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Abstract

Recent advances in the defense of networked computers
use instrumented binaries to track tainted data, and can de-
tect attempted break-ins automatically. These techniques
identify how the transfer of execution to the attacker takes
place, allowing the automatic generation of defenses. How-
ever, as with many technologies, these same techniques can
also be used by the attackers: the information provided by
detectors is accurate enough to allow an attacker to cre-
ate a new worm using the same vulnerability,hijacking the
exploit. Hijacking changes the threat landscape by pushing
attacks to the extremes (target selectively or create a rapidly
spreading worm), and significantly increasing the require-
ments for automatic worm containment mechanisms. In this
paper, we show that hijacking is feasible for two categories
of attackers: those running detectors and those using Self
Certifying Alerts, a novel mechanism proposed for end-to-
end worm containment [4]. We provide a discussion of the
effects of hijacking on the threat landscape and list a series
of possible countermeasures.

1 Introduction
Recent advances in the defense of networked computers

use dynamic run-time instrumentation of binary executables
to track tainted data, and can detect attempted break-ins au-
tomatically [14, 13, 9, 5, 11]. These techniques identify how
the transfer of execution to the attacker takes place, allow-
ing the automatic generation of defenses.

However, as with many technologies, these same tech-
niques can also be used by the attackers. Consider an at-
tacker who has already compromised hundreds of desktop
machines, perhaps using an email virus. He can then run an
instrumented server on these machines. When a new exploit
for this server software is discovered, his aim is to discover
the exploit early. These detectors provide complete infor-
mation about the exploit. In many cases this is enough to
automaticallygenerate a new worm using the same vulner-
ability. In effect the exploit has beenhijacked.

Exploit hijacking changes the threat landscape. An at-
tacker with a new exploit has two choices: target very selec-
tively so as not to risk triggering a detector, or compromise
as many hosts as possible via a rapidly spreading worm—a
flash worm [15]. The speed of the worm matters greatly. He
knows that his competitors may in turn hijack his worm; the

fastest spreading worm will win. Competitive pressure will
result in only very targeted attacks, or worms that compro-
mise the entire vulnerable population in seconds. It is likely
that no attack between these extremes will survive.

One of the most promising technologies to defend sys-
tems against worms and other software exploits involves the
use of Self-Certifying Alerts [4]. These are descriptions of
exploits that contain enough information to allow an end-
host to automatically verify whether a vulnerability really
exists in its software. SCAs can be created automatically
using taint-tracking detectors, and distributed to potentially
vulnerable hosts. Each host can safely check the SCA lo-
cally to determine if it is vulnerable, and if so, it can auto-
matically generate a filter to avoid being compromised. Us-
ing a peer-to-peer network, it is possible to distribute SCAs
rapidly, checking them at each hop along the way to avoid
propagating false alarms. The hope is that most vulnerable
hosts are alerted before they can be compromised.

However, as with detectors, there is a downside. We have
developed proof-of-concept code that demonstrates that many
SCAs contain enough information to allow the generation
of new worms using the same vulnerability.

This paper details the cat and mouse game between the
automated attackers and automated defenders that now seems
inevitable. We show that hijacking is feasible in Section
2. We discuss and evaluate the impact of hijacking on the
threat and defense landscape in Sections 3 and 4. In Section
5, we list possible defense strategies. We summarize our
arguments in Section 6.

2 Exploit Hijacking
Finding software flaws and turning them into exploits is

not a trivial task, as it requires a great deal of knowledge and
creativity. In contrast, manually crafting a new exploit from
an existing one is significantly easier and has even been
used by the creators of infamous Internet worms such as
Blaster and Slammer. Exploit code was publicly available
in both cases weeks before the worm outbreaks; creating
the worms was only a matter of somebody modifying the
exploit code. Therefore, given an existing worm (i.e. its
attack messages), it is usually easy to manually craft a new
worm—to hijack it. However, manually hijacking a worm
will usually bring little benefit: by the time the hijacked
worm is available, the initial worm has already infected
most of the susceptible population. As many worms patch
the vulnerability they use, the manually modified worm will



Service: Microsoft SQL Server 8.00.194
Alert type: Arbitrary Execution Control
Verification Information: Address offset 97 of message 0
Number messages: 1
Message: 0 to endpoint UDP:1434
Message data: 04, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44,
44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 49,49,49,
49, 4A, 4A, 4A, 4A, 4B, 4B, 4B, 4B, 4C, 4C, 4C, 4C, 4D, 4D, 4D, 4D, ...

Figure 1: Arbitrary Execution Control SCA for Slammer

have little impact. Interestingly, the same problem exists in
defenses against worms: if signatures are manually gener-
ated, they come too late to stop the infection of the spread-
ing worm. To have much impact, both hijacking and de-
fenses must be automated.

2.1 Hijacking Using Host-Based Detectors
Instrumented software designed to detect attempted break-

ins works by keeping track of tainted data (data derived
from messages received from the network) as it is used by
the program. If this tainted data is executed or used as a
jump address, then an exploit has been detected [14, 13, 5,
11]. By tracing back the tainted data to its origin in the mes-
sage logs, the detector finds the message that contained the
exploit. Normally this would be used to generate an alert
or patch, but an attacker can use it instead to generate new
malicious code that uses the same vulnerability.

All the attacker has to do is to paste his worm code over
the original payload, as determined by the detector. A ver-
sion of hijacking for the good (to create automated anti-
worms) was proposed by Castaneda et al. [3]. The tech-
niques provided there are further demonstration that hijack-
ing using detectors is feasible.

2.2 Hijacking Using SCAs
A Self-Certifying Alert is a message that describes a spe-

cific exploit of a vulnerability in enough detail that the ex-
istence of the vulnerability can be automatically verified.
Three types of SCA are detailed in [4]:

• Arbitrary Code Execution SCAsdescribe how to in-
ject and execute code in the vulnerable program.

• Arbitrary Execution Control SCAsshow how to divert
a program’s execution flow to a particular memory
location.

• Arbitrary Function Argument SCAsshow how to sup-
ply parameters to arbitrary function calls.

An example of an Arbitrary Execution Control SCA from
[4], is provided in Figure 1. The SCA tells the host that
placing an arbitrary address at offset 97 in the supplied mes-
sage and sending it to an instance of SQL Server version
8.00.194, will cause the program to jump to that address.
This information is used by a verifier to check the existence
of the vulnerability.

As techniques to exploit the various types of SCAs are
different, we separate the discussion for each type of alert.

2.2.1 Arbitrary Code Execution SCAs
Arbitrary Code Execution SCAs are easiest to use in auto-
matic exploit generation with high likelihood of succeess in
the wild. When an SCA arrives that describes a arbitrary
code execution vulnerability, the hijacker merely writes the
exploit code at the offset specified in the SCA. Assuming
that the exploit code is small enough and general enough
to work on multiple platforms, the hijacker can now launch
the worm in the wild.

We tested this technique for two existing worms, Blaster
and Slammer. Rather than generate a new worm, we used
existing exploit code that gives the attacker a remote com-
mand shell [2]. The code is independent of the Windows
variant, is reasonably small (332 bytes), and contains no
null characters so is usable in strcpy-like overflows. To sim-
ulate SCAs, we used the publicly available code for Slam-
mer and Blaster and identified the address of the shell code
inside the attack messages. The process of hijacking the
worm was reduced to overwriting the original exploit code
with our shell code. Hijacking worked on first attempt,
without any debugging, for both Blaster and Slammer.

2.2.2 Arbitrary Execution Control SCAs
Leveraging Arbitrary Execution Control SCAs is a bit more
complicated than code execution SCAs. The SCA tells the
hijacker how to direct the vulnerable software to jump to
any specified address. However, the hijacker is not told how
to place exploit code at a known address inside the process’s
address space.

Automatically mapping the exploit code at a known ad-
dress does not appear to be easy, but there are at least two
basic ways to do this. In both cases, our approach is to build
offline a database that describes how to map data at specific
known locations.

The first approach assumes the arbitrary execution con-
trol is due to a stack-based buffer overflow. The attacker
places the exploit code immediately after the (overwritten)
return address in the attack message. To jump to the exploit
code, he needs to find some code in the vulnerable program
that executes a “jmp esp” instruction (or an equivalent). Us-
ing a tool called findjmp [1], we find such an instruction
in kernel32.dll at offset 0x7C82385D, for Windows XP SP
2. As kernel32.dll gets loaded with every Windows exe-
cutable, the hijacker can use a debugger to find the base ad-
dress of kernel32.dll in the vulnerable software’s memory
space. Slammer and Blaster, using stack-based buffer over-
flows, can both be hijacked in this way. We note that this
offset is OS dependent and therefore multiple database en-
tries must be maintained per software product, correspond-
ing to different OS versions.

Our second approach is to use the services provided by
the vulnerable process to map code at predictable locations
in memory. Creating a database of memory invariants in the
target software is not an easy task, but it is often feasible.
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This approach has more coverage, being applicable to the
majority of arbitrary execution control SCAs.

For concreteness, let us consider Microsoft’s IIS 5.1 Web
Server. The server is multi-threaded, so data mapped into
one thread is visible to the other threads. Using HTTP, we
can place arbitrary code into memory by encoding it into
the resource name, as multipart or form data, or as HTTP
headers. For IIS, we found the following invariants:

Heap Addresses.For idle servers, we can use predictable
heap addresses to map data in memory (examples include
0x71cb6f, 0x11ce8f, etc.). Reliability can be increased by
sending multiple HTTP request to the server. This tech-
nique has already been used successfully to exploit IIS 5.0.

Stack. Relatively idle IIS processes copy the name of the
requested resource (e.g. index.html) to a fixed offset on the
stack of the thread servicing the request. The offset for the
first thread is 0x9bf2cc.

Log. IIS uses memory-mapped IO to improve logging per-
formance. A 64kB file block is allocated and mapped to
memory. By default, the full query string is logged into
this block, along with the server’s response code. When-
ever the 64kB of memory fill up, the data is written to disk
and the write pointer is set to point to the beginning of the
64kB block. If we send enough repeated requests to IIS,
we can fill the log with our url-encoded shellcode and have
the shellcode at the beginning of the log with high probabil-
ity. The base address of this memory block appears to vary
within the range0x3c0000−0x3d0000 and can be guessed
with several tries.

Hijacking Arbitrary Execution Control SCAs is not as
reliable as Arbitrary Code Execution SCAs. Usually, map-
ping data to memory in this way has a non-zero probability
of failure. Furthermore, selecting the proper approach re-
quires a trial and error process, similar to SCA verification,
that aims to check whether the hijacked exploit works.

Creating offline databases of memory invariants for mul-
tiple versions of software and multiple OSes is a time con-
suming task. However, we are constantly amazed at how
subtle errors in code turn out to be exploitable in the hands
of skilled attackers. Such a database can be constructed
once, and then with infrequent updates, can be used for any
new vulnerability that is later discovered. Thus this seems
to be well within the capabilities of attackers. However
the need to maintain different entries for different OSes and
software versions may limit the reach of worms generated
this way. This same limitation does not apply for targeted
attacks (Section 3.2).

2.2.3 Arbitrary Function Argument SCAs
This case appears more difficult to automatically hijack in
the general case. There are cases, however, that can be eas-
ily hijacked. For instance, if we control the parameters to
the “exec” system function we can easily create a new ex-

ploit: previously fabricated shell scripts (that download the
worm code and execute it) can be embedded in the mes-
sage as parameters to the “exec” function. For other types
of system calls, it is unclear how these can be used to auto-
matically craft a new exploit.

Certain application level attacks can also be described
using arbitrary function argument SCAs. SQL injection is
an example, where the attacker partially controls the para-
meters passed to the SQL query engine: user-provided pa-
rameters used directly to construct SQL queries allow an
attacker to execute SQL statements of its choice. Mod-
ern DBMS offer considerably more functionality than tra-
ditional DDL and DML statements, in some cases even al-
lowing execution of arbitrary processes. An attacker can
leverage this functionality to execute a command interpreter
that downloads and executes the worm code. Candidates
for SQL injection attacks are wide-spread open-source web
software such as message boards, project management soft-
ware, etc. The hijacker’s database will include in this case
the application name and the corresponding exploit code,
along with a list of servers running this software. The list is
trivial to create: popular search engines can be used to find
pages with distinctive elements of the specific web applica-
tion, such as logos, mottos, acknowledgements, etc.

2.3 Hijacking Using Network Detectors
Another approach to automatic worm containment is to

combine network Intrusion Detection Systems (IDS) such
as Bro [12] with automatic, network-based, mechanisms
that generate worm signatures. These techniques use heuris-
tics to first classify network flows as innocuous or suspi-
cious and then search for recurring patterns within the sus-
picious flows [8, 10].

To hijack a worm using network based detectors, the at-
tacker uses the output of the signature generation mecha-
nisms to trace back into the message logs and identify the
worm’s attack packets. Executable code in these packets
will be replaced with hijacker’s own code.

However, the precision of network based signature gen-
eration is lower than that of host-based detectors, which
have full access to host state. Consequently, hijacking using
network based detectors will have smaller impact.

As with SCAs, if detectors alert a large number of net-
work IDSes to stop the spread of the worm, the probability
of a hijacker that owns such a node to discover an exploit
early is increased, when compared to the case where the hi-
jacker runs the network-based detectors himself.

3 Impact

So for we have concentrated on how to automatically hi-
jack an exploit. Equally important from an impact point-of-
view is how the hijacked exploit is then used, as this deter-
mines the possible defense strategies. We distinguish two
uses of hijacking:
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• Auto-Worms. Hijacking is used to create a worm that
aims to outrun both the initial worm (if the original
exploit was a worm) and SCAs generated to defend
against the exploit.

• Targeted Attacks. The hijacker targets specific ma-
chines for infection. Software available on these ma-
chines is slowly mapped by the hijacker before the
attack. When an exploit is detected, it is hijacked and
immediately used to infect only these machines.

3.1 Auto-Worms
Botnets comprising desktop computers are comparatively

easy to create (or indeed buy) using many different tech-
niques such as email viruses and similar techniques. How-
ever, compromisedservershave higher value in terms of
the potential for malice or the economic damage that can be
wreaked. Thus one motivation of an attacker is to leverage a
cheap botnet into a much more valuable one. Alternatively
an attacker simply wants to “own” more hosts.

In any case, the sooner the exploit is hijacked, the more
machines are still unpatched (by the competing worm or
SCA) to be subverted to the owner’s control. To this end, the
bot-net owner will both run his own detectors and register
for the relevant SCAs. The more machines he uses for this,
the higher the probability to discover the exploit early.

While passively waiting for an exploit to hijack, the bot-
net quietly creates hit-lists for the most popular software
packages. When the exploit is hijacked by one of the bots,
the resulting worm is rapidly disseminated to the other bots;
each of these starts to infect its own portion of the hit-list,
in an attempt to cut down the slow stage of the exponential
spread and to compromise as many known hosts as possible
before they are patched.

In light of this, an attacker discovering an exploitable
vulnerability only has two choices: target very selectively
so as not to trigger detectors, or create a really fast worm.
Anything in the middle does not make sense, since some-
one else’s auto-worm generated from his exploit will cap-
ture more vulnerable hosts. Similar competitive pressure is
created by the SCA mechanism. This observation is partic-
ularly important: currently few worms are flash worms; it
seems that pressure from both SCAs and hijacking obliges
attackers to create flash worms.

Currently, few vulnerabilities are exploited by worms.
Attackers seem to favor direct scanning from their bots as it
is easier to avoid IDS systems. With hijacking it becomes
much more likely that an exploit will become a worm. The
ecosystem naturally pushes it that way, as direct scanning is
likely to be too slow when competing with auto-worms.

Registering for SCAs highlights the opportunistic atti-
tude of the hijacker. Although he will run detectors, these
will commonly be on end-hosts that might not be early tar-
gets for server-based attacks, especially if his competitors

are trying to avoid his detectors. In contrast, detectors for
the SCA network are likely to be run on production servers
to catch exploits early. Even if SCAs have propagated fast
enough to protected most machines, the fraction the hijacker
infects is still non-zero.

If not all vulnerable hosts register for SCAs, then the
problem is significantly worse. In effect, if SCAs are used
for a particular piece of software, it becomes necessary for
all instances of that software to register to receive SCAs, or
the risk is higher than if SCAs had not been deployed at all.

3.2 Targeted attacks
Suppose a malicious party wants to cause economic dam-

age to a particular company (or even a country). For this,
many compromised machines in that company may be needed.
Hijacking provides a way to target them directly. The mali-
cious user maps out the company carefully and slowly, and
builds a catalog of all the software the company uses and
the machines it runs on. When an exploit is detected that
matches the software, it is turned into an exploit that is tar-
geted at the company’s machines.

Targetted attacks have two advantages from the point-of-
view of the attacker.

First, they can be used by an attacker that does not pos-
sess a botnet. Such an attacker cannot afford to run a large
number of detectors, but he can register for SCAs for a wide
range of software used by his target. When an SCA arrives,
it is then a race to see whether the hijacked exploit can be
generated and delivered before the SCA is received by the
target and a filter is generated. If the target fails to register
for SCAs, then the attacker will always win.

Second, if an attacker does possess a botnet, then there
is a much higher likelihood that he will receive the SCA
before the target does. This tilts the balance in favour of the
attacker. The SCA distribution mechanism needs to notify
everyone worldwide, whereas the attacker can bring a large
number of bots to bear on a single destination.

4 Evaluation

The success of exploit hijacking—measured as the per-
centage of the number of target machines infected using
auto-wormsor targeted attacks—is highly dependant on the
properties of the initial exploit (assumed to be a worm) and
the defense mechanism (SCA network). Here, we evaluate
these dependencies to get a feeling of the parameter space.

4.1 Simulation Setup
We use a simple packet-level discrete event simulator

to simulate an overlay network with 100.000 hosts taken
from [4]. Out of these 1.000 are super peers organized in a
secure overlay, with every super peer connected to approxi-
mately 50 other peers. The rest 99.000 hosts are susceptible
for infection. Each of the end-hosts is connected to one su-
per peer. Overlay delays are computed using a transit-stub
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topology generated with the Georgia Tech Topology gener-
ator [16]. All the end-hosts are either vulnerable (i.e., such
a host can be infected by the worm), detectors (that generate
SCAs when hit by a worm) or bots (that hijack the worm or
SCA it receives). Messages between hosts that are not di-
rectly connected in the overlay are assumed to have delay
equal to the average delay of the network.

We use the infection model described in [7], modified to
account for detectors and bots. Assume there areS suscep-
tible hosts, with a fractiond of detectors and a fractionb
of bots. Assume that the infection rates (also called worm
speed throughout this paper) for the worm and auto-worm
areβw andβa respectively. The equations describing the
number of hosts infected by the worm (Iw) and the auto-
worm (Ia) are:

dIw(t)
dt

= βwIt(1− d− b− Iw(t) + Ia(t)
S

) (1)

dIa(t)
dt

= βaIa(1− d− b− Iw(t) + Ia(t)
S

) (2)

Using the number of hosts infected by the worm or auto-
worm and the equations above, we compute the time at
which a host (selected randomly) will be probed by either
the worm or the auto-worm. The bots are connected in a
full mesh and have a hit-list of susceptible machines, which
is selected as a fraction of the total vulnerable population.
The worm is assumed to have a reference speed and does
not use hit-lists. Whenever an exploit is hijacked by one
bot, all the other bots are first notified and then each starts
to infect its own share of the hit-list. Bots are assumed ca-
pable of sending 1.000 messages per second (to alert other
bots or to infect the hosts from the hit-list). For simplicity,
we assume that SCA and auto-worm generation are instan-
taneous, but account for the SCA verification lag, assumed
to be the same for all hosts. The number of detectors is set
to 1% ofS, and the number of bots is 0.1% ofS. Both are
selected uniformly at random from the target population.

4.2 Results
First, we vary the speed of the auto-worm and the SCA

verification time. The bots have a hit-list of 10% of the sus-
ceptible population. The results are presented in Figure 1.a.
We see that even when SCA verification is really fast (1ms)
and the auto-worm’s speed is the same as the initial worm’s,
the auto-worm still infects 5% of the susceptible population.
Increasing the speed of the worm brings benefits only when
the SCA dissemination delay is higher. Otherwise, the auto-
worm gets a fraction of the hit-list and few other hosts.

In reality, the SCA verification delay is expected to be
high: in [4], the authors report SCA verification times on
the order of milliseconds for verifiers that have an active
running instance of the vulnerable software in a virtual ma-
chine when the SCA is received. If the software is started
when the SCA arrives, verification takes a few seconds [4].
We expect similar delays for inactive processes (i.e., cold
caches). When the SCA verification delay is on the order
of seconds, the auto-worm infects a larger fraction of the
population. Fast auto-worms (4 times as fast as the initial
worm) infect approximately 20% of the population if the
SCA verification delay is 1s and 80% if the delay is 4s.

The impact of the size of the hit-list on the number of
hosts infected by the auto-worm is presented in Figure 1.b.
The auto-worm is 4 times as fast as the initial worm. We
see that the size of the hit-list matters greatly. If the auto-
worm uses small hit-lists and SCA propagation times are
small, the number of infected hosts is close to 0. If SCA
propagation times are large (1s-4s), the increase is sharp
when hit-list size increases.

Figure 2 presents the number of hosts infected by the
worm and the auto-worm as a function of auto-worm rela-
tive speed (2.a, hit-list size 1%) and hit-list size (2.b, with
the auto-worm as fast as the worm). We see that high speeds
and hit-lists make the difference in the race between the two
worms.

In Figure 3, we quantify the effectiveness of targeted
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attacks by measuring the percentage of infected machines
out of the target group. We use 0.01% bots (∼ 10) and
select a target group uniformly containing 1000 machines.
The initial worm’s speed is set to be competitive with the
SCA mechanism: when the SCA verification delay is 1s, the
worm infects 17% of the population. We measure the frac-
tion of target hosts infected by the bots as a function of SCA
verification delay for three cases: when hijacking uses both
SCAs and detectors, only SCAs and only detectors. When
using both techniques, hijacking is most successful. Using
only SCAs for hijacking (which is the case where detectors
cannot be run, due to increased software diversity) brings
benefits only when SCA verification is fast; otherwise, the
worm will infect most of our targets. Using detectors only
is effective when the SCA network is slow.

4.3 Discussion
The model we have used is simple and has a number of

inaccuracies. First, all the hosts are considered vulnerable,
which is the ideal case for the worm and auto-worm but also
allows SCAs to be propagated by all hosts. Software diver-
sity seriously complicates the SCA dissemination problem:
few of the hosts will be able to forward any particular type
of SCA. The problem is even worse for the super peer core:
these must be able to forward all SCAs and therefore must
run all possible versions of software.

Multi-hop routing is simulated by using average end-to-
end delay, as opposed to using a shortest-path algorithm.
Therefore, these results are expected averages; we cannot
predict the extremes. This is particularly important for tar-
geted attacks.

Worm outbreaks create significant traffic loads that cause
packet losses. Here, we do not account for this type of be-
havior: we are more interested in the relative variation of
the hijacker’s success rate rather than the absolute value.

Finally, worm hijacking and SCA creation are assumed
instantaneous. We expect hijacking to have similar over-
head when compared to SCA creation, and therefore the
comparison is fair.

We believe that all these drawbacks do not hinder the
qualitative observations resulting from our experiments: worm

speed and creating hit-lists matter greatly in online war-
fare: this pushes an attacker towards flash worms or towards
niche attacks, where detectors are not present. SCA verifi-
cation delay is equally important. If SCA verification delays
are large, they will limit the effectiveness of SCA protection
against worms and auto-worms. Finally, targeted attacks
are relatively cheap to mount and quite successful when us-
ing both SCAs and detectors for propagation. Therefore,
SCAs have an important and unwanted side-effect, allow-
ing resource-scarce attackers to infect hosts of their choice.

5 Defenses

Automatic hijacking exploits is already feasible. De-
fense against such exploits can come in two ways:

• Design operating systems in such a way that auto-
mated worm generation will not work.

• Design alert mechanisms that can outrun the fastest
worms and mitigate the effects of hijacking.

5.1 Operating System Design
One way to limit the effectiveness ofauto-wormsis to

increase software diversity through randomness. Stack ad-
dresses can be randomized, by selecting a random base ad-
dress and even selecting random addresses (with restric-
tions) for individual stack frames. This hinders attacks that
use fixed addresses on the stack, but will not stop “jmp esp”
attacks. Randomizing base addresses of DLLs and the code
segment can remove the latter problem. Finally, randomiz-
ing the heap will make it much more difficult to predict ad-
dresses allocated on the heap, even for idle processes. These
techniques must be combined with techniques for marking
the stack and heap as non-executable. Such techniques are
already being implemented into mainstream operating sys-
tems (e.g., Microsoft XP SP2 has built in Data Execution
Protection). If these techniques are enabled, neither hijack-
ing nor SCA-generation are possible for arbitrary code exe-
cution and arbitrary execution control attacks.

Randomization and non-executable pages are not able to
stop arbitrary function argument attacks (“return into libc”)
or application level attacks. Therefore, they are not a com-
plete solution for the hijacking problem.

6



5.2 Alert Mechanisms Design
Hijacking using detectors is feasible and can be exploited

by culprits with enough machines. In this section we dis-
cuss how alert distribution mechanisms can be enhanced, in
order to minimize their negative effects in terms of hijack-
ing.

SCAs are an active alert mechanism. If an SCA can
indeed outrun the fastest worms, then SCA hijacking into
auto-wormsdoes not greatly matter, as the newly generated
worm cannot outrun the existing SCAs. Thus the perfor-
mance of distribution networks for such alerts is critical.

To minimize the usefulness of SCAs for hijacking, we
have two options: either stop forwarding SCAs to end-hosts
and protect them using network level filters, or ensure that
SCAs are received by all the hosts simultaneously and as
fast as possible. Using these ideas as building blocks, we
sketch two solutions and outline their pros and cons.

Large companies may be able to build distribution net-
works that validate and spread an SCA to a large number
of their own servers before finally alerting the end recipi-
ents as simultaneously as possible. Of course if the original
SCA was itself generated by detecting a fast worm, then it
becomes of critical importance that the internal distribution
network propagates SCAs as fast as possible. Any delay
here results inall customers remaining unpatched while the
worm runs unchecked. It is unclear what smaller compa-
nies and open-source software authors can do to compete.
They cannot afford a special-purpose distribution network,
so SCA propagation would need to be done via a peer-to-
peer network. This is likely to be slower, as for robustness
SCAs may need to be checked before forwarding. In addi-
tion, such a network is more susceptible to SCA hijacking.

Adding Trust to SCA Dissemination
We assume that border infrastructure servers are trusted. If
these coincide with a host’s ISP, the trust relationship is rea-
sonable; the ISP can always cause denial of service to the
host, so DoS using fake filters does not pose new threats.
End-hosts will be provided with filters that drop worm at-
tack messages but do not provide explicit information about
the vulnerability. However, even filters can be used for hi-
jacking: given a packet stopped by the filter, the hijacker
can analyze it looking for executable code and paste its own
code over it.

Going a step further, the ISP can install the filter locally
without forwarding it to the host. Assuming the task of
maintaining the personalized filters is feasible, this solution
eliminates the need for end-hosts to receive SCAs.

However, if servers in the dissemination network are not
trusted, we have the problem that all infrastructure servers
must receive the SCAs in the same time. To this end, we
can create a full mesh of nodes as the core SCA dissem-
ination infrastructure and send each SCA to all the nodes
simultaneously. Considering that SCAs are small (<1kB)

and the number of servers is small (1000), the server has to
send a total of 1MB of information to alert all servers. Since
these nodes are likely to be well provisioned, this task can
be achieved in less than a second. If IP multicast is de-
ployed, the task is even simpler. This solution creates the
potential for DoS attacks. To mitigate this, super-peers that
send fake SCAs can be excluded from the network.

Controlling Information Leaked by SCAs
To counter the effects of hijacking, we can provide hosts
with credible information that there exists an exploitable
vulnerability, while in the same time avoiding to disclose
complete information about it.

A simple idea is to masquerade one type of SCA as an-
other type of SCA, e.g. arbitrary code execution can be
transformed into arbitrary execution control, which are more
difficult to hijack. This technique is unlikely to be effective,
as it would require code-scrambling techniques that do no
possess enough entropy to fool the hijacker.

A more promising approach is the following: whenever
a new exploit is detected, the alert mechanism will first
deliver a special type of warning to the vulnerable hosts.
These must take preventive action until the exploit is con-
firmed by the SCA, by either stopping packets destined to
the vulnerable service or running the vulnerable service in a
virtual machine to minimize the eventual damage. The SCA
will be delivered after enough time has elapsed to ensure
that the wide majority of hosts have received the warning.
Upon receipt of the SCAs, the hosts will either create filters
if the SCA is valid, or take some punitive action against the
detector if the SCA is fake.

We propose two types of warnings. The first is inspired
by a category of cryptographic protocols termed Zero Knowl-
edge Proofs (ZKP, see definition by Goldreich [6]). We
can apply ZKP protocols to SCAs as follows: the detector
can prove using ZKP protocols to the vulnerable end-host
or forwarder that a piece of software is vulnerable (which
is NP to determine in the general case) without disclosing
more information about the exploit than necessary. How-
ever, ZKP protocols involve multiple-rounds and are there-
fore time consuming, being too expensive for our setting.
The practical version we propose is to masquerade all SCAs
as packets that cause the vulnerable service to crash. When-
ever a host receives an SCA that crashes its software, it can
infer that there is a non-negligible probability that the bug
is exploitable and can take preventive action. Creating such
warnings can be easily achieved by having the detector in-
sert random entries into the the payload, by overwriting ei-
ther the jump addresses (for arbitrary execution control vul-
nerabilities) or instruction opcodes (for arbitrary code exe-
cution vulnerabilities).

The second type of warning uses commitments: these
allow a sender (the detector) to commit to some data (the
SCA) and send the commitment to the receiver (the vulner-
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able end-hosts or forwarders) without disclosing the details
of the SCA. After some time has elapsed, the sender reveals
the secret to the receiver. A correct commitment scheme
ensures that the sender cannot claim to have committed to
another value. The danger with this scheme is that it creates
the opportunity for DoS attacks, since anybody can create
such warnings. However, the originator of the SCA can be
held accountable for its contents, and therefore malicious
detectors can be excluded from the network.

6 Summary

In this paper, we have outlined an important side-effect
of automated exploit defenses:hijacking. This allows an
attacker to transform an existing exploit into a worm or ex-
ploit that works in its benefit. This is worthwhile from the
point of view of the hijacker, which does not need to under-
take the difficult task of finding and exploiting a vulnerabil-
ity. The hijacker can prepare while waiting for somebody
else to discover an exploit, and hijack it either to target di-
rectly a group of machines or to infect a fraction of the vul-
nerable hosts with anauto-worm. Hijacking changes the
threat landscape: an attacker that has an exploit can only
target very selectively or create a flash worm; any attack
between these two extremes will not survive.

We have provided evidence that hijacking is indeed pos-
sible, not only for resource-rich hijackers that are able to
run detectors, but also for small scale hijackers that leverage
Self Certifying Alerts. There is a tight relationship between
what can be described accurately using an SCA and what
can be hijacked.

Through simulation, we have explored the problem space
showing that if the hijacked worm is fast and/or uses hit-
lists, it outruns the initial worm to a larger fraction of hosts.
Results show that such an auto-worm is competitive with
the SCA dissemination mechanism when verification delays
are on the order of seconds.

Finally, we have presented possible defenses against hi-
jacking, spanning from operating system design to alert mech-
anisms design, that appear applicable and could be used in
this setting. However, bundling these initial attempts into a
complete solution is challenging. We leave as an important
open problem to devise efficient worm defense techniques
that are resilient to hijacking.
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