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ABSTRACT 
Drawing on a case study that adequately represents a medium-size 
component-based distributed architecture, the novel contribution 
of this paper is an economics-driven software engineering ap-
proach to the valuation of scalability in distributed architectures. 
Using real options analysis, we report on how ranges in which 
changes in scalability requirements can inform the selection of 
distributed components technology and subsequently the selection 
of application server products. As the exact method for analyzing 
scalability is subject to debate, we identify views for analyzing 
scalability. We then focus the analysis on throughput as a way for 
measuring scalability. We describe a real options model for valu-
ing the ability of a given architecture to scale. We apply the 
model on two versions of a given architecture, each induced with 
a distinct middleware: one with CORBA and the other with J2EE. 
The results show that the application of real options theory to the 
said problem is superior to that of traditional techniques, such as 
Net Present Value (NPV), for estimating value in software. This is 
because the latter systematically underestimate the value of the 
architectural flexibility under uncertainty, where uncertainty is 
attributed to the unpredicted change in load.  
 

1. INTRODUCTION 
Software architecture is the earliest design artifact, which realizes 
the requirements of the software system. It is the manifestation of 
the earliest design decisions, which comprise the architectural 
structure (i.e., components and interfaces), the architectural topol-
ogy (i.e., the architectural style), the architectural infrastructure 
(e.g., the middleware), the relationship among them, and their 
relationship to the other software artifacts (e.g., low-level design) 
[Bah05a]. In many software systems, the architecture is the level 
that has the greatest inertia when external circumstances change 
and consequently incurs the highest maintenance costs when evo-
lution becomes unavoidable [Coo01]. Current industrial evidence 
is revealing situations where system evolution is unavoidable and 
much of the promise is leaved to the architecture in scaling the 
system and its services. For example, the number of mergers be-
tween companies is increasing and this trend is bound to continue. 
The different divisions of a newly merged company have to de-
liver unified services to their customers and this usually demands 
scaling the system, while leaving the core architecture intact. The 
time frame is often so short that building a new system is not an 
option and therefore existing system components have to be inte-
grated into the architecture to appear as an integrated computing 
facility. Secondly, the trend of providing new services or evolving 
existing services to target new customers, devises and platforms, 
and distribution settings (e.g., mobility setting) is increasing. For 
example, moving from a fixed distributed setting to mobility car-

ries critical changes, mainly to non-functionalities, such as 
changes in availability, security, and scalability requirements. 
Often the core “fixed” architecture falls short in scaling up; 
henceforth, changes to the architecture becomes necessary. 
Thirdly, it is often the case that components are procured off-the-
shelf, rather than built from scratch, in response to changes in 
requirements and then need to be integrated into the core architec-
ture. The architecture may fail to scale up, as these components 
often have incompatible requirements on the hardware and operat-
ing system platforms they run on. Fourthly, a lean economy has 
forced those with a limited IT budget to more fully “utilize” the 
architecture so it becomes more flexible in responding to rapidly 
evolving markets and scale to support business growth. As many 
companies have come to the conclusion that it is essential to more 
fully leverage the computing assets they already have, the impor-
tance of utilization has increased; it has become, for example, 
necessary to utilize what the architecture may support in handling 
more business transactions at a unit-time. 

Failing to accommodate the scalability requirements may 
“break” the software architecture necessitating changes to the 
architectural structure (e.g., changes to components and inter-
faces), architectural topology (e.g., changes to the architectural 
style), or even changes to the underlying architectural infrastruc-
ture (e.g., middleware). It may be expensive and difficult to 
change the architecture as requirements evolve [Fin00]. Con-
versely, failing to accommodate the change leads ultimately to the 
degradation of the usefulness of the system. Hence, an architec-
ture which is flexible and scale to address such changes in re-
quirements with limited resources and shorter time-to-market is a 
significant asset for surviving the business, cutting down mainte-
nance costs, utilizing resources, and creating value.  

Reflecting on the discipline, [Sul99] note that the important 
book on software  architecture begins, “As the size and complex-
ity of software systems increase, the design and specification of 
overall system structure become more significant issues than the 
choice of algorithms and data structures…”. [Sul99] add, “This 
statement is true, without a doubt. The problem in the field is that 
no serious attempt is made to characterize the link between struc-
tural decisions and value added”. Hence, the challenge that is 
facing the software engineering community is that there is a gen-
eral lack of adequate models and methods, which connect techni-
cal engineering concepts to value creation under given circum-
stances. Despite the clear connection of scalability to value, there 
is a general lack of value-driven models and methods, which con-
nect this property to value under given circumstances. Our contri-
bution aims to address this need. 

As a motivating example, consider a distributed software ar-
chitecture that is to be used for providing the back-end services of 
an organization. This architecture will be built on middleware, 
such as Java 2 Enterprise Edition (J2EE) [Sun02] and the Com-



mon Object Request Broker Architecture (CORBA) [Obj00]. 
Depending on which middleware is chosen, different architectures 
may be induced [DiN99]. These architectures will have differ-
ences in how well the system is going to cope with changes. For 
example, a CORBA-based solution might meet the functional 
requirements of a system in the same way as a distributed compo-
nent-based solution that is based on a J2EE application server. A 
notable difference between these two architectures will be that 
increasing scalability demands might be easily accommodated in 
the J2EE architecture because J2EE primitives for replication of 
Enterprise Java Beans can be used, while the CORBA-based ar-
chitecture may not easily scale. The choice is not straightforward 
as the J2EE-based infrastructures usually incur significant upfront 
license costs. Thus, when selecting an architecture, the question 
arises whether an organization wants to invest into an J2EE appli-
cation server and its implementation within an organization, or 
whether it would be better off implementing a CORBA solution. 
Answering this question without taking into account the flexibility 
that the J2EE solution provides and how valuable this flexibility 
will be in the future relative to the likely change in load might 
lead to making the wrong choice. Furthermore, the ranges in 
which scalability requirements change may need to inform the 
selection of distributed components technology, and subsequently 
the selection of application server products. 

Drawing on a case study that adequately represents a me-
dium-size component-based distributed architecture, the novel 
contribution of this paper is an economics-driven software engi-
neering approach to the valuation of scalability in distributed 
architectures. Using real options analysis, we report on how 
ranges in which changes in scalability requirements can inform 
the selection of distributed components technology and subse-
quently the selection of application server products. As the exact 
method for analyzing scalability is subject to debate, we identify 
views for analyzing scalability. We then focus the analysis on 
throughput as a way for measuring scalability. We describe a real-
options based model for valuing the ability of a given architecture 
to scale. We apply the model on two versions of a given architec-
ture, each induced with a distinct middleware: one with CORBA 
and the other with J2EE. Traditional economics approaches to 
software design appeal to the concept of static Net Present Value 
(NPV) and Discount Cash Flows (DCF) as a mechanism for esti-
mating value [Boe00]. We show that options theory is said to be 
superior to PV and DCF in valuing scalability, as the latter fall 
short in valuing the flexibility of an architecture under uncer-
tainty, where uncertainty is attributed to the unpredicted change in 
load. The case demonstrates how change impact analysis on a 
system of a given architecture can be complemented with value-
based reasoning. The rationale is that the combination could pro-
vide the architect/analyst with a useful tool for understanding the 
extent to which the software system is flexible to accommodate 
the change; provide insights on the likely success (failure) of 
software evolution; and consequently on the potential stability of 
the architecture to change. This combination could also account 
for the economics ramification of the change on the structure and 
the behaviour of the system. For example, throughput, a scalabil-
ity measure, is correlated with value. That is, the more business 
transactions can be performed on a system of a given architecture, 
the more value is said to be created for the enterprise. Hence, 
“hurting” the performance of the software, upon accommodating 
the change in scalability requirements, implies “hurting” value.  

The paper is further structured as follows. Section 2 describes 
the case study, devises an options based model to value scalabil-

ity, reports and discuss the model’s application. Section 3 dis-
cusses closely related work. Section 4 concludes.  
 
2. CASE STUDY  
 
2.1 Setting  
We use the Duke’s Bank application [Sun02], an online banking 
application, which adequately represents a medium-size compo-
nent-based distributed system. The architecture of the Duke’s 
Bank application has a three-tier style, given in Figure 1. The 
architecture has two clients: an application client used by admin-
istrators to manage customers and accounts, and a Web client 
used by customers to access account statements and perform 
transactions. The server-side components perform the business 
methods: these include managing: customers, accounts, and trans-
actions. The clients access the customer, account, and transaction 
information maintained in a database.  
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Figure 1. The Architecture of the Duke’s Bank  

 We instantiate from the core architecture two versions, each 
induced by a different middleware: one with CORBA and the 
other with J2EE. Assume that the Duke’s Bank system needs to 
scale to accommodate the growing number of clients in one-year 
time. Scalability denotes the ability to accommodate a growing 
future load, be it expected or not. We observe how a likely future 
change in scalability, a representative critical change in non-
functional requirement, could impact the architectural structure of 
each version. The challenge of building a scalable system is to 
support changes in the allocation of components to hosts without 
breaking the architecture of the software system; changing the 
design and code of a component [Emm02]; and/or rippling the 
change to impact other non-functionalities such as performance, 
reliability, and availability. We use replication, an architectural 
mechanism, to achieve scalability. The reason is due to the fact 
that both CORBA and J2EE do provide the primitives or guide-
lines for scaling a software system using replication, which make 
the comparison between the two versions feasible. In particular, 
the Object Management Group’s CORBA specification defines a 
fault tolerance and a load balancing support, which provides the 
core capability for implementing scalability through replication. 
Similarly, J2EE provides clustering primitives for scaling the 
software system through replication. Interested reader may refer 
to [Bah05b] for more details. 

 
2.2. Valuation Views to Scalability   
Scalability is frequently thought of in terms of numbers of users 
that can be supported on either a single node or collectively on all 
nodes in a system; it denotes the ability to accommodate a grow-
ing future load. The exact method of analyzing scalability is sub-
ject to some debate: First, the change in load demands is critical 
as it could impact the architecture at its various levels: structure, 
topology, and infrastructure. For example, the challenge of build-
ing a scalable system is to support changes in the allocation of 



components to hosts without breaking the architecture of the 
software system, or changing the design and code of a component 
[Emm00b]. Second, the change in load could impact other non-
functional requirements such as performance, reliability, and 
availability, when the change is poorly accommodated by the 
architecture. As a result, this debate is appealing to the use of the 
multi-perspective valuation points of view: structural and behav-
ioral valuation points of view to the analysis of the change in 
scalability requirements. 

 On the structural point of view, in [bah05b] we have ob-
served how the architecture of the given system, when induced by 
a particular middleware, is ready to cope or need to be maintained 
for supporting the change in scalability. We have analyzed the 
impact of the change by looking at the structural changes and the 
source lines of code (SLOC) that need to be modified/added for 
implementing the change, configuring, and deploying the soft-
ware system. We have also quantified the value of the structure  
in scaling to accommodate the change, by looking at the cost of 
change on the structure of each version and by valuing the savings 
in maintenance, deployment, and configuration costs to realize the 
change. As reported in [Bah05], an observable advantage of scal-
ing the software architecture when induced by J2EE is that no 
development effort is required to realize the scalability require-
ments through replication, as when compared to the CORBA 
version. J2EE does provide clustering primitives for scaling the 
software system, which result in making the architecture of the 
software system more flexible in accommodating the change in 
scalability, as when compared to the CORBA version. Consider-
ing the CORBA-induced architecture of the Duke’s Bank, sup-
porting scalability through replication has not leave the middle-
ware infrastructure and the application layer intact. Though the 
use of both CORBA specification and design patterns[OMG00] 
has simplified the task of realizing the requirements for achieving 
fault tolerance and load balancing, implementation and integra-
tion overhead have not been abandoned. In particular, the fault 
tolerance and load balancing services need to be implemented and 
be integrated into the used middleware. The server and the client 
application need to be updated. Interested reader may refer to 
[Bah05b] for results and details on this view. 

In this paper, we complement the analyses by looking at the 
behavioral point of view to analyze scalability. On the behavioral 
point of view, we use throughput or the capacity of the system to 
measure scalability. Throughput is a performance criterion, which 
expresses the amount of work performed by the system under test 
during a unit of time. For this view, we elicit the likely ranges in 
future load. We discuss the impact of likely change in future load 
on the behavior of the system. We then describe how ArchOp-
tions can be used to reason about the change. Throughout the 
paper, we focus on this view.  
 
2.3. The Throughput View to Valuing Scalability   
A possible way to treat scalability is to assume that scalability can 
be measured by throughput or capacity of the system. Throughput 
is a generic performance criterion, which expresses the amount of 
work performed by the system under test during a unit of time. 
This criterion is based on the observation that for a fixed system 
with a given throughput (e.g., a single host), there is an inverse 
relationship between the response time and the number of clients. 
In other words, the more clients submitting requests, the longer 
are the delays. A well-known throughput metric is the Total Op-
erations Per Second (TOPS) completed during the measurement 
interval, referred to as TOPS [http://www.spec.org/]. TOPS is 

composed of the total number of business transactions completed 
in the customer domain, added to the total number of work orders 
completed in the manufacturing domain, normalized per sec-
ond[http://www.spec.org/]. 

To understand how Duke’s architecture may behave once in-
duced with J2EE or CORBA, we have screened relevant perform-
ance benchmarks (e.g., [Den04]; 
http://www.spec.org/jAppServer2005/). We appeal to the use of 
published benchmarks, because the system of the given architec-
ture need not be implemented during the evaluation. Thus, per-
formance measures may not be available. Benchmarks are reveal-
ing on the performance dimension because, for example, if multi-
ple benchmarks are conducted with a suitable mix of relevant 
factors, it may be possible to obtain a set of basic scalability re-
sults that can be used for estimating the throughput of possible 
configurations of the architecture. Depending on the benchmark-
ing algorithm, the relevant scalability factors can be, for example, 
the number of objects, the number of clients, or the number of 
nodes in the system etc. supported in response to growing load. A 
major problem in comparing benchmark results, however, is that 
different hardware platforms and configurations (e.g., memory, 
disk drives etc) often produce different results making the com-
parisons difficult. Further, vendors often try many different ways 
to optimize performance, including adding cache memory and 
putting cache buffers on disk arrays. Therefore, we only use 
benchmarks, which are close to the case at hand. We then normal-
ize the screened benchmarks for easing the comparison. It could 
be also argued that in iterative development (e.g., in the Unified 
Process) partial implementations might be available at the end of 
each phase. In this context, it is possible to create benchmarks 
from the partial implementations and to use them in recalibrating  
the screened ones. The intention is to have more meaningful fig-
ures which we could use for understanding the impact of likely 
change in future load on the behavior (throughput) of the system 
and the corresponding economics ramifications.  

Figure 2 shows the likely throughput trend that the J2EE-
induced architecture may exhibit relative to the CORBA-induced 
one, upon varying the TOPS and the number of hosts. For the 
J2EE-induced architecture, we provide throughput estimations for 
two possible implementations: one with JBoss and the other with 
WLS. For the CORBA-induced architecture, we provide estimates 
upon the use of JacORB to induce the architecture. Table 1 de-
picts the upper limit of TOPS supported per host for each of 
WLS, JBOSS, JacORB induced architectures for 1 to 4 hosts.   
 

Throughput of WLS, JBOSS, and JacORB upon 
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
PS

WLS
JBOSS
JacORB

 

Figure 2. Plotting the TOPS per host for each of WLS, 
JBOSS, JacORB for 1 to 4 hosts 
 



Table 1. Upper limit of TOPS per host for each of WLS, 
JBOSS, JacORB 
 Hosts WLS JBOSS JacORB 

1 732.00 400.26 546.80 

2 918.36 502.16 686.01 

3 1395.44 763.03 1042.39 

4 2640.96 1444.08 1972.79 

 
Figure 3 shows the likely cost-trend upon inducing the Duke’s 

bank architecture with J2EE (using either WLS or JBOSS) and 
with CORBA (using JacORB). The likely cost is plotted against 
the number of hosts (1 to 4). The cost refers to the lifecycle cost 
of the System Under Test (SUT). The cost includes Application 
Servers/Containers, Database Servers, network connections, etc. 
Assuming, for example, a five-year lifecycle, cost would include 
all hardware (purchase price), software including license charges, 
and hardware maintenance. For the CORBA version, it assumed 
that the investment incurs an upfront cost to the development of 
the replication mechanism to support fault-tolerance and load-
balancing services for high load scenarios [Bah05b]. For the J2EE 
version of WLS, a license cost is incurred per host.   
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Figure 3. The likely cost-trend upon inducing the Duke’s bank ar-
chitecture with J2EE-(WLS or JBOSS) and with CORBA (JacORB). 
 

Though the structural analysis appears to be in favor of the 
J2EE-induced architecture [bah05b], the throughput analysis may 
reveal a different trend. From the throughput valuation point of 
view, Figure 2 shows that when the Duke’s architecture will be 
induced with JBOSS, a J2EE implementation, the system is 
likely to be slower than that of the JacORB one. This is because 
Jboss uses reflection [http://www.jboss.org]. This also implies 
that there are some chances for the JBOSS-induced architecture to 
require more hardware for addressing this deficiency. When in-
ducing the Duke’s architecture with WLS, another J2EE imple-
mentation, the system is very likely to be faster than that of the 
JacORB implementation. WLS, however, comes with significant 
licenses costs; this cost grows with the number of hosts, as the 
load increases. Coining the TOPS with their associated costs, 
Figure 2, Figure 3 and Table 1, hint that there might be a case for 
JacORB in certain throughput range. Moreover, note that once the 
services for realizing scalability (i.e., the fault-tolerance and load 
balancing service) are implemented, the cost is incurred once and 
amortized across the hosts. Hence, as the load grows, the analysis 
becomes complex. 

 

2.4. Valuing Scalability with Options Theory  
2.4.1 ArchOptions: background 
Let us assume that we are given the choice of two middleware M0 
and M1 to induce the architecture of a particular system. Let us 
assume that S0, S1 are the architectures obtained from inducing 
M0 and M1 respectively. Say, M1 is an economical choice, if it 
adds value to S1 relative to S0. We attribute the added value to the 
enhanced flexibility of S1 over S0 in scaling up the architecture. 
But the added value is uncertain, as the demand and the nature of 
the future change and load are uncertain. A question of interest is: 
how valuable is the flexibility of either alternative, relative to 
likely change in scalability, will be in the long-run? Which solu-
tion is more valuable? Using options theory is suited to answer 
theses questions. 

Real options analysis recognizes that the value of the capital 
investment lies not only in the amount of direct revenues that the 
investment is expected to generate, but also in the future opportu-
nities that flexibility creates [Erd99; Erd00; Erd02; Sul99; Sul02]. 
These include growth, abandonment or exit, delay, and learning 
options. An option is an asset that provides its owner the right 
without a symmetric obligation to make an investment decision 
under given terms for a period of time into the future ending with 
an expiration date [Tri95]. If conditions favourable to investing 
arise, the owner can exercise the option by investing the exercise 
price defined by the option. A call option gives the right to ac-
quire an asset of uncertain future value for the strike price [Tri95].  

The problem of selecting a particular middleware to induce a 
given architecture is an option problem. From the evolution per-
spective, the flexibility of the middleware induced-architecture in 
coping with changes in non-functional requirements has a value. 
More specifically, flexibility adds to the architecture values in the 
form of real options that give the right but not a symmetric obli-
gation- to evolve the software system and enhance the opportuni-
ties for strategic growth. The added value is strategic in essence, 
uncertain as the demand on the future changes are uncertain, and 
may not be immediate. The added value may take the form of (i) 
accumulated savings through coping with the change without 
“breaking” the architecture, mostly these are changes in non-
functional requirements; (ii) extending the range of services while 
leaving the architecture intact; and (iii) the ability to respond to 
competitive forces and changing market conditions that may pose 
higher Quality of Service (QoS) requirements, such as the de-
mands for higher availability, scalability, reliability and so forth. 
From an early development perspective, given several middle-
ware candidates, the architect has the right without the symmetric 
obligation to embark on a selection for inducing an architecture. 
A “wise” selection could be regarded as an investment to buy 
flexibility, which could be valued as future growth options 
[Tri96] on the architecture of the software system. These options 
differ from one middleware to another.  

ArchOptions[Bah05a; Bah05b; Bah04a; Bah03b], a real 
options based model that we developed, values the growth 
options of an architecture relative to some future changes, 
as a way for understanding the architectural flexibility and 
its stability implications. A growth option is a real option to 
expand with strategic importance [Tri95] and is common in infra-
structure-based investments, as it is the case with software archi-
tectures. Since the future changes are generally unanticipated, the 
value of the growth options lies in the enhanced flexibility of 
the architecture to cope with uncertainty. ArchOptions 



builds on a simple and intuitive analogy with Black and 
Scholes [1973], as described in Table 2.  

 

Table 2. Financial/real options/ArchOptions analogy 
Option on 
stock 

Real option on a 
project 

ArchOptions 

Stock Price Value of the 
expected cash 
flows 

value of the “architectural po-
tential” relative to the change 
xiVp 

Exercise 
Price 

Investment cost Estimate of the likely cost to 
accommodate the change Ceip 

Time-to-
expiration 

Time until oppor-
tunity disappears 

Time indicating the decision to 
implement the change (tp) 

Volatility Uncertainty of the 
project value 

“Fluctuation” in the return of 
value of V over a specified 
period of time (σp) 

 
Accommodating the change, thus, is analogous to buying an 

“architectural potential” (i.e., an option on an asset) with uncer-
tain future value paying an exercise price. The exercise price 
corresponds to the cost of accommodating the change on the sys-
tem of the given architecture. The value of the call option, 
whether in-the-money or out-of-the-money, is a measure of the 
architecture flexibility in accommodating change. This value is an 
indicative measure of the “architectural potential” in unlocking 
future growth opportunities (e.g., case of reuse, new market prod-
ucts), enhancing the upside potentials of the architecture, generat-
ing value (e.g., savings in maintenance), or incurring losses (e.g., 
case of a disruptive changes), as a consequence of accommodat-
ing the change. The value of the call is a powerful heuristic, 
which can provide a basis for analyzing many architecture-centric 
evolution problems, which place considerable emphasis on the 
flexibility of the architecture as a way for easing software evolu-
tion. 

Choosing a particular middleware to induce the architecture 
of the software system can be seen as an investment to purchase 
flexibility in the induced software architecture. The range in 
which the load change influence the choice. In this context, decid-
ing on a particular middleware to induce the software system 
architecture can be seen as an investment to purchase future 
growth options that enhance the upside potentials of the structure 
when the load change. That is, S1 is said to be more accommodat-
ing to the change than S0, if S1 holds more growth options than S0. 
For a valuation point of view p, we focus the analysis on the calls 
of the ArchOptions model for valuing the growth options, as 
given in (1) accounting for both the expected value and exercise 
cost to accommodate future requirements ii, for i ≤ n. Valuing the 
expectation E of expression (1) uses the assumptions of Black and 
Scholes[Bla73] and detailed in previous work[Bah05b; 
Bah04a;.Bah03b]: 

 

       ∑ i=1…n E [max (xiVp - Ceip, 0)]               (1)                    
 
The payoff of the constructed call option gives an indication 

of how valuable the flexibility of an architecture is, when endur-
ing some likely changes in requirements. The selection has to be 
guided by the expected payoff in (∑ i=1…n E [max (xiVp - Ceip, 0])S1 
relative to that of (∑ i=1…n E [max (xiVp - Ceip, 0])S0. That is, if (- Ie 

+ ∑ i=1…n E [max (xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip, 
0)] S0) for some likely changes, then it is worth investing in M1, as 
the investment in M1 is likely to generate more growth options for 
S1 than for S0 and relative to the p valuation point of view.   
 If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely to pay-
off, relative to M0, as the flexibility of the architecture to the 
change is not likely to add a value for S1  on p, if the change need 
to be exercised. Two interpretations might be possible: (i) the 
architecture is overly flexible in the sense that its response to the 
change(s) has not “pulled” the options relative to p. This implies 
that the embedded flexibility (or the resources invested in imple-
menting flexibility- if any) are wasted and unutilized to reveal the 
options relative to the changes and relative to p (ii) the other case 
is when the architecture is inflexible relative to the change. This is 
when the cost of accommodating the change on S1 is much more 
than the cumulative expected value of the architecture respon-
siveness to the change. 
 
2.4.2 Application of ArchOptions 
The case of valuing the scalability of the architecture is appealing 
to ArchOptions for the following major reasons: First, there is 
cone of uncertainty associated with the growing load and conse-
quently in the value added as result of our choice. Moreover, the 
TOPS are of straightforward contribution to value. That is, the 
more operations are completed per second, the more value is 
added to the enterprise. However, TOPS incur a price upon exe-
cuting the operations. The price again is dependent on several 
factors such as the number of hosts, the hardware, the license 
cost, and any additional costs that are necessary for making the 
middleware adaptable to the growing load. In the context of the 
Duke’s Bank, the TOPS range is often uncertain as it is dependent 
on the customers’ behavior at a time. The uncertainty in the likely 
range (i.e., TOPS), the associated costs for executing the TOPS, 
and the “fluctuation” in the value added as a result make the case 
very appealing to the use of ArchOptions. For the throughput 
valuation point of view, the analysis using ArchOptions aims at 
complementing the behavioral analysis to understand the trend in 
the added value upon embarking on either J2EE (JBOSS or WLS) 
or CORBA(JacORB) to induce the architecture of a given system. 
Second, in the context of ArchOptions, our use of benchmarks 
resembles the use of a twin asset. Real options valuation based on 
Black and Scholes pricing technique determines the value of an 
asset in question in span of the market value using a correlated 
twin asset [Tri95]. The twin asset is an asset that has the same 
risks as the asset in question will have when the investment has 
been completed [Tri95]. The intuition is that to understand the 
behavior of the asset in question, we can use a twin asset, also 
referred to as a replicated portfolio. The assumption is that under 
similar conditions the twin asset and the asset in question are 
interchangeable for all practical purposes and should be worth the 
same. That is, if we know how much the twin asset is worth in the 
present, we can then determine how much the option on the asset 
in question is worth in the present. We argue that using bench-
marks satisfies the concept of the twin asset as we are relying on 
historical information showing possible variations in performance 
in connection to change in load and relative to the candidate im-
plementations. These benchmarks often hint that the throughput is 
dependent on and can be estimated from the middle-tier “process-
ing power” of the architecture. Such variation, we believe, is a 
wealth as it reveals pros and cons of the Duke’s Bank execution 
under possible operating environments and/or in relation to other 
participating applications. This is advantageous because scalabil-



ity is also a factor of the number of independently developed 
applications that might share an execution platform. The advan-
tage of this approach is that the published benchmarks could re-
veal risks of the operating environment on the choice.  

For the throughput valuation point of view, Pthro, an addi-
tional operation is said to “buy” an architectural potential paying 
an exercise price. In terms of throughput, the architectural poten-
tial is a performance measure. That is, the more TOPS are said to 
be completed at a host (or for a configuration), the more value is 
said to be added to the enterprise. The more valuable is said the 
architectural potential relative to the TOPS. The exercise price is 
price/TOPS. If we assume that xiVPthroS1 is the value added in S1 
over S0 due to the support of more TOPS, it is reasonable to con-
sider that if (∑ i=1…n E [max (xiVPthro - CeiPthro, 0)] S1 > ∑ i=1…n E 
[max (xiVPthro - CeiPthro, 0)] S0), then investing in M1 is said to pay-
off relative to Pthro.  We construct call options for a likely 
change in load-range. The objective is to analyze the architectural 
potential in supporting a likely growth of TOPS. Below, we show 
how we estimate the parameters relative to Pthro. 
  Estimating (CeiPthro). A change in a load-range is said to buy 
an architectural potential paying an exercise price. As we men-
tioned before, TOPS denotes the Total Operations completed per 
Second. For the simplicity of explanation, let us assume that the 
system of the induced architecture needs to scale up to support an 
additional operation per unit-time. An additional operation is said 
to buy an architectural potential paying an exercise price. In terms 
of throughput, the architectural potential is a performance meas-
ure. Hence, what an extra operation pays, if materializes, is a 
bandwidth for performing that operation. Inducing the Duke’s 
bank with either J2EE or CORBA provide different bandwidth 
capabilities for performing the operation at different price. If the 
implementation of either happens to hold embedded growth op-
tions in supporting the extra operation, then the operation is said 
to pay an exercise price to buy options on the architecture. To 
estimate the exercise price, we use a well-known normalization 
factor, which is the price/performance 
[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle cost of 
the System Under Test (SUT) as configured for the benchmark 
divided by the throughput). As an example, assuming five-year 
lifecycle, the cost would include all hardware (purchase price), 
software including license charges, and hardware/software main-
tenance. If the total price is $5,734,417 and the reported through-
put is 105.12 TOPS, then the price/performance is 
$54,551.16/TOPS (54,551.151 rounded up). 

Estimating (xiVPthro). For simplicity, we estimate xiVPthro 
relevant to the business domain. For every completed on-
line operation, Duke’s would not need to have to serve a customer 
in person at a branch. That is, the Duke’s savings are in the man-
ual-effort for serving the clients at a branch. For example, let us 
assume a scenario where a clerk needs one minute for completing 
a business operation: if we assume an overhead cost of 
$100,000/year for each clerk, then an online operation saves about 
a dollar per operation in a minute: $100000/ (220day * 8hours * 
60minutes). Computing savings per second is then straightfor-
ward. We use scenarios of 8 and 20 clerks for computing xiVPthro.  

Estimating volatility (σPthro). Volatility represents uncer-
tainty attributed to the likely growing of load. For some computa-
tion, we abide to the real options principles in computing volatil-
ity: we use the standard deviation of xiVPthros due supporting extra 
operations for a range of load at a particular host (as the range is 
said to be revealing to the fluctuation in the value). For other 
computations, we use modeling estimates for volatility, represent-

ing uncertainty, with the objective of demonstrating how volatil-
ity is said to influence the options results. 

  Exercise time (t Pthro) and free risk interest rate(r Pthro). As 
a simulation assumption, we set the exercise time to one year, 
assuming that the Duke’s Bank needs to accommodate the change 
in one-year time. We set the free risk interest rate to zero (i.e., 
assuming that the value of money today is the same as that in one 
year’s time). 
 
2.4.3 Results, analysis, and discussion  
Flexibility creates real options. Let us consider the flexibility 
that S1 provides over S0, relative to Pthro: Consider a scenario, 
where the likely load is 1042 TOPS. Table 3 shows that 1042 
TOPS can be supported by three hosts, if the Duke’s architecture 
is induced with either M1 (WLS) or M0 (JacORB). Table 3 shows 
that for three hosts, supporting 1042 TOPS costs $1488.88 for S1 
when induced with WLS but $243.05 for S0 when induced with 
JacORB. The cost is denoted by CeiPthro. Supporting 1042 TOPS 
online is assumed to eliminate manual-overhead and create xiVs, 
and computed using eight clerks scenario. Using high volatility 
modeling assumptions for σPthro= 100% for simplicity, Table 3 
shows that S1 adds more value than So for three hosts. This is be-
cause the cost of implementing both load balancing and fault-
tolerance is far from breaking even on S0 for three hosts. Let us 
now suppose that Duke’s can only afford to invest in three hosts 
and the investment is to be made. Let us now assume that the load 
is likely to grow from 1042 TOPS to the range of 1250-1395 
TOPS, as a result of accommodating more customers.  

According to Table 4, as the load increases over 1042 TOPS, 
M1 continues to be of a better value for flexibility as when com-
pared to M0 for the following reasons: First, S0 will be inflexible 
to support an extra operation beyond 1042 TOPS for three hosts 
(Table 1). That is, the growing load requires an additional host; 
henceforth, incurring hardware costs. Second, the cost of imple-
menting both load balancing and fault-tolerance is far from break-
ing even on S0 for three hosts. As a result, S0 ceases to create real 
options on three hosts if the load exceeds the expected 1024 
TOPS. Conversely, for the range of 1250-1395 TOPS, S1 tends to 
carry growth options on three hosts. This is because at threshold, 
S1 can support around 1395 TOPS (Table 1). That is, S1 when 
induced with WLS, tends to create value for an additional 371 
TOPS on three hosts. Formalizing this thinking,  

 
The architectural potential of S1 (WLS) = value in supporting 

1042 TOPS now + growth options in supporting an additional 371 
TOPS;  

The architectural potential of S0 (JacORB) = value in support-
ing 1042 TOPS now + zero growth options beyond 1042 TOPS. 
 
 
 Table 3. Supporting 1042 TOPS with three hosts and their options 
value, if the Duke’s architecture is induced with either M1 (WLS) or 
M0 (JacORB), σPthro= 100%  
 

1042 TOPS No 
Hosts 

CeiPthro XiVPthro OptionsPthro 

S1(WLS) 3 148.88 131.61 45.44 

S1(JBOSS) 4 126.96 131.61 51.86 

S0(JacORB) 3 243.05 131.61 27.59 

 

 



Table 4. Supporting 1395 TOPS with three hosts and their options 
value, if the Duke’s architecture is induced with either M1 (WLS) or 
M0 (JacORB)  σPthro= 100% 

1250-1395  
TOPS 

No 
Host

s 

CeiPthro XiVPthro OptionsPthro Growth  

Options 

S1(WLS) 3 148.88 176.61 77.05 31.61 

S1(JBOSS)    4  126.96 176.1 85.79 33.93 for 
4 hosts 

S0(JacORB) 3 243.05 131.61 27.59 0 

 
Hence, for three hosts and with the likely growing load in the 

range of 1250-1390 TOPS, S1 exhibits that it has flexibility under 
uncertainty. This flexibility takes the form of growth options held 
on S1. The value of these options is in supporting an additional 
371 TOPS. The more uncertain we are about the likely growth in 
load (i.e., beyond 1024 TOPS and in the range of 1250-1390 
TOPS), the more valuable is the flexibility in S1 relative to S0. 
Real options is suited to address typical software evolution prob-
lems, where uncertainty attributed to the change in requirements 
is the norm. Using real options theory is better suited than tech-
niques that are based on Present Value (PV) and Discount Cash 
Flow (DCF) as these techniques tend to systematically underesti-
mate the value of flexibility under uncertainty[Trig95; Erd02]. As 
we have mentioned in several occasions, in our case the likely 
change in load is the major source of uncertainty that the Duke’s 
Bank faces. To address such uncertainty and provide better in-
sights on value creation, we have appealed to the use of real op-
tions theory. Let us provide an evidence to support our use: Let us 
assume that the load is assumed to be in the range of 30- 50 
TOPS. Based on the benchmarks, 30-50 TOPS could be easily 
addressed by one host using either M0 (JacORB) or M1 (Jboss or 
WLS). Figure 4 sketches the likely associated costs when induc-
ing the architecture with either alternative. For such a low 
throughput requirements, inducing the architecture with M0 may 
appear to be more attractive as when compared to inducing the 
architecture with M1 (using either JBOSS or WLS). This is be-
cause M1 incurs license costs for WLS. Moreover, looking at S1 
when induced with JBOSS, S1 is likely to be in magnitude slower 
than S0 as when induced with JacORB. This means that S1 
(JBOSS) will support fewer TOPS and consequently will create 
less value added per second as when compared to S0. For this low 
load, the fault-tolerance and load-balancing services need not be 
implemented on S0. If options analysis is not used, M0 will be a 
no-brain choice for inducing the Duke’s Bank architecture. 
Though inducing the architecture S1 with M1 (using WLS) ap-
pears less attractive than M0 (JacORB), S1 may still carry embed-
ded growth options which will only materialize if the load grows. 

If we use a PV or DCF approach, the resulted valuation will 
compute the present value as realized and ignore these growth 
options. In other words, inducing the architecture with WLS if 
undertaken, PV or DCF would hint that S1 would destroy value 
rather than create it. Formulating this argument, a PV approach, 
for example, will leave us with Value S1 = PV. However, ValueS1 
is actually Value S1 = PV + Opt.  That is, M1 carry embedded 
growth options, Opt. The Opt, if left unexercised, are ignored by 
the non-options analysis. Hence, Value for S1 is then said to be 
underestimated. As a result, S0 may look more attractive (Table 
5). 

 
 

S1(WLS), S1(JBOSS), and S0(JacORB) costs for 1 
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Figure 4. The likely associated costs compared upon inducing 
Duke’s architecture with WLS, JBOSS, and JacORB for very low 
throughput requirements on one host 
  
 The PV and DCF calculation of Table 5 shows that S1 is the 
least attractive for this range of load. The computation is based on 
the benefits of supporting 100 TOPS less their costs. However, 
the computation ignores the growth options on S1 in supporting 
additional 632 TOPS using the first host. Similarly, the PV and 
DCF systematically undervalue the growth potential of S1 
(JBOSS) and S0 (JacORB) in respectively supporting 300.26 
TOPS and 446.26 TOPS. In other words, PV and DCF ignore the 
flexibility value of S1 and S0 in responding to the growing load at 
host 1. Note that it is a fact that NPV or DCF does not work well 
for projects with future decisions that depend on how uncertainty 
resolves. Though they can be used to evaluate the operational 
benefits in a stable environment with well-understood and meas-
urable costs and benefits, they have little to offer when capturing 
additional value due to flexibility under uncertainty, such as stra-
tegic opportunities and the ability to respond to changing condi-
tions. Using PV or DCF, S1, when induced with WLS, reports 
negative values upon inducing the architecture with WLS for this 
range of load. However, the situation indicates that these results 
underestimate the value of S1, as S1 can better respond to uncer-
tainty, where the load is likely to grow over 100 TOPS. In Table 
6, we have turned to the intuition and used ArchOptions to cap-
ture the growth options on S1 and S0. The volatility parameter is 
an expression of the range of “benefits” at a host. For example, 
consider S1 (WLS): the benefits could “wander” from zero (i.e., 
idle state with no operations executing at a second) to the benefits 
derived from full utilization of capacity (i.e., in the support of 732 
TOPS). That is, the volatility of 66%  for  S1 (WLS) indicates that 
the benefits of executing the TOPS is in the range of $0(idle) to 
$92.42(full utilization) per second on host 1. Similarly, for S0 
(JacORB): the 45% volatility for  S0 (JacORB) indicates that the 
benefits of executing the TOPS are in the range of $0(idle) to 
$69.04 (full utilization) per second on host 1. As far as the options 
on S1(WLS) are concerned, S1 has “pulled” the options on one 
host for this range of load. This is because we have accounted for 
the possible fluctuation in the derived values from supporting the 
TOPS. Considering such “fluctuation” provides us with better 
insights on the architectural potential of S1 in support of this 
likely change in load. Table 6 suggests S1 has reported a value 
added of $0.017 on 1 host.  
 
 
 
 



Table 5. Illustration NPV and DCF per second ($) very low through-
put scenario (100 TOPS)  
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S1(WLS) 732.00 853.11 12.63 -840.48 -933.87 -632  

S1(JBOSS)      
400.26 603.11 12.63 -590.48 -656.09 

 -300.26 

S0(JacORB)     
546.80 

    
603.11 12.63 -590.48 -656.09 

-446.80 

 
Table 6. Illustration options per second ($) very low throughput 
scenario (100 TOPS)  

100 TOPS CeiPThro XiVP-

Thro 
σPthro Options  Actual Value 

 (TOPS) 

S1(WLS) 853.11 92.42
4 

66% 0.01700 100 + 632  

S1(JBOSS) 603.11 50.53 35% 0+ 100 + 300.26 

S0(JacORB) 603.11 69.04 49% 0.00001 100 + 446.80 

 
The impact of volatility on value. A critical difference between 
PV/DCF and real options is the effect of uncertainty (or risk) on 
value. Figures 5a-c shows that PV and DCF systematically under-
estimate the potential value of S1 and S0 in supporting a range in 
load on one to four hosts. The reason why DCF reports steeper 
values is due to the discount rate (10% is used for illustration 
purposes only). We have turned to the intuition and have used a 
more powerful technique offered by the theory of option pricing 
to capture the value of flexibility under the dynamic and the un-
certain range of load. However, how this uncertainty is ex-
pressed? How does this relate to Duke’s case? Let us have a close 
look at the impact of the volatility parameter, which is an expres-
sion of the value of flexibility under uncertainty.  

In the context of ArchOptions, the volatility parameter esti-
mates the “cone of uncertainty” in the future value of the asset, 
rooted as its current value and extending over time as a function 
of volatility. As volatility increases, total uncertainty around the 
benefits also increases. The more TOPS a host is likely to support, 
the more likely that the actual benefits to “wander” up and down 
and deviate from the expected present value if the load grows. 
Hence, the more volatile the environment is said to be.  

Let us now assume that Duke’s Bank needs to support more 
customers. Assume that the load is likely to grow and be in the 
range of 600- 686 TOPS (Table 7): S1, when induced with WLS, 
realizes the change in load by one host. S0, when induced with 
JacORB, will need two hosts and will incur the cost of developing 
the fault-tolerance and load-balancing services on the structure. 
Yet, S1 when induced with JBOSS will require three hosts and 
will incur additional hardware costs for completing the 686 
TOPS. Figure 6 shows a scenario for a likely load of 600-686 
TOPS for S1 when induced with WLS and for S0 when induced 
with JacORB. S1 could be regarded as an investment with a wide 
range of possible outcomes. However, S0 is an investment with a 
relatively narrower range. For S1, the investment is said to be 
more volatile. This is because S1 can support more TOPS/host 
resulting in a possible range of values. Relating this to PV, this 
means that there is a chance of producing positive PV in the fu-
ture. Hence, a real option under this set of outcomes would have 

value. As for the S0, the valuation under this scenario is more 
stable. This is because S0 can support at most 686 TOPS for the 
existing configuration. This means that S0 has no chance of pro-
ducing a project with a positive NPV beyond 686 TOPS. That is 
an option using the latter set of outcomes would have no value. 
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Figure 5a. The options, PV, and DCF on S1 when induced with 
WLS relative to the throughput valuation point of view 
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Figure 5b. The options, PV, and DCF on S1 when induced with 
JBOSS relative to the throughput valuation point of view 
 
 

S0(JacORB)- Options, PV, and DCF
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Figure 5c. The options, PV, and DCF on S0 when induced with 
JacORB relative to the throughput valuation point of view 
 

 
 

Figure 6. Impact of volatility on value 



Table 7. PV and DCF ($) per second for supporting 686 TOPS on 
S0 and S1 and the values they ignore  
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Table 8. Adjusted PV and the options in ($) per second under full 
utilization scenario of hosts for load greater than 686 TOPS on S0 
and S1 and the values added per second  
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 Let us now assume that we have induced the Duke’s archi-
tecture with M1 (WLS) for one version and M0 (JacORB) for the 
other. Hence, investment is made. As time passes, let us assume 
that an increase in load materializes. As change in load material-
izes, uncertainty is assumed to be resolved. Thus, the present 
value, as a result of supporting more TOPS (analogous to the 
future value of a stock), can be then calculated more accurately. If 
we examine the PV of this scenario, we can see that PV reports 
$92.18/second for WLS for 686 TOPS. That is, this is equal to the 
benefits minus the costs of completing the 686 TOPS. However, 
this value is said to be underestimated, as it ignores the additional 
46 TOPS that S1 can support using one host (i.e., 732 minus 46 
TOPS). S1, when induced with JBoss, reports a PV of $23.03, 
ignoring the additional value of supporting 77 TOPS for this con-
figuration. S0, when induced with JacORB, reports a negative PV. 
The negative value is attributed to cost incurred upon the devel-
opment of the fault tolerance and the load balancing services on 
S0. Let us now turn to options: Table 8 suggests that for 686 
TOPS, S1, when induced with WLS, creates more options than S0 
using one host. In particular, S1 (WLS) reports a value of $106.7. 
S1 (JBOSS) reports a value of $47.3. S0 (JacORB) reports a value 
of $0. Why is this difference? Technically speaking, this is be-
cause of the volatility parameter that captures variation in the 
value potentials of the said structures. For S1 (WLS), the differ-
ence for S1 (WLS) is attributed the range of possible returns that 

the additional  46 could ascribe to S1(WLS). This means that for 
S1 (WLS), the additional future values, if the range in load 
changes, is in the bound of $0(i.e., at most 686 TOPS) to 
$46*216.54/686(i.e., assuming equal returns upon supporting the 
additional 46TOPS). This will leave us with a volatility of 
%10.52, using the standard deviation of the returns over this 
bound. Similar argument applies for S1 (JBOSS), leaving us with 
a volatility equal to 6.9% in support of the additional 77 TOPS. S0 
(JacORB) reports $0 options. This is because S0 (JacORB) cannot 
support additional TOPS on this structure. In the language of 
options, S0 (JacORB) is not volatile and ceases to create options 
beyond 686 TOPS; henceforth, the reported zero values.  
 Let us now turn to PV again and assume an additional load 
has materialized (i.e., uncertainty has been resolved). Let us ad-
just the PV based on the new information at hand: if we compute 
the PV of the additional 46 TOPS for S1 (WLS), this will leave us 
with an added value of $14.52 over the previously computed PV, 
as reported in Table 8. If we compute the PV of the additional 77 
TOPS for S1 (JBOSS), this will leave us with an added value of 
$24.34 over the previously computed PV for S1 (JBOSS)- see 
Table 8. Adjusting the PV, we sum these values with the previ-
ously reported PVs of Table 8. This will leave us with $106.7 
value for S1 (WLS) and $47.3 value for S1 (JBOSS). Henceforth, 
this is a match with the ArchOptions results for S1 (WLS) and S1 
(JBOSS).  
 This observation leaves us with following conclusions: First, 
though it is still possible to adjust PV or DCF techniques for cap-
turing the options, ArchOptions provides us with a ready and 
closed-form solution, rooted in options theory, for capturing the 
value of flexibility under uncertainty on a given architecture. This 
solution is said to be superior to PV and DCF, as the latter they 
systematically underestimate the value of the flexibility of an 
architecture under uncertainty. Secondly, the analysis of matching 
the adjusted PV values with that of ArchOptions confirms the 
correctness and the effectiveness of the model. Nevertheless, the 
effectiveness of ArchOptions is essentially rooted in our use of 
Black and Scholes options theory. The analysis, however, has 
established confidence on both its correctness and effectiveness. 
Third, the results of this observation show that the volatility pa-
rameter is critical for the valuation of the options. In real situa-
tions, the performance analyst/architect may inspect available 
performance benchmarks, screen historical load-trends to predict 
future ones, or use prototypes of partial implementations to col-
lect performance indices. Consequently, volatility can be then 
empirically extracted. The analyst can make use of the sensitivity 
analysis for better understanding of the impact of throughput on 
the value added when uncertainty in the likely future load domi-
nates.    
 

3. RELATED WORK 
In this Section, we provide a quick overview of closely related 
research on: (i) the use of real options in software design and 
engineering; (ii) related research on architectural evaluation, and 
(iii) ongoing research on the “coupling” of software architecture 
and middleware. 

The use of real options in software engineering. Economics 
approaches to software design appeal to the concept of static Net 
Present Value (NPV) as a mechanism for estimating value 
[Boe00]. These techniques, however, are not readily suitable for 
strategic reasoning of software development as they fail to factor 
flexibility [Boe00; Erd99]. The use of strategic flexibility to value 



software design decisions has been explored in, for example, [Er-
d99; Erd02; Erd00; Sul96; Sul99; Sul01] and real options theory 
has been adopted to value the strategic flexibility: [Bal01] studied 
the flexibility created by modularity in design of components (of 
computer systems) connected through standard interfaces. [Sul96; 
Sul99; Sul01] pioneered the use of real options in software engi-
neering. [Sul96; Sul99] suggested that real options analysis can 
provide insights concerning modularity, phased projects struc-
tures, delaying of decisions and other dynamic software design 
strategies. [Sul99] formalized that option-based analysis, focusing 
in particular on the flexibility to delay decisions making. An in-
teresting approach that has inspired the early stages of our work is 
that of [Sul01]. [Sul01] extended [Bal01] that is developed to 
account for the influence of modularity on the evolution of the 
computer industry. [Sul01] use the model developed in [Bal01] to 
treat the “evolovability” of software design using the value of 
strategic flexibility. Specifically, they argued that the structure 
and value of modularity in software design creates value in the 
form of real options. A module creates an option to invest in a 
search for a superior replacement and to replace the currently 
selected module with the best alternative discovered, or to keep 
the current one if it is still the best choice. The value of such an 
option is the value that could be realized by the optimal experi-
ment-and-replace policy. Knowing this value can help a designer 
to reason about both investment in modularity and how much to 
spend searching for alternatives. [Erd99] describes how strategic 
flexibility in software development, involving COTS components, 
can be valued using real options. An interesting use of real op-
tions theory is that of [Erd02]. [Erd02] uses real options to value 
the inherent flexibility in the Extreme Programming (XP), where 
they have considered XP as a lightweight process that is well 
positioned to respond to change and future opportunities; hence, 
creating more value than a heavy-duty process that tends to freeze 
development decisions.  

 Architectural evaluation. Interested reader may refer to 
[Bah03b] in which we provide a comprehensive survey on archi-
tectural evaluation methods. In short, we have distinguished be-
tween two classes of software architecture evaluation methods:  
(i) general-purpose methods(e.g., ABAS[Kle99], ATAM[Kaz98], 
SAAM[Kaz94]) that evaluate software architectures for qualities 
that need to be met by the system (e.g. performance, security, and 
modifiability) and (ii) an emerging class of methods that explicate 
evaluation for stability and evolution. Existing methods to archi-
tectural evaluation have ignored any economic considerations, 
with CBAM [Kaz01] being the notable exception. The evaluation 
decisions using these methods tend to be driven by ways that are 
not connected to, and usually not optimal for value creation. Fac-
tors such as flexibility, time to market, cost and risk reduction 
often have higher impacts on value creation [Boe00]. Hence, 
flexibility is in the essence. In our work, we link flexibility to 
value, as a way to make the value of scalability tangible. 
 Relating CBAM to our work, the following distinctions can 
be made: with the motivation to analyse the cost and benefits of 
architectural strategies, where an architecture strategy is subset of 
changes gathered from stakeholders, CBAM does not appeal to 
the analysis of the value of scalability or the architectural strate-
gies responsible for realising scalability in an architecture. Fur-
ther, CBAM does not tend to capture the long-term and the strate-
gic value of the specified strategy. ArchOptions, in contrast, 
views flexibility as a strategic architectural quality that adds to 
the architecture values in the form of growth options. When 
CBAM complements ATAM [Kaz98] to reason about qualities 

related to change such as modifiability, CBAM does not supply 
rigorous predictive basis for valuing such impact. Plausible im-
provements of the existing CBAM include the adoption of real 
options theory to reason about the value of postponing investment 
decisions. CBAM uses real options theory to calculate the value 
of option to defer the investment into an architectural strategy. 
The delay is based on cost and benefit information. In the context 
of the real options theory, CBAM tends to reason about the option 
to delay the investment in a specific strategy until more informa-
tion becomes available as other strategies are met. In contrast, we 
uses real options to value the flexibility provided by the architec-
ture to expand in the face of evolutionary requirements; hence-
forth, referred to as the options to expand or growth options. 
 On the “coupling” of software architectures and middle-
ware. There is only very little work on the “coupling” of middle-
ware and software architectures. Notable exceptions include 
[Jaz95; Gal97; Sul97; Ore98; DiN99; Met00; Med03; Den04]. 
  [Jaz95] explores the relationship between software architec-
tures and component technologies. [Gal97] have looked at an 
existing component framework, the C ++ standard library, and 
identified the architectural style induced. [Sul97] claims that for a 
system to be implemented in a straightforward manner on top of a 
middleware, the corresponding architecture has to be compliant 
with the architectural constraints imposed by the middleware. 
[Ore98] discuss the importance of complementing component 
interoperability models with explicit architectural models. 
[DiN99] devised the term middleware-induced architectural 
styles and used Architecture Definition Languages (ADLs) to 
describe the assumptions and constraints that middleware infra-
structures impose on the architecture of system. [Met00] proposed 
a classification framework of software connectors and described 
types of services provided by connectors for enabling and facili-
tating component interactions. They aim at building implementa-
tion topologies (e.g., bridging of middleware) that preserve the 
properties of the original architecture. [Med03] stated the idea of 
“coupling” the modelling power of software architectures with the 
implementation support provided by middleware. They have in-
vestigated the possibility of defining systematic mappings be-
tween architectures and middleware. [Den04] measured perform-
ance attributes of an architecture based on the early available 
implementation support provided by the middleware. 

In summary, research effort on the relation between software 
architectures and middleware has been motivated by pragmatic 
needs. The effort has revolved on issues such as investigating the 
compliancy of architectural styles with middleware; capabilities 
that the middleware and the architecture can bring when “cou-
pled” to understand quality attributes of the system such as per-
formance; mapping between middleware and software architec-
tures; and semantics and syntactical issues related to the mapping 
process. As it has been noted in several occasions [Emm00b; 
Emm02], research on software architectures has over-emphasized 
functionality and not sufficiently addressed how global properties 
and non-functional requirements are achieved in an architecture, 
where these requirements cannot be attributed to individual com-
ponents or connectors. Moreover, no notable effort has been de-
voted on understanding the economics of non-functional require-
ments in relation to both architecture and middleware, when cou-
pled. Our use of architectural flexibility and its value is novel and 
only a step toward such an understanding using a value-based 
[EDSR 1-8] reasoning.  
 
 



4. CONCLUSIONS  
We have reported on how ranges in which scalability require-
ments change can inform the selection of distributed components 
technology and subsequently the selection of application server 
products. As the exact method for analyzing scalability is subject 
to debate, we have identified two views to the analysis of scalabil-
ity and have focused the analysis on throughput for valuing scal-
ability. We have applied ArchOptions, a real options-based 
model, to the problem of valuing the flexibility of the architecture 
in scaling up two versions of a given architecture, each induced 
with a distinct middleware: one with CORBA and the other with 
J2EE. The results show that the application of real options theory 
is said to be superior to the application of traditional techniques, 
such as Net Present Value, for estimating value in software. The 
contribution demonstrates that using value-based reason-
ing, we can value scalability and support the development 
(evolution) of software systems that need to adapt to the 
inevitable evolving requirements. 
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