UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/06/13

Impact Analysis of Relational Schema Changes on Native Language
Queries

April 2006

Andy Maule

Wolfgang Emmerich

David S. Rosenblum

Abstract

We present a technique for analyzing the impact that relational schema changes have on
applications that use object-relational mappings and native language queries. We present a
meta model that identifies the data that needs to be obtained using static analysis from
database, object-relational mapping and object-oriented application programs. We discuss a
number of static analysis algorithms that we use to extract potentially relevant data from
these sources. We show how to specify schema impact using the Object Constraint
Language. We discuss an implementation of these techniques in the SUITE environment.
SUITE relies on the Soot framework for static analysis and CrocoPat for efficient execution of
relational programs. We evaluate both quality and performance of the SUITE environment
using versions of a database schema and an application from the bio-informatics domain.
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ABSTRACT

We present a technique for analyzing the impact that
relational schema changes have on applications that use
object-relational mappings and native language queries.
We present a meta model that identifies the data that
needs to be obtained using static analysis from database,
object-relational mapping and object-oriented application
programs. We discuss a number of static analysis algorithms
that we use to extract potentially relevant data from these
sources. We show how to specify schema impact using the
Object Constraint Language. We discuss an implementation
of these techniques in the SUITE environment. SUITE relies
on the Soot framework for static analysis and CrocoPat for
efficient execution of relational programs. We evaluate both
quality and performance of the SUITE environment using
versions of a database schema and an application from the
bio-informatics domain.

1. INTRODUCTION

Although commercial implementations of object-oriented
and deductive data models are available, the vast major-
ity of databases in practical use are relational. As a re-
sult, software engineers need to bridge the impedance mis-
match between applications that are now mostly written
in object-oriented programming languages and relational
database schemas. Software engineers have been using call
level interfaces (CLIs), such as Java Data Base Connectivity
(JDBC) or Open Data Base Connectivity (ODBC), to em-
bed queries and updates into application programs. Using
these approaches, queries are either statically or dynami-
cally composed as strings in the programming language and
are then passed to the call level interface, which interprets
and executes the queries and updates. CLIs cause a number
of problems, which have been studied extensively in related
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work [5, 13, 20, 7]. Queries are only compiled by the CLI
at run-time, and defective queries are not detected prior to
execution of the program.

Preventing these problems using static analysis techniques
has been addressed in recent work [9]. The program-
ming language research community has pursued different
approaches to solve the problem. Firstly, object-relational
mappings (ORMs) have been developed and are becoming
increasingly popular. These mappings specify the bind-
ing between relational databases and object-oriented pro-
grams, with examples being Hibernate [13], Java Data Ob-
jects (JDO) [20] or container managed persistence in the
last Enterprise Java Bean Specification [7]. These ORMs
support the generation of data access layers where an ob-
ject model is manipulated that serves as an object-oriented
representation of items of interest in the database schema.
This object model is manipulated by means of the ORM
API, which in turn creates the required queries to be run
against the database. The object model used by the ORM
is often derived automatically from relational schemas or ex-
ternal configurations so that should the schema change the
data access layer can be simply regenerated.

There is still a need for developers to be able to execute
arbitrary queries against the ORM. Many ORMs have some
form of string based query language by which these queries
can be specified, such as JDOQL for JDO, and HQL for
Hibernate. Because these queries are specified as embed-
ded strings, they suffer from many of the same problems
identified for CLIs. Native language queries [6] support the
dynamic definition and execution of statically typed queries
with ORMSs in terms of programming language primitives.
One such native language query mechanism was developed
for C-w by Bierman et al. [3]. This work heavily influenced
the next version of Microsoft’s .Net Framework, which is
scheduled to include the native language query technology
LINQ [16] that will allow support for native query language
capabilities for C# and VB.NET. An open source project
referred to as Plain Old Java Queries (POJQ), which was
strongly influenced by [5], provides a comparable mechanism
for Java and JDO. Given the attention the Microsoft and
Sun are paying to ORMs and Microsoft’s inclusion of native
language queries we postulate that they will gain increased
use in years to come.

We address a follow-on question, which is motivated by
the use of databases as an integration mechanism. In en-
terprise settings, a large number of applications are written
against the same database. In these settings, the database
and its schema are often under the control of a different



team from those that build the applications. Likewise in
scientific computing, for example in bio-informatics genome
and proteomics databases are compiled by institutions, such
as the Sanger Centre or the European Bioinformatics Insti-
tute (EBI), and a multitude of scientists across the world de-
velop applications against these schemas. In these settings,
definition and use of database schemas span organisational
boundaries. Moreover, databases and their schemas are
long-lived and need to evolve to meet new requirements or
record novel scientific discoveries. In such settings many en-
gineering practices for dealing with inconsistencies become
unfeasible when development teams have little or no influ-
ence over each other’s methods. The question then arises as
to what impact schema changes have on applications, and
how these changes can be dealt with.

The main contribution of this paper is the presentation
of a method for determining the impact of schema changes
on applications that use ORMs and native language queries.
We discuss how we have implemented the method using off-
the-shelf static analysis and program comprehension com-
ponents. We use the version histories of the schema and an
application of the Ensembl [11] genome database in order to
evaluate our approach. For a number of changes to the En-
sembl schema we use our method and its implementation in
SUITE (Schema Update Impact Tool Environment) to pre-
dict change impact and we compare our predictions against
the application’s version history.

This paper is further structured as follows. Section 2
presents an example that we use to further motivate and il-
lustrate our approach. In Section 3, we present our approach
to predicting the impact of schema changes in detail. We
then show in Section 4 how we have used the Soot frame-
work [22], RSF [23] and CrocoPat [2], a BDD-based efficient
relational program interpreter, to implement our approach.
We present the results of applying SUITE to the Ensembl
schema and the BioJava application in Section 5. We dis-
cuss related work in Section 6 and conclude the paper in
Section 7.

2. A MOTIVATING EXAMPLE

We now present a running example that we use to illustrate
our approach to schema impact analysis. Consider a group
of scientists who are conducting experiments and are storing
the resulting data in a database that has the schema shown
below. The schema defines two database tables, Experiments
with four columns and Readings with three columns. The
italicised column names identify the primary keys of their
respective tables.

Experiments

FExperimentld Date Name Description

VARCHAR(30) | DATE | VARCHAR(30) | TEXT

req. req. not req. not req.
Readings
Readingld | Experimentld Data
INT VARCHAR(30) | BINARY
req. req. req.

There are two classes of stakeholders in our example:
application developers, whose applications query and up-
date the database, and database administrators (DBAs),
who maintain the database including the database schema.

Consider an application that uses the following dynamically
composed queries and updates. In these queries and updates
“?’ represents parameters supplied at runtime.

// Query Q1

SELECT *

FROM Experiments

WHERE Experiments.Date=7

//Update Q2

INSERT INTO Experiments

(ExperimentId, Date, Name, Description)
VALUES (7, 7, 7);

//Update Q3

INSERT INTO Readings
(ReadingId, ExperimentId, Data)
VALUES (7, 7, 7);

Let us now assume that there is a requirements change.
Experiments used to start and finish on the same day,
recorded in Experiments.Date. Now scientists want to con-
duct a new type of experiment that lasts longer than a
day and requires taking readings over several days. The
schema needs to be altered to include a new column,
Readings.Date that allows readings to contain more detailed
information about when they were taken (Change 1). Sec-
ondly, the introduction of this new reading date requires
Experiments.Date to be renamed to Experiments.StartDate
so that it will not be confused with the Readings.Date field
(Change 2). Finally, the DBA recognises that users of the
database have not been using the Experiments.Name field.
They have been relying on the Experiments.ExperimentId
field to give each experiment a unique name and have been
leaving Experiments.Name blank. The DBA decides that
the Experiments.Name column is superfluous and should be
deleted (Change 3). This leads to the following new version
of the schema.

Experiments
Ezperimentld StartDate | Description
VARCHAR(30) | DATE TEXT
req. req. not req.
Readings
Readingld | Date ExperimentId Data
INT DATE | VARCHAR(30) | BINARY
req. req. req. req.

At this point the DBA has no information about the im-
pact these changes might have. As there are often different
ways a schema can be changed to have the same desired ef-
fect, the DBA would need to perform change impact analysis
to decide which changes are preferable. It is quite reasonable
to assume that the DBA has access to the code of applica-
tions, even if they are written by a different organisation. So
the DBA would need an analysis tool that tells them which
queries in the application source are affected by any changes
they would like to perform.

Once the schema change has been made, application de-
velopers must reconcile their application with the updated
schema. This is done by locating all queries that may
be affected, and correcting them and their uses accord-
ingly. In our example all three queries are affected and
the schema changes result in the following six problems:



Q1 | errl | references invalid Experiments.Date column
err2 | references invalid Experiments.Name column
Q2 | err3 | references invalid Experiments.Date column
errd | references invalid Experiments.Name column
err5 | no value for req. field Experiments.StartDate

Q3 | err6 | no value for req. field Readings.Date

If queries are embedded as strings in JDBC or ODBC
calls, the developer does not have automated assistance for
changing the queries and updates. In this paper, we assume
the developer is using statically typed queries in POJQ and
JDO, which enables the Java type checker to type check
queries. The example queries are given Figure 1.

01 // P0JQ predicate definition

02 class Q1Pred extends Predicate<Experiments>{
03 private Date date;

04

05 public Q1Pred(Date date){

06 this.date = date;

o7 }

08

09 public boolean match(Experiments exp){

10 return exp.getDate().equals(date);

11 }

12 3

13

14 // Query Q1

15 Predicate<Experiments> pred=new Q1Pred(aDate);
16 Query query = JDOQLHelper.newQuery(pm, pred);
17 Collection results=(Collection)query.execute();
18

19 // Update Q2

20 Experiments exp = new Experiments();

21 exp.setExperiment_id("EXP001");

22 exp.setDate(todaysDate) ;

23 exp.setName("Experiment 1");

24 exp.setDescription("Desc...");

25 pm.makePersistent (exp);

26

27 // Update Q3

28 Readings reading = new Readings();

29 reading.setReading_id(1);

30 reading.setExperiment_id ("EXP0O01");
31 reading.setData(byteData);

32 pm.makePersistent(reading) ;

Figure 1: POJQ Queries and JDO Updates

Type checking the POJQ queries using the Java compiler
will detect problems errl—err4. As inserts are handled by
JDO and JDO is unaware of the additional constraints im-
posed on the schema, errors err5 and err6 will go undetected
by the type checker. The static analysis approach of Gould
et al. [9] does not address inserts and updates, so it would
only detect errl and err2. If Gould et al. had implemented
their static analysis approach for inserts and updates their
technique could detect err3 and errd. However, it is unclear
how their approach would be extended to cover constraints.

Readings.Date is required by our new schema. We make
the distinction that required means that no default value
is specified and that null values are not allowed. Suppose
the DBA could where to decide to remedy err6 by giving
this column a default value of the current date. In this
situation it is very possible that an application developer
would overlook Q3 as being unaffected. When a new reading
is inserted the default date would be used as specified by
the DBA. If the database was in a different time zone or the

query reading was inserted long after it was taken this value
could be very wrong. To help avoid this kind of situation,
it would be helpful if the application developer was advised
of any changes to the schema that could have this kind of
subtle underlying effect.

Errors errl—err6 only highlight some of the many possible
impacts that can occur as the result of a schema change, and
those simple error descriptions are missing a large amount of
information that the developer must infer themselves. For
example, the developer can make a simple name change in
the ORM to solve errors errl and err3. If the developer
knew the semantics of the schema change that caused this
error, and they were given some advice on remedial action,
they could make the required alterations far more quickly.

Moreover, Change 1 adds the Readings.Date field. This
will not affect the validity of Q1, but the application devel-
oper may wish to add the Readings.Date field to the result
set of this query. Intuitively this would be one of the places
where this new data may need to be returned. Q1 will run
without any errors occurring but will not return all of the
required data. Alerting the application developer to any
queries in the application that have new closely associated
schema elements may be useful.

Given the above example and shortcomings of static type
checking techniques, the goal of this paper is to present
a change impact analysis technique for database schema
changes that retrieves information to better inform the
change process. Firstly, we want to support the DBA to
predict the effect of schema changes in order to better in-
form the choice between alternative changes. Secondly, we
inform the application developer of all queries and updates
that will be invalidated by a schema change. Thirdly, we
will give detailed diagnosis for each of the affected queries
and suggest remedial actions. Fourthly, we will inform the
application developer about situations that affect the under-
lying query semantics without affecting their syntactic and
static semantic validity. Finally, we will inform the applica-
tion developer about new schema elements that might have
to be added to existing queries.

3. APPROACH

Each different database vendor supports a slightly differ-
ent dialect of the SQL data definition language (DDL) and
data constraint languages (DCL) for specifying relational
database schemas. Likewise, the main ORM frameworks,
such as Hibernate, JDO and TopLink all take a slightly
different approach to defining mappings between object-
oriented programming languages and relational schemas. Fi-
nally, native language query frameworks, such as POJQ and
LINQ differ slightly in the way they define queries. Unfortu-
nately each of those differences will influence the way schema
impact analyses are performed. It will therefore not be gen-
erally possible to devise a one-size-fits-all approach for the
impact analysis of schema change to all different databases,
ORM frameworks and native query languages.

Instead, it will be necessary to adapt the impact analysis
approach to the particular combination of DDL and DCL
dialects, object-relational persistence and native language
query mechanism employed. To cater for such adaptation,
we use MOF-based meta modelling to define schema impact
analyses. We illustrate this approach for MySQL, JDO and
POJQ using the most commonly found concepts in DDLs,
ORMs and native language queries.



We perform our schema impact analysis in two passes.
The first pass extracts all relevant data from the database
schema, from the object relational mapping and from the ap-
plication program with embedded native language queries.
The second pass then performs a detailed analysis of these
data in order to calculate the precise impact of changes.

3.1 Entities/Relationships for Impact Analysis

Figure 2 shows the MOF meta model of entities and their
relationships that we extract during the first pass of the
analysis. The model serves two purposes. Firstly, it spec-
ifies the data we need to extract from database schemas,
ORMs and native language queries included in database ap-
plications. Secondly, it serves as the data declaration for the
OCL definitions that we use to precisely specify the impact
analyses.

+orderColumn

+queryColumn
+whereColumn  » | «
+ foreignKey
Table Column
+deleteTable +name :String @ < +name :String .
+owner + type : String
* /l\+ type
ObjModelType * | +field
a +name :String ObjModelField
uery
- +name :String
+name :String
+type:String 0.1 0.1
+usedType + instantiatedType
0.1 0..1/\+ executed M . d?:-'jld MdF' N 0--1”: u
- sedFiel + +
+definedQuery Query* ImpactLocation usedrt readrield + sefriel
+lineNumber:int
1 +fileName:String [ *
+name:String *

Figure 2: MOF Model for Impact Analysis

For the research reported in this paper, we have con-
sidered the most common kinds of queries encountered in
database applications, namely select, update, insert and
delete queries. Therefore the meta model only incorporates
the entities and relationships needed to assess the impact of
schema changes on these kinds of queries.

The tables and columns defined in a schema are repre-
sented by classes Table and Column, respectively. Table ob-
jects consist of multiple Column objects. Each Column object
has an attribute name that stores the column’s name and an
attribute type that stores the column’s type. These are the
only concepts from the schema that are presently required
by our model.

The queries that are executed in the application are repre-
sented in our model by Query objects. Each Query object has
a type attribute; its value records what sort of query it is and
is either ¢‘SELECT’’, ¢ ‘INSERT’’, ‘‘UPDATE’’ or ‘‘DELETE’’.
Queries reference schema columns in three different ways
that are represented in our model as follows. Firstly, the
queryColumn role represents columns used in the body of a
query, such as the columns to be returned by a SELECT query
or the columns to be updated by an INSERT query. Secondly,
the whereColumn role represents columns in the query’s WHERE
clause. Thirdly, the orderColumn role represents columns
present in the query’s ORDER BY clause. Similarly, DELETE

queries can reference a table from which to delete data, and
this relationship is specified by the deleteTable role.

Objects of class ImpactLocation represent locations in the
source code that could possibly be affected by a schema
change. Impact location objects are present for all locations
in the source code where a query is executed as well as the
single location where a query is defined. However, definition
and execution locations of queries are not the only impact
locations we consider. We are considering applications that
use some form of ORM, and we are interested in identifying
any points in the application where the object model repre-
sentation of the schema is used. We therefore also store any
location that signals instantiation or use of an object rep-
resentation of a table (represented by ObjModelType). The
ObjectModelType itself is associated with a single Table ob-
ject. This association represents the relationship between
tables and classes defined by the object-relational mapping.
Finally, we also store the impact locations of any uses of the
fields of the object model types that represent columns in
the schema. Any ImpactLocation that reads, sets or other-
wise uses attributes/fields will have respective associations
with the ObjectModelField in question.

The model described here is a meta model capable of de-
scribing all database queries that can be executed by the
application, and all elements of a schema and the object-
relational mapping that we are interested in analysing. The
model defines relationships between all these entities, and
provides a means by which we can determine change im-
pact. In effect, we use this model to trace dependencies of
statements in the source code via the ORM to declarations
in the schema. We shall next describe the static analysis
algorithms that create instances of the meta model.

3.2 Static Analysis Algorithms

We must obtain data to instantiate the meta model from
three different sources: the database schema, the object rela-
tional mapping and the Java application that has embedded
native language queries. The application analysis depends
on the ORM analysis and that, in turn, depends upon the
schema analysis. We discuss the algorithms in the order in
which they are applied to populate the meta model.

Algorithm 3.1 Schema Analysis

foreach table stbl in schema do
tbl = new Table(stbl’s name)
foreach column scol in stbl’s columns do
col = new Column(scol’s name, scol’s type)
create owner link between col and tbl
enddo
foreach relationship rit in schema do
pk = Column that matches rlt’s primary key
fk = Column that matches rit’s foreign key
create foreignKey link between pk and fk
enddo
enddo

Algorithm 3.1 defines the static analysis of the schema. It
determines creation of instances of entities Table and Column
based on traversal through the schema. It creates a Table
object for each table in the schema and a Column object for
each column of any table. Once those objects have been de-
termined the algorithm creates links between Column objects
to reflect foreign key constraints.



Algorithm 3.2 Object-Relational Mapping Analysis

foreach class cls in ORM mapping do
omt = new 0ObjModelType (cls’s name)
tbl = Table object that matches cls’s table
create type link between omt and tbl
foreach field fid in cls’s field do
omf = new ObjModelField(fld’s name)
col = Column objects that matches fld’s column
create field link between omf and col
enddo
enddo

Algorithm 3.2 determines the creation of instances of
ObjModelType and ObjModelField based on the declarations
given in the JDO object-relational mapping. The algorithm
iterates over all classes identified in the mapping and creates
an instance of 0bjModelType for each of them. It then creates
a link between the ObjModelType and the Table object that
represents the table in the schema that is represented by
the class. The algorithm then does the same for each field
of the class and links it to the Column object that the field
represents in the object-relational mapping.

Algorithm 3.3 Java Analysis

foreach statement stmt in application do
if (stmt instantiates any ObjModelType o) then
i=new ImpactLocation(file name, line no)
create instantiatedType link between i and o
elsif (stmt calls method of any ObjModelType o) then
i=new ImpactLocation(file name, line no)
if (method reads any ObjModelField o) then
create readField link between i and o
elsif (method sets an ObjModelField) then
create setField link between i and o
else
create usedType link between i and o
endif
elsif (stmt instantiates a subclass of Predicate) then
i=new ImpactLocation(file name, line no)
g=new Query (‘ ‘SELECT’’)
determine semantics of query q
create definedQuery link between i to ¢
elsif (stmt calls a JDO method) then
i=new ImpactLocation(file name, line no)
arg=argument supplied to the JDO method
if (stmt calls an update object method) then
g=new Query(‘ ‘UPDATE’’)
find all places where arg was updated
Create definedQuery link between q and ©
create executedQuery link between i and q
elsif (stmt calls a delete method) then
g=new Query(‘ ‘DELETE’’)
deltbl=find table associated with arg
create deleteTable link between q and i
create executedQuery link between q and 1
create definedQuery link between q and i
elsif (stmt calls an insert object method) then
g=new Query(‘ ‘INSERT’’)
find all places where arg was set
update q with any columns that will be inserted
create executedQuery link between q and i
create definedQuery link between q and i@

endif

elsif (stmt uses any ObjModelType o) then
i=new ImpactLocation(file name, line no)
create usedType link between i and o

elsif (stmt uses any ObjModelField f) then
i=new ImpactLocation(file name, line no)
create usedField link between i and f

endif

enddo

The most complex static analysis is described in Algo-
rithm 3.3 and is performed in order to extract the informa-
tion about creation and execution of queries, and the use of
query results. The algorithm, at least conceptually, exam-
ines every statement of the application'. The algorithm then
investigates whether the statement performs any instantia-
tion, invocations or field accesses of any class included in the
object relational mapping, which would be represented as
an object of ObjectModelType or ObjectModelField. If it does,
the algorithm records this by creating a new ImpactLocation
object and creating respective links to the objects represent-
ing the ORM entities. Next the algorithm considers whether
the statement performs a native language query. If that is
the case, it records the impact location, creates a new Query
object, sets the type of that query to Select and creates
a definedQuery link between query and impact location ob-
jects. If the statement calls the JDO library to perform an
insertion, update or deletion operation, the algorithm also
creates both an ImpactLocation and a Query object, deter-
mines the query type according to the JDO operation called
and records the relationships between ImpactLocation, Query,
ObjectModelType and ObjectModelField accordingly.

The complexity of Algorithm 3.1 is O(t x ¢) with ¢ being
the number of tables and ¢ being the maximum number of
columns per table. When using our example scenario Al-
gorithm 3.2 has exactly the same complexity, as our object-
relational mappings have exactly one class per table and one
field per column. In practice the amount of classes and fields
specified by an ORM varies, but is rarely in excess of one
class per table and one field per column. The worst case
complexity of Algorithm 3.3 is O(s?) with s being the total
number of program statements. Once all three algorithms
have completed, we have all the raw data needed to perform
change impact analyses.

3.3 Impact Calculation

The delta between consecutive versions of a database schema
can be expressed as a sequence of elementary changes,
with each elementary change produced by some primitive
database operation. In practice, DBAs frequently use ele-
mentary changes from a catalogue of some 70 well under-
stood database refactoring patterns presented in [1]. These
patterns include elementary changes such as add column,
rename column, drop table and so forth.

The approach we take in this paper is to determine the
impact that each of these elementary changes has on applica-
tion programs that have embedded native language queries.
For each elementary change, we define an OCL function that
calculates the set of ImpactLocation objects based on the
other meta model entities and their relationships.

n practice our implementation performs a number of op-
timizations that we omit here for clarity of exposure.



We now describe those OCL functions that will identify
the impact in our motivating example. The examples were
created and verified using the UCL-MDA tools described
in [21]. Each of these functions takes as parameter the set of
all ImpactLocation objects and returns the subset that will be
affected by the change. These OCL functions illustrate the
finding of impacts in SELECT and INSERT queries only; these
are the only types of query considered by our example, and
we have omitted the functionality required by other query
types for brevity. The functions are classified into those that
calculate warnings about locations and those that calculate
locations that will cause errors following the change.

For Change 1 in our example scenario we are adding the
Readings.Date column to the schema. Because this column
is new, none of the existing SELECT queries in the application
will directly reference it. Despite there being no inconsistent
column references in the code, there may be places where
this column needs to be added to the application. The ap-
plication developer needs to check all queries that reference
the table to which the column is being added. Each of these
possibly affected queries needs to be checked to make sure
that the newly inserted column is added to the application
wherever required.

The OCL function requires a parameter to specify the ta-
ble to which the column is being added. The function will
return all ImpactLocations having SELECT queries where any
of the used columns belong to the supplied table parameter.
The function also returns any impact locations where any
object model that maps to the table parameter is used or
instantiated. This function calculates code locations where
the new column may need to be referenced that will be in-
cluded in a warning.

findAddRequiredColumnWarningLocations

(locations:Set(ImpactLocation), table:Table):
Set (ImpactLocation) = {

locations->select(location |
location.allQueries()->select(q | q.type="SELECT"
) .allColumns () .owner->includes(table) or
location.allModelTypes () .table->includes(table)

)
}

The OCL functions use a number of auxiliary functions
whose definition we omit for brevity. Functions allQueries,
allFields and allModelTypes allow a shorthand for fetch-
ing all objects of a particular type that are associated with
a specific ImpactLocation object on which they are called.
Function allQueries returns all queries that are defined or
executed for a given impact site. Using allFields we can
find all ObjModelField objects that are used, set or read and
the associated impact sites. Finally, allModelTypes returns
all 0bjModelType objects that are used or instantiated at the
given ImpactLocation.

For the purposes of our example, the column being added
in Change 1 will have no default value and will not allow null
values. This means that although no SELECT queries will be
affected by the change, there are INSERT queries that will be
affected. The following OCL function finds all INSERT queries
that insert values into the table having the new column. As
the new column is mandatory any INSERT queries for this
table may cause errors in the application, since the required
column will be missing from the query. These sites are error
sites, and in our example this function will predict errors
err5 and err6.

findAddRequiredColumnErrorLocations
(locations:Set (ImpactLocation), table:Table):
Set (ImpactLocation) = {
locations->select(location |
location.allQueries()->select(q | q.type="INSERT"
) .queryColumn.owner->includes (table)

We next consider Change 2, which renames the column
Experiments.Date. The OCL function requires as argument
the column that is to be renamed. The impact locations
affected will contain the definition or execution of any query
that references the column or any location in the source code
that uses an object model field that maps to the changed
column. This function will predict errl and err3.

findRenameErrorLocations
(locations:Set (ImpactLocation), renamed:Column):
Set (ImpactLocation) = {
locations->select(location |
location.allQueries().allColumns ()
->includes(renamed) or
location.allFields().column->includes (renamed)
)
}

Finally, we consider Change 3 from our example scenario
in which column Experiments.Name is dropped. The effects
of this schema change are that any query that references the
dropped column will become invalid. Also, any locations in
the application that reference the object model fields that
refer to the dropped column may also be invalid and need to
be removed. Therefore, this function operates by returning
the definition or execution of any query that references the
dropped column, and any location where an object model
field that maps to the column is used. In our example this
will predict err2 and err4.

DropColumnErrorLoc
(locations:Set(ImpactLocation), dropped:Column) :
Set (ImpactLocation) = {
locations->select(location |
location.allQueries().allColumns ()
->includes (dropped) or
location.allFields() .column->includes (dropped)
)
}

We now have far more information at our disposal than
can be obtained by the previously mentioned static typing
techniques. For each change, we know the semantics of the
change primitive as well as what will be affected. This allows
us to infer a great deal of information that may be useful to
the developer. Consider, for example, errl and err2; we now
know that errl is caused by a renaming change (Change 2)
and that err2 is caused by a drop column change (Change 3).
Given this information we can now postulate that to alter
the code to correct errl will be relatively simple because the
object-relational mapping can simply be amended, whilst
the application logic can remain largely unchanged. Han-
dling err2, however, will require the reference to the missing
column to be removed, possibly also requiring the removal
of its associated logic and any other changes to the source
code that may be required to accommodate this. This in-
formation could be of great benefit to both the application
developer and the DBA, as knowing the effort required to
reconcile an impact site can help the DBA choose between



alternative schema changes. This outlined meta model ap-
proach now puts us in a position whereby we can provide
a great deal of useful information about the impact of a
schema change.

4. IMPLEMENTATION

We have implemented the Schema Update Impact Tool En-
vironment (SUITE) to establish the feasibility of the analy-
sis technique described above. SUITE focuses on analysing
the impact of schema changes on queries in Java programs
that have been written using the Plain Old Java Queries
(POJQ) and the JDO ORM libraries.

SUITE
Static Analyser

Vv v e

Soot||JDBC||Xerces

L - P(RSF ~ alcrocoPat

A
=

Figure 3: Tool Architecture

Figure 3 presents an architectural overview of SUITE with
rectangles representing components, database icons repre-
senting files, solid arrows denoting invocations and dashed
arrows indicating data flow. The environment uses four ex-
ternal components. We use JDBC to extract schema infor-
mation from MySQL as indicated in Algorithm 3.1. The
JDO ORM specifies object relational mappings in an XML
file and our environment uses Apache’s Xerces parser to im-
plement Algorithm 3.2. We use Soot to perform the static
analysis described in Algorithm 3.3. The SUITE Static An-
alyzer then serialises the instances of the meta model shown
in Figure 2 that were created by the three algorithms into
a file. The file uses the Rigi Structured Format (RSF) [23].
This RSF file is read alongside a relational program writ-
ten in the Relation Manipulation Language (RML) [2] that
can be executed by CrocoPat, a tool for simple and efficient
relational computation. The RML relational programs are
direct implementations of the OCL functions discussed in
Section 3.3. We could have used the OCL interpreter in-
cluded in the UCL-MDA tool suite in order to directly ex-
ecute the OCL functions. However, execution by the BDD-
based CrocoPat implementation is by several orders of mag-
nitude faster than OCL interpretation.

4.1 Static Analysis of Dependency Data

Obtaining the schema meta data is trivially implemented for
most modern DBMSs. Most database APIs include some
facility for iterating over this meta data. We use a JDBC
driver to analyse the schema of MySQL databases for the
implementation of Algorithm 3.1.

The implementation of Algorithm 3.2 is equally trivial.
We use Xerces to parse the XML file of the JDO ORM. We
use an XPath expression [4] to locate all classes and then
use another XPath expression to identify all fields of that
class. This leaves us with the remaining problem of how
to efficiently extract all queries and possible impact points
from the application source code.

In order to implement Algorithm 3.3, we needed a tool
which allows us to efficiently reason about the structure and

behaviour of Java programs. We use Soot [22] which pro-
vides such a reasoning facility based on byte code and data
flow analysis for Java. Soot provides us with the primitives
for a more or less direct implementation of Algorithm 3.3.
Firstly, Soot allows us to iterate through all the applica-
tion code, identifying any statements of interest, such as
all places where a specific method is called, or all locations
where a class is instantiated. Secondly, it allows us to imple-
ment data flow analyses by which we deduce more compli-
cated results such as all locations where a specific instance
of a Predicate is converted into JDO Query object. Soot
already provides much of the functionality required for data
flow analysis such as calculating possible call graphs and
providing basic implementation of backwards and forwards
data flow analyses which can be extended and customised.
Soot provides a rich API by which we can easily analyse
the syntax and structure of each statement in our applica-
tion. This API has proved rich enough to provide all the
operations required by Algorithm 3.3.

To illustrate the use of Soot, let us reconsider Algo-
rithm 3.3. Some parts of the analysis are only specified
vaguely in pseudo code, for example when we need to de-
termine the query semantics defined by a POJQ Predicate
object. In order to find out the semantics of a query de-
fined by a POJQ Predicate, we use Soot to analyse the def-
inition of the Predicate class. Consider the example code
in Figure 1. The definition of Q1Pred in Line 02 uses Java
generics, specifying the Experiments class as an extent. The
Experiments class is specified by our ORM as mapping to
the Experiments table in the schema. Specifying this class as
an extent defines the query as SELECT * FROM Experiments.
When we analyse the definition of the Predicate subclass
using Soot, we can find this information, and programmati-
cally determine the type of the extent class used by the pred-
icate. Thus we can determine from which table the query
is selecting. The WHERE clause of the SQL query is specified
in the match method, and we can see in Line 10 that in this
case we are matching based on the Experiments.Date field.
Using Soot we can locate instances of ObjectModelField that
are read within this method, giving us a clear indication of
exactly what elements are present in the WHERE clause.

4.2 Analysis using CrocoPat

In order to evaluate instances of our meta model we consid-
ered several approaches, but eventually decided upon using
CrocoPat [2]. As mentioned previously, the main reason
for choosing to use CrocoPat was that it provides far better
performance than any of the other techniques we considered.

We present CrocoPat with an instance of our meta model
specified in the RSF file format. Serialising meta model
instances to the RSF file format is trivial, because RSF is
sufficiently simple, and data represented in our model fits
nicely into RSF’s relational paradigm. Figure 4 shows an
excerpt of the RSF file that was produced from the analysis
of our example scenario.

CrocoPat reads RSF line by line. Each line of the
file represents a triple, with each value being separated
by white space. The first value represents a relation-
ship, the second and third values represents nodes which
are associated by this relationship. For example the first
line of this RSF fragment, shows that the Exp-main-25
node is related to the node INSERT by the relationship
Query_AttributeTypeHasValue. This shows that the attribute



Query_AttributeHasValue Exp-main-25 INSERT

Query_DefinedAt_ImpactLocation Exp-main-25 sample.Main:25
Exp-main-25 experiments.experiment_id
Exp-main-25 experiments.date
Exp-main-25 experiments.name
Exp-main-25 experiments.description

Query_HasQueryColumn_Column
Query_HasQueryColumn_Column
Query_HasQueryColumn_Column
Query_HasQueryColumn_Column

Figure 4: RSF sample output from static analysis

type of query 'Exp-main-25’ is of value INSERT. The rest of
the sample shows the definition impact location where the
query is executed and all the columns that belong to the
query. Instances of the meta model of Section 3 are pre-
sented in this format to CrocoPat. Note, that we use a
slightly different naming convention for the relationship de-
fined on the first line. This is because the first line shows
that INSERT is an attribute value of Exp-main-25 in the
meta model, whilst the remaining lines represent associa-
tions.

We use CrocoPat to evaluate RML programs against the
supplied RSF instance of our meta model. We create RML
programs for each elementary schema change; each program
having the semantics specified by the OCL functions illus-
trated above. The RML language provided by CrocoPat is
sufficiently expressive to be able to evaluate all changes that
we have so far considered.

AffectedQueries(x) :=Query_HasQueryColumn_Column(x,$1) |
Query_HasWhereColumn_Column(x,$1) |
Query_HasOrderColumn_Column(x,$1);

AffectedQueryDefinitions(x) :=EX(y,AffectedQueries(y) &

Query_DefinedAt_ImpactLocation(y, x));
AffectedQueryExecutions(x) := EX(y, AffectedQueries(y) &
Query_ExecutedAt_ImpactLocation(y, x));

AffectedFields(x) := Column_MapsTo_Field($1, x);

AffectedFieldUses(x) := EX(y, AffectedFields(y) &
(Field_UsedAt_ImpactLocation(y, x) |
Field_ReadAt_ImpactLocation(y, x) |
Field_SetAt_ImpactLocation(y, x)));

PRINT ["IMPACT:Query definition at "]
AffectedQueryDefinitions(x);

PRINT ["IMPACT: Query execution at "]
AffectedQueryExecutions(x) ;

PRINT ["IMPACT: Object model field used at "]
AffectedFieldUses(x);

Figure 5: Calculation of Column Renaming Impact

Figure 5 shows an example RML program. This program
implements the OCL function illustrated in Section 3.3 that
locates all impact locations that will be affected by a column
renaming. The unique name for the column to be renamed
is passed as a parameter into CrocoPat, and is represented
in the application by $1. RML uses Prolog like facts and the
relationships defined in the RSF input to locate all affected
impact locations. RML is described in more detail in [2].

4.3 Performing the analysis

SUITE allows us to do the following. Firstly we populate
an instance of our meta model for a given schema and appli-
cation, using the static analysis techniques outlined previ-
ously. Secondly we specify an arbitrary series of elementary
changes that we wish to make to the schema. Each change
we specify has an associated CrocoPat RML program. The
tool then executes the impact analysis by using CrocoPat to

execute the RML against the instances of the meta model
that we have extracted.

The results of the analysis are exported to a report. For
each elementary change, this report lists the following:

1. the predicted severity of any affected impact locations,

2. advice on how impact locations should be checked for
errors, or how errors should be remedied,

3. the probability that the impact locations will actually
be affected, and

4. the list of impact locations that have been identified.

Items 1-3 are fixed for each change primitive, and included
as static text to help the reader of the report understand
the results and place the predicted impacts in the correct
context. Only item 4 changes for each instance of the meta
model and is calculated by the RML programs. This report
is the final output of our prototype tool. Figure 6 shows
an example of the report that could be produced for our
example scenario.

CHANGE: Drop a column

Entity: experiments.name

ERROR(S): There will be errors following this update

SEVERITY: Severe - requires the removal of all reference
to this column at these impact sites.

IMPACT: Query definition at sampleApp.main():15
IMPACT: Query definition at sampleApp.main():25
IMPACT: Query execution at sampleApp.main():17
IMPACT: Query execution at sampleApp.main():25
IMPACT: Object model field used at sampleApp.main():23

Figure 6: Impact Diagnosis provided by SUITE

This section of the output report shows all code locations
that are affected by Change 3. The report indicates the
line numbers in our example source code that are affected,
and provides some simple information about the types of
impacts. Lines 15 and and 17 identify the definition and ex-
ecution of Q1. This query selects all columns from the exper-
iments table, implicitly selecting Experiments.Name, therefore
it is marked as an impact location. The remaining impact
locations all relate to Q2, where Experiments.Name is explic-
itly referenced.

S. EVALUATION

In order to evaluate this work, we are interested in under-
standing whether SUITE scales to the size of databases that
occur in practice. We also want to see whether the impact
analysis results that SUITE produces assist DBAs and ap-
plication programmers with their tasks during the evolution
of a schema.



We use an experimental method to perform this evalua-
tion. More specifically, we choose Ensembl [11] as a case
study. Ensembl is a database that was developed by the
EBI and stores a number of genomes, including the Human
Genome. Ensembl is a good case study because it is large;
the Human Genome part of the database has a volume of
7 GByte of data alone. Ensemble is available open source.
As can be seen from Table 1, the schema has up to 69 ta-
bles and a total of up to 386 columns in the most complex
version. Thus the Ensembl schema is more than four times
as complex than the largest schema used in the evaluation
of related work [9]2. There is a full version history available
for the Ensembl schema. Moreover, a number of different
applications have been developed that query the Ensembl
database, some of which are also available in open source
form.

One of these applications is BioJava [17] developed at the
Sanger Centre. BioJava is a Java tool for processing biolog-
ical data that, amongst other functionality, provides an API
to access the Ensembl database. We chose to use BioJava in
our evaluation because it was developed outside the EBI, it
was written in Java, which means that SUITE can analyze
it, and there is a version history available for BioJava, which
is correlated with the Ensembl schema history. BioJava has
a data access layer package that uses the core schema of En-
sembl. In the versions we have considered this package has
3836-5772 lines of Java code. The Java code includes up to
39 JDBC queries that we have translated into POJQ queries
in each relevant version. These queries use up to 31 of the
69 tables of the core Ensembl schema, which is a sufficiently
large subset for us to see impact of schema changes.

In order evaluate our approach, we have examined the
schema changes in the Ensembl CVS repository. Generally,
the EBI team are very defensive with respect to schema
changes and many versions of Ensembl do not change the
schema, in part because the impact of schema updates is so
difficult to predict manually. However, Ensembl versions 31,
34 and 38 each make schema updates that have an impact
on BioJava. There were other schema updates that did not
have any impact on BioJava and we omit their discussion
for reasons of brevity. We have studied these updates and
broken them down into the elementary changes shown in
Table 1 that SUITE can analyze. The table shows for each
type of elementary change how many of these changes were
performed in the transition between respective versions.

Versions

30-31 | 33-34 | 37-38
Number of Tables 63 67 69
Number of Columns 342 371 386
Java LOC 3836 | 4964 | 5772
RenameColumn 1 2 1
AddColumn 2 2
DropTable 1 1 3
AddForeignKey 4 3 4
ExpandColumnValues 1
ChangeColumnType 8
Total 8 7 18

Table 1: Ensembl Schema Updates from Version 30

2The largest schema evaluated in this paper has 82 columns.

In order to evaluate the quality of our schema impact
analysis results, we can firstly compare the results with
changes that the application programmers of BioJava ac-
tually performed in response to schema changes of Ensembl.
A summary of the results is presented in Table 2. The re-
sults here show the number of impacted locations that were
(P)redicted and (O)bserved in the successor version of Bio-
Java. The name of those elementary changes that are likely
to cause errors is given in italics, while names of changes that
cause warnings are shown in normal font. We have been able
to predict all changes that were made by the BioJava ap-
plication programmers in the first two versions, and made
predictions for the third version that have yet to be verified;
We also did not have false positive error predictions in the
first two versions. We will verify the third set of results when
the next version of BioJava is released. For the prediction of
the first Ensembl schema change (Version 30 to Version 31),
SUITE predicted three locations in the BioJava application
to be impacted as a result of the rename column change and
one as the result of the drop table change. An example of
a prediction where we issued a warning is AddColumn. In
this particular example, whether or not the locations are to
be changed depends whether the application is required to
use the data that is now available in the new column. In the
case of the AddColumn change primitive we can see that
only one of the predicted impact locations is actually an ob-
served impact in the BioJava case study. It is important to
note that this does not invalidate our analysis. This proves
that giving warnings is useful to application programmers as
impact locations need to be considered; otherwise the one
change that was made, could have been missed.

Likewise for the second schema change (Version 33-34),
SUITE correctly predicted six impacted locations in the
Java code as error locations as a result of each of the re-
name column changes. This time none of the warnings ac-
tually required changes. Far more locations were predicted
for the third change, but in order to verify these predictions
we must wait for the next release of BioJava which will be
updated for version 38 of Ensembl.

Versions

30-31 33-34 | 37-38

P[O|P|]O| P]O
RenameColumn 31 3[6] 6| -]/
AddColumn 8| 1|4 0| 4|/
DropTable 1{1(0|0| O}/
AddForeignKey 1005010 /
ExpandColumnValues | - | -| 1| 0] 0] /
ChangeColumn Type - -1 -1 -1 9]/

Table 2: Impacted Locations found by SUITE

A DBA will most likely be interested in those elementary
changes that might cause errors in applications. From this
point of view, our tool predicts that the drop table changes
leading to Versions 34 and 38 that would cause errors if the
dropped tables were used will have no impact on the BioJava
application at all. For Version 34 this is validated by the
absence of any changes to BioJava as a consequence of the
dropped tables. Using our tool, a DBA could obtain access
to all applications that use their schema, via some applica-
tion source code repository such as source forge or a web



enabled CVS repository, and prior to conducting a change
calculate the impact the change might have on all known
applications. This would greatly increase the information
available to the DBA, informing the evolution of databases
and enabling more reasoned decisions about whether or not
to include an elementary change in a schema update.

We also performed a quantitative performance evaluation.
Our evaluation metrics includes the time required for the ex-
ecution of Algorithms 3.1-3.3 and the time to serialize the
extracted instances of our static analysis meta model. We
then want to know for each of the elementary change above
how long it takes CrocoPat to execute the RML program to
predict the impact that that elementary change has. The
summary of these quantitative measurements is shown in
Table 3. The times are given in milliseconds and are av-
erages of three executions, which were measured on a Pen-
tium 2.13GHz PC with 1.5GByte Memory and the Sun Java
1.5 run-time environment. The standard deviation of these
measurements was negligible.

Versions

30-31 | 33-34 | 37-38
Schema extraction [ms] 724 750 766
ORM extraction [ms] 359 380 390
Java extraction [ms] 21579 | 22980 | 23225
Number of RSF entries 1764 | 1914 | 1970
RenameColumn [ms] 641 682
AddColumn [ms] 651 697
DropTable [ms] 646 | 672 | 705
AddForeignKeyColumn [ms] 643 674 690
ExpandColumnValues [ms] 709
ChangeColumnType [ms] 698
Average RML function [ms] 645 676 697

Table 3: Performance of SUITE impact analysis

We can note that there is a moderate startup cost of be-
tween 22 and 24 seconds in order to extract the RSF en-
tries required for the impact analysis. This startup cost,
however, would only need to be paid once and from then
on elementary changes can be analyzed incrementally. It is
also encouraging to see that the increase between the 3.9
kLOC version and the 5.8 kLOC version is less than 2 sec-
onds, which we find encouraging. We also note that the
averages of individual RML calculating the impact for ele-
mentary schema changes are more or less all between 640
and 710 milliseconds. The averages raise between the ver-
sions, which is attributable to the increased number of RSF
entries that need to be interpreted.

We then measured the time it takes CrocoPat to to exe-
cute a simple “hello world” program against the RSF file of
Version 33 and found that this requires 657 milliseconds. We
can therefore conclude that 95% of the time is required to
start CrocoPat and parse our RSF files. In future work, we
will investigate various optimizations, including more effi-
cient data extraction with Soot and making CrocoPat mem-
ory resident so that it avoids startup costs between different
RML program executions. This will render the technique
fast enough for use in interactive development environments.

6. RELATED WORK

There is little existing research that is directly applicable

to the situations we are considering in which the impacts of
schema changes must be identified in the presence of object-
relational mappings and native language queries. What re-
search does exist has a variety of limitations. In particu-
lar, impact analysis for object-oriented databases [12] avoids
the problems caused by the impedance mismatch between
object-oriented languages and relational databases and as a
result has little relevance to the vast majority of databases,
which are relational. The same applies to work on schema
updates in object-oriented databases [8] that does not con-
sider the impact of schema changes outside the DBMS.

More directly related is the work of Gould et al [9] who
have devised a technique for static analysis of the syntactic
and static semantic correctness of dynamically composed
JDBC queries. We assume that queries will increasingly
be statically typed using native language queries. Gould’s
work becomes obsolete to some extent for those queries for-
mulated in POJQ and JDO or LINQ because syntactic and
static semantic errors are detected by the Java or C# type
systems. We instead focus on providing guidance to applica-
tion developers on how to react to database schema changes.

We also consider that the static analysis approach could
be abandoned altogether, and instead a dynamic approach
to extracting information from the application could be
adopted. This would be similar to the approach taken by the
Chianti project [18] whereby a suite of tests is run against
the application to obtain a runtime call graph.

The results of our analysis could also be of use to other
research. The Chianti project for instance takes as input a
set of changes to a Java application and performs program
slicing as well as providing impact analysis of affected re-
gression tests. Our impact locations could be used as an
input to this process, allowing us to obtain program slicing
information from the point of impact, back into the applica-
tion code. Program slicing and regression test selection are
two areas of research that would provide interesting uses for
our impact analysis technique.

The implementation of our data flow analysis used in the
extraction of query information from the application has
some limitations. We do not take into account points-to
analysis or inter-procedural data flow analysis. There is a
large body of work focusing on such techniques that could
be used to improve our implementation, including [14, 15,
19]. However, we consider our implementation to be an in-
vestigation into the feasibility and validity of our approach,
and thus it is not a model application for how the analysis
should be conducted.

Finally, we have made little effort to investigate how the
developer would use the information produced by the im-
pact analysis. There has been some research into visualising
impact information by Karahasanovic [12]. This would be a
useful starting point for future investigation, although our
analysis technique provides rather different information than
is dealt with by this paper, and would need to be altered ac-
cordingly.

7. FURTHER WORK AND CONCLUSIONS

There are a number of directions in which we intend to de-
velop this work further. It will take a while before strongly
typed native language queries will be widely accepted. In
the meantime, application programmers will continue to use
CLIs or maintain legacy code that uses JDBC or ODBC. We
intend to experiment with the string analysis used in [9] in



order to extract the instances of our meta model from dy-
namically composed JDBC queries. There are a large num-
ber of improvements that can be made to SUITE. Firstly,
we have already sketched some obvious performance en-
hancements. Secondly, it will be desirable to integrate
SUITE as a plug-in into the Eclipse platform so that the
capabilities of Eclipse are used to navigate to impact loca-
tions. Thirdly, SUITE could be extended to more advanced
database schema concepts, such as views, triggers and stored
procedures. Finally, we would be interested to apply our
techniques to data definition queries, which are reflective
queries that modify a schema. Such queries in theory can
be handled using our approach, but the extent to which they
can be reasonably handled will require additional investiga-
tion.

The evaluation of SUITE based on the history of a large-
scale database has shown the potential benefits of our
approach for analyzing the impact that database schema
changes have on programs that use object-relational map-
pings and native language queries. The construction of
SUITE was relatively straightforward. It was considerably
simplified by the fact that queries and object-relational map-
pings are statically typed and that there are powerful com-
ponents available with which we were able to build our static
analysis tool. Using our approach DBAs will be able to as-
sess the extent with which their proposed changes will af-
fect programs that are written against their schemas, and
have information about the effort required to reconcile these
changes. Likewise application programmers obtain detailed
guidance on what parts of their program have to be changed,
or checked in response to the schema changes. We hope that
our work has provided the foundation for the construction
of efficient impact analysis tools that in support of a more
agile evolution of database schemas.
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