.html

[GVSS00] GUSKOV, I., VIDIMCE, K., SWELDENS,
W., AND SCHRODER, P. 2000, Normal Meshes, In
Proc. SIGGRAPH00 (2000) , pp. 95-102.

 [RRH*02] RANDALL, D. A., RINGLER, T. D.,
HEIKES, R. P., JONES, P., AND BAUMGARDNER,
J . 2 0 0 2 , C l i m a t e M o d e l i n g W i t h
S p h e r i c a l G e o d e s i c G r i d s , Comput ing in
Science&Engineering.

[THL*98] TAUBIN, G., HORN, W., LAZARUS, F.,
AND ROSSIGNAC, J. 1998. Geometry Coding and
VRML. In Proc. of the IEEE, Special issue on
Multimedia Signal Processing, 86(6) 1228-43

[TR98] TAUBIN, G. AND ROSSIGNAC, J. 98,
Geometric Compression Through Topological Surgery,
ACM Transactions on Graphics, Vol. 17, No.2, pp.84-
115.

[WDS99] WOO, M, DAVIS, AND SHERIDAN, M.
B.1999, OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.2, 3rd edition.

