
Valuing Scalability in Distributed Architectures

Rami Bahsoon
School of Engineering and Applied Science, Computer Sc,

Aston University Birmingham,
 Aston Triangle, B4 7ET, Birmingham, UK

r.bahsoon@aston.ac.uk

Wolfgang Emmerich
London Software Systems, Dept. of Computer Science,

University College London,
Gower Street, WC1E 6BT, London, UK

w.emmerich @cs.ucl.ac.uk

ABSTRACT
Drawing on a case study that adequately represents a medium-size
component-based distributed architecture, the novel contribution
of this paper is an economics-driven software engineering ap-
proach to the valuation of scalability in distributed architectures.
Using real options analysis, we report on how ranges in which
changes in scalability requirements can inform the selection of
distributed components technology and subsequently the selection
of application server products. As the exact method for analyzing
scalability is subject to debate, we identify views for analyzing
scalability. We then focus the analysis on throughput as a way for
measuring scalability. We describe a real options model for valu-
ing the ability of a given architecture to scale. We apply the
model on two versions of a given architecture, each induced with
a distinct middleware: one with CORBA and the other with J2EE.
The results show that the application of real options theory to the
said problem is superior to that of traditional techniques, such as
Net Present Value (NPV), for estimating value in software. This is
because the latter systematically underestimate the value of the
architectural flexibility under uncertainty, where uncertainty is
attributed to the unpredicted change in load.

1. INTRODUCTION
Software architecture is the earliest design artifact, which realizes
the requirements of the software system. It is the manifestation of
the earliest design decisions, which comprise the architectural
structure (i.e., components and interfaces), the architectural topol-
ogy (i.e., the architectural style), the architectural infrastructure
(e.g., the middleware), the relationship among them, and their
relationship to the other software artifacts (e.g., low-level design)
[Bah05a]. In many software systems, the architecture is the level
that has the greatest inertia when external circumstances change
and consequently incurs the highest maintenance costs when evo-
lution becomes unavoidable [Coo01]. Current industrial evidence
is revealing situations where system evolution is unavoidable and
much of the promise is leaved to the architecture in scaling the
system and its services. For example, the number of mergers be-
tween companies is increasing and this trend is bound to continue.
The different divisions of a newly merged company have to de-
liver unified services to their customers and this usually demands
scaling the system, while leaving the core architecture intact. The
time frame is often so short that building a new system is not an
option and therefore existing system components have to be inte-
grated into the architecture to appear as an integrated computing
facility. Secondly, the trend of providing new services or evolving
existing services to target new customers, devises and platforms,
and distribution settings (e.g., mobility setting) is increasing. For
example, moving from a fixed distributed setting to mobility car-

ries critical changes, mainly to non-functionalities, such as
changes in availability, security, and scalability requirements.
Often the core “fixed” architecture falls short in scaling up;
henceforth, changes to the architecture becomes necessary.
Thirdly, it is often the case that components are procured off-the-
shelf, rather than built from scratch, in response to changes in
requirements and then need to be integrated into the core architec-
ture. The architecture may fail to scale up, as these components
often have incompatible requirements on the hardware and operat-
ing system platforms they run on. Fourthly, a lean economy has
forced those with a limited IT budget to more fully “utilize” the
architecture so it becomes more flexible in responding to rapidly
evolving markets and scale to support business growth. As many
companies have come to the conclusion that it is essential to more
fully leverage the computing assets they already have, the impor-
tance of utilization has increased; it has become, for example,
necessary to utilize what the architecture may support in handling
more business transactions at a unit-time.

Failing to accommodate the scalability requirements may
“break” the software architecture necessitating changes to the
architectural structure (e.g., changes to components and inter-
faces), architectural topology (e.g., changes to the architectural
style), or even changes to the underlying architectural infrastruc-
ture (e.g., middleware). It may be expensive and difficult to
change the architecture as requirements evolve [Fin00]. Con-
versely, failing to accommodate the change leads ultimately to the
degradation of the usefulness of the system. Hence, an architec-
ture which is flexible and scale to address such changes in re-
quirements with limited resources and shorter time-to-market is a
significant asset for surviving the business, cutting down mainte-
nance costs, utilizing resources, and creating value.

Reflecting on the discipline, [Sul99] note that the important
book on software architecture begins, “As the size and complex-
ity of software systems increase, the design and specification of
overall system structure become more significant issues than the
choice of algorithms and data structures…”. [Sul99] add, “This
statement is true, without a doubt. The problem in the field is that
no serious attempt is made to characterize the link between struc-
tural decisions and value added”. Hence, the challenge that is
facing the software engineering community is that there is a gen-
eral lack of adequate models and methods, which connect techni-
cal engineering concepts to value creation under given circum-
stances. Despite the clear connection of scalability to value, there
is a general lack of value-driven models and methods, which con-
nect this property to value under given circumstances. Our contri-
bution aims to address this need.

As a motivating example, consider a distributed software ar-
chitecture that is to be used for providing the back-end services of
an organization. This architecture will be built on middleware,
such as Java 2 Enterprise Edition (J2EE) [Sun02] and the Com-

mon Object Request Broker Architecture (CORBA) [Obj00].
Depending on which middleware is chosen, different architectures
may be induced [DiN99]. These architectures will have differ-
ences in how well the system is going to cope with changes. For
example, a CORBA-based solution might meet the functional
requirements of a system in the same way as a distributed compo-
nent-based solution that is based on a J2EE application server. A
notable difference between these two architectures will be that
increasing scalability demands might be easily accommodated in
the J2EE architecture because J2EE primitives for replication of
Enterprise Java Beans can be used, while the CORBA-based ar-
chitecture may not easily scale. The choice is not straightforward
as the J2EE-based infrastructures usually incur significant upfront
license costs. Thus, when selecting an architecture, the question
arises whether an organization wants to invest into an J2EE appli-
cation server and its implementation within an organization, or
whether it would be better off implementing a CORBA solution.
Answering this question without taking into account the flexibility
that the J2EE solution provides and how valuable this flexibility
will be in the future relative to the likely change in load might
lead to making the wrong choice. Furthermore, the ranges in
which scalability requirements change may need to inform the
selection of distributed components technology, and subsequently
the selection of application server products.

Drawing on a case study that adequately represents a me-
dium-size component-based distributed architecture, the novel
contribution of this paper is an economics-driven software engi-
neering approach to the valuation of scalability in distributed
architectures. Using real options analysis, we report on how
ranges in which changes in scalability requirements can inform
the selection of distributed components technology and subse-
quently the selection of application server products. As the exact
method for analyzing scalability is subject to debate, we identify
views for analyzing scalability. We then focus the analysis on
throughput as a way for measuring scalability. We describe a real-
options based model for valuing the ability of a given architecture
to scale. We apply the model on two versions of a given architec-
ture, each induced with a distinct middleware: one with CORBA
and the other with J2EE. Traditional economics approaches to
software design appeal to the concept of static Net Present Value
(NPV) and Discount Cash Flows (DCF) as a mechanism for esti-
mating value [Boe00]. We show that options theory is said to be
superior to PV and DCF in valuing scalability, as the latter fall
short in valuing the flexibility of an architecture under uncer-
tainty, where uncertainty is attributed to the unpredicted change in
load. The case demonstrates how change impact analysis on a
system of a given architecture can be complemented with value-
based reasoning. The rationale is that the combination could pro-
vide the architect/analyst with a useful tool for understanding the
extent to which the software system is flexible to accommodate
the change; provide insights on the likely success (failure) of
software evolution; and consequently on the potential stability of
the architecture to change. This combination could also account
for the economics ramification of the change on the structure and
the behaviour of the system. For example, throughput, a scalabil-
ity measure, is correlated with value. That is, the more business
transactions can be performed on a system of a given architecture,
the more value is said to be created for the enterprise. Hence,
“hurting” the performance of the software, upon accommodating
the change in scalability requirements, implies “hurting” value.

The paper is further structured as follows. Section 2 describes
the case study, devises an options based model to value scalabil-

ity, reports and discuss the model’s application. Section 3 dis-
cusses closely related work. Section 4 concludes.

2. CASE STUDY

2.1 Setting
We use the Duke’s Bank application [Sun02], an online banking
application, which adequately represents a medium-size compo-
nent-based distributed system. The architecture of the Duke’s
Bank application has a three-tier style, given in Figure 1. The
architecture has two clients: an application client used by admin-
istrators to manage customers and accounts, and a Web client
used by customers to access account statements and perform
transactions. The server-side components perform the business
methods: these include managing: customers, accounts, and trans-
actions. The clients access the customer, account, and transaction
information maintained in a database.

D B

C u s to m e r

A c c o u n ts

T ra n s a c tio n

S e rv e rs

A c c o u n t

C u s to m e r

T ra n s a c tio n

W e b C lie n t

A p p lic a t io n

Figure 1. The Architecture of the Duke’s Bank

 We instantiate from the core architecture two versions, each
induced by a different middleware: one with CORBA and the
other with J2EE. Assume that the Duke’s Bank system needs to
scale to accommodate the growing number of clients in one-year
time. Scalability denotes the ability to accommodate a growing
future load, be it expected or not. We observe how a likely future
change in scalability, a representative critical change in non-
functional requirement, could impact the architectural structure of
each version. The challenge of building a scalable system is to
support changes in the allocation of components to hosts without
breaking the architecture of the software system; changing the
design and code of a component [Emm02]; and/or rippling the
change to impact other non-functionalities such as performance,
reliability, and availability. We use replication, an architectural
mechanism, to achieve scalability. The reason is due to the fact
that both CORBA and J2EE do provide the primitives or guide-
lines for scaling a software system using replication, which make
the comparison between the two versions feasible. In particular,
the Object Management Group’s CORBA specification defines a
fault tolerance and a load balancing support, which provides the
core capability for implementing scalability through replication.
Similarly, J2EE provides clustering primitives for scaling the
software system through replication. Interested reader may refer
to [Bah05b] for more details.

2.2. Valuation Views to Scalability
Scalability is frequently thought of in terms of numbers of users
that can be supported on either a single node or collectively on all
nodes in a system; it denotes the ability to accommodate a grow-
ing future load. The exact method of analyzing scalability is sub-
ject to some debate: First, the change in load demands is critical
as it could impact the architecture at its various levels: structure,
topology, and infrastructure. For example, the challenge of build-
ing a scalable system is to support changes in the allocation of

components to hosts without breaking the architecture of the
software system, or changing the design and code of a component
[Emm00b]. Second, the change in load could impact other non-
functional requirements such as performance, reliability, and
availability, when the change is poorly accommodated by the
architecture. As a result, this debate is appealing to the use of the
multi-perspective valuation points of view: structural and behav-
ioral valuation points of view to the analysis of the change in
scalability requirements.

 On the structural point of view, in [bah05b] we have ob-
served how the architecture of the given system, when induced by
a particular middleware, is ready to cope or need to be maintained
for supporting the change in scalability. We have analyzed the
impact of the change by looking at the structural changes and the
source lines of code (SLOC) that need to be modified/added for
implementing the change, configuring, and deploying the soft-
ware system. We have also quantified the value of the structure
in scaling to accommodate the change, by looking at the cost of
change on the structure of each version and by valuing the savings
in maintenance, deployment, and configuration costs to realize the
change. As reported in [Bah05], an observable advantage of scal-
ing the software architecture when induced by J2EE is that no
development effort is required to realize the scalability require-
ments through replication, as when compared to the CORBA
version. J2EE does provide clustering primitives for scaling the
software system, which result in making the architecture of the
software system more flexible in accommodating the change in
scalability, as when compared to the CORBA version. Consider-
ing the CORBA-induced architecture of the Duke’s Bank, sup-
porting scalability through replication has not leave the middle-
ware infrastructure and the application layer intact. Though the
use of both CORBA specification and design patterns[OMG00]
has simplified the task of realizing the requirements for achieving
fault tolerance and load balancing, implementation and integra-
tion overhead have not been abandoned. In particular, the fault
tolerance and load balancing services need to be implemented and
be integrated into the used middleware. The server and the client
application need to be updated. Interested reader may refer to
[Bah05b] for results and details on this view.

In this paper, we complement the analyses by looking at the
behavioral point of view to analyze scalability. On the behavioral
point of view, we use throughput or the capacity of the system to
measure scalability. Throughput is a performance criterion, which
expresses the amount of work performed by the system under test
during a unit of time. For this view, we elicit the likely ranges in
future load. We discuss the impact of likely change in future load
on the behavior of the system. We then describe how ArchOp-
tions can be used to reason about the change. Throughout the
paper, we focus on this view.

2.3. The Throughput View to Valuing Scalability
A possible way to treat scalability is to assume that scalability can
be measured by throughput or capacity of the system. Throughput
is a generic performance criterion, which expresses the amount of
work performed by the system under test during a unit of time.
This criterion is based on the observation that for a fixed system
with a given throughput (e.g., a single host), there is an inverse
relationship between the response time and the number of clients.
In other words, the more clients submitting requests, the longer
are the delays. A well-known throughput metric is the Total Op-
erations Per Second (TOPS) completed during the measurement
interval, referred to as TOPS [http://www.spec.org/]. TOPS is

composed of the total number of business transactions completed
in the customer domain, added to the total number of work orders
completed in the manufacturing domain, normalized per sec-
ond[http://www.spec.org/].

To understand how Duke’s architecture may behave once in-
duced with J2EE or CORBA, we have screened relevant perform-
ance benchmarks (e.g., [Den04];
http://www.spec.org/jAppServer2005/). We appeal to the use of
published benchmarks, because the system of the given architec-
ture need not be implemented during the evaluation. Thus, per-
formance measures may not be available. Benchmarks are reveal-
ing on the performance dimension because, for example, if multi-
ple benchmarks are conducted with a suitable mix of relevant
factors, it may be possible to obtain a set of basic scalability re-
sults that can be used for estimating the throughput of possible
configurations of the architecture. Depending on the benchmark-
ing algorithm, the relevant scalability factors can be, for example,
the number of objects, the number of clients, or the number of
nodes in the system etc. supported in response to growing load. A
major problem in comparing benchmark results, however, is that
different hardware platforms and configurations (e.g., memory,
disk drives etc) often produce different results making the com-
parisons difficult. Further, vendors often try many different ways
to optimize performance, including adding cache memory and
putting cache buffers on disk arrays. Therefore, we only use
benchmarks, which are close to the case at hand. We then normal-
ize the screened benchmarks for easing the comparison. It could
be also argued that in iterative development (e.g., in the Unified
Process) partial implementations might be available at the end of
each phase. In this context, it is possible to create benchmarks
from the partial implementations and to use them in recalibrating
the screened ones. The intention is to have more meaningful fig-
ures which we could use for understanding the impact of likely
change in future load on the behavior (throughput) of the system
and the corresponding economics ramifications.

Figure 2 shows the likely throughput trend that the J2EE-
induced architecture may exhibit relative to the CORBA-induced
one, upon varying the TOPS and the number of hosts. For the
J2EE-induced architecture, we provide throughput estimations for
two possible implementations: one with JBoss and the other with
WLS. For the CORBA-induced architecture, we provide estimates
upon the use of JacORB to induce the architecture. Table 1 de-
picts the upper limit of TOPS supported per host for each of
WLS, JBOSS, JacORB induced architectures for 1 to 4 hosts.

Throughput of WLS, JBOSS, and JacORB upon
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
PS

WLS
JBOSS
JacORB

Figure 2. Plotting the TOPS per host for each of WLS,
JBOSS, JacORB for 1 to 4 hosts

Table 1. Upper limit of TOPS per host for each of WLS,
JBOSS, JacORB
 Hosts WLS JBOSS JacORB

1 732.00 400.26 546.80

2 918.36 502.16 686.01

3 1395.44 763.03 1042.39

4 2640.96 1444.08 1972.79

Figure 3 shows the likely cost-trend upon inducing the Duke’s

bank architecture with J2EE (using either WLS or JBOSS) and
with CORBA (using JacORB). The likely cost is plotted against
the number of hosts (1 to 4). The cost refers to the lifecycle cost
of the System Under Test (SUT). The cost includes Application
Servers/Containers, Database Servers, network connections, etc.
Assuming, for example, a five-year lifecycle, cost would include
all hardware (purchase price), software including license charges,
and hardware maintenance. For the CORBA version, it assumed
that the investment incurs an upfront cost to the development of
the replication mechanism to support fault-tolerance and load-
balancing services for high load scenarios [Bah05b]. For the J2EE
version of WLS, a license cost is incurred per host.

WLS, JBOSS, and JacORB Costs for 1-4 hosts

0.00
50000.00

100000.00
150000.00

200000.00
250000.00
300000.00
350000.00

1 2 3 4

No of hosts

$

WLS

JBOSS

JacORB

Figure 3. The likely cost-trend upon inducing the Duke’s bank ar-
chitecture with J2EE-(WLS or JBOSS) and with CORBA (JacORB).

Though the structural analysis appears to be in favor of the
J2EE-induced architecture [bah05b], the throughput analysis may
reveal a different trend. From the throughput valuation point of
view, Figure 2 shows that when the Duke’s architecture will be
induced with JBOSS, a J2EE implementation, the system is
likely to be slower than that of the JacORB one. This is because
Jboss uses reflection [http://www.jboss.org]. This also implies
that there are some chances for the JBOSS-induced architecture to
require more hardware for addressing this deficiency. When in-
ducing the Duke’s architecture with WLS, another J2EE imple-
mentation, the system is very likely to be faster than that of the
JacORB implementation. WLS, however, comes with significant
licenses costs; this cost grows with the number of hosts, as the
load increases. Coining the TOPS with their associated costs,
Figure 2, Figure 3 and Table 1, hint that there might be a case for
JacORB in certain throughput range. Moreover, note that once the
services for realizing scalability (i.e., the fault-tolerance and load
balancing service) are implemented, the cost is incurred once and
amortized across the hosts. Hence, as the load grows, the analysis
becomes complex.

2.4. Valuing Scalability with Options Theory
2.4.1 ArchOptions: background
Let us assume that we are given the choice of two middleware M0
and M1 to induce the architecture of a particular system. Let us
assume that S0, S1 are the architectures obtained from inducing
M0 and M1 respectively. Say, M1 is an economical choice, if it
adds value to S1 relative to S0. We attribute the added value to the
enhanced flexibility of S1 over S0 in scaling up the architecture.
But the added value is uncertain, as the demand and the nature of
the future change and load are uncertain. A question of interest is:
how valuable is the flexibility of either alternative, relative to
likely change in scalability, will be in the long-run? Which solu-
tion is more valuable? Using options theory is suited to answer
theses questions.

Real options analysis recognizes that the value of the capital
investment lies not only in the amount of direct revenues that the
investment is expected to generate, but also in the future opportu-
nities that flexibility creates [Erd99; Erd00; Erd02; Sul99; Sul02].
These include growth, abandonment or exit, delay, and learning
options. An option is an asset that provides its owner the right
without a symmetric obligation to make an investment decision
under given terms for a period of time into the future ending with
an expiration date [Tri95]. If conditions favourable to investing
arise, the owner can exercise the option by investing the exercise
price defined by the option. A call option gives the right to ac-
quire an asset of uncertain future value for the strike price [Tri95].

The problem of selecting a particular middleware to induce a
given architecture is an option problem. From the evolution per-
spective, the flexibility of the middleware induced-architecture in
coping with changes in non-functional requirements has a value.
More specifically, flexibility adds to the architecture values in the
form of real options that give the right but not a symmetric obli-
gation- to evolve the software system and enhance the opportuni-
ties for strategic growth. The added value is strategic in essence,
uncertain as the demand on the future changes are uncertain, and
may not be immediate. The added value may take the form of (i)
accumulated savings through coping with the change without
“breaking” the architecture, mostly these are changes in non-
functional requirements; (ii) extending the range of services while
leaving the architecture intact; and (iii) the ability to respond to
competitive forces and changing market conditions that may pose
higher Quality of Service (QoS) requirements, such as the de-
mands for higher availability, scalability, reliability and so forth.
From an early development perspective, given several middle-
ware candidates, the architect has the right without the symmetric
obligation to embark on a selection for inducing an architecture.
A “wise” selection could be regarded as an investment to buy
flexibility, which could be valued as future growth options
[Tri96] on the architecture of the software system. These options
differ from one middleware to another.

ArchOptions[Bah05a; Bah05b; Bah04a; Bah03b], a real
options based model that we developed, values the growth
options of an architecture relative to some future changes,
as a way for understanding the architectural flexibility and
its stability implications. A growth option is a real option to
expand with strategic importance [Tri95] and is common in infra-
structure-based investments, as it is the case with software archi-
tectures. Since the future changes are generally unanticipated, the
value of the growth options lies in the enhanced flexibility of
the architecture to cope with uncertainty. ArchOptions

builds on a simple and intuitive analogy with Black and
Scholes [1973], as described in Table 2.

Table 2. Financial/real options/ArchOptions analogy
Option on
stock

Real option on a
project

ArchOptions

Stock Price Value of the
expected cash
flows

value of the “architectural po-
tential” relative to the change
xiVp

Exercise
Price

Investment cost Estimate of the likely cost to
accommodate the change Ceip

Time-to-
expiration

Time until oppor-
tunity disappears

Time indicating the decision to
implement the change (tp)

Volatility Uncertainty of the
project value

“Fluctuation” in the return of
value of V over a specified
period of time (σp)

Accommodating the change, thus, is analogous to buying an

“architectural potential” (i.e., an option on an asset) with uncer-
tain future value paying an exercise price. The exercise price
corresponds to the cost of accommodating the change on the sys-
tem of the given architecture. The value of the call option,
whether in-the-money or out-of-the-money, is a measure of the
architecture flexibility in accommodating change. This value is an
indicative measure of the “architectural potential” in unlocking
future growth opportunities (e.g., case of reuse, new market prod-
ucts), enhancing the upside potentials of the architecture, generat-
ing value (e.g., savings in maintenance), or incurring losses (e.g.,
case of a disruptive changes), as a consequence of accommodat-
ing the change. The value of the call is a powerful heuristic,
which can provide a basis for analyzing many architecture-centric
evolution problems, which place considerable emphasis on the
flexibility of the architecture as a way for easing software evolu-
tion.

Choosing a particular middleware to induce the architecture
of the software system can be seen as an investment to purchase
flexibility in the induced software architecture. The range in
which the load change influence the choice. In this context, decid-
ing on a particular middleware to induce the software system
architecture can be seen as an investment to purchase future
growth options that enhance the upside potentials of the structure
when the load change. That is, S1 is said to be more accommodat-
ing to the change than S0, if S1 holds more growth options than S0.
For a valuation point of view p, we focus the analysis on the calls
of the ArchOptions model for valuing the growth options, as
given in (1) accounting for both the expected value and exercise
cost to accommodate future requirements ii, for i ≤ n. Valuing the
expectation E of expression (1) uses the assumptions of Black and
Scholes[Bla73] and detailed in previous work[Bah05b;
Bah04a;.Bah03b]:

 ∑ i=1…n E [max (xiVp - Ceip, 0)] (1)

The payoff of the constructed call option gives an indication

of how valuable the flexibility of an architecture is, when endur-
ing some likely changes in requirements. The selection has to be
guided by the expected payoff in (∑ i=1…n E [max (xiVp - Ceip, 0])S1
relative to that of (∑ i=1…n E [max (xiVp - Ceip, 0])S0. That is, if (- Ie

+ ∑ i=1…n E [max (xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip,
0)] S0) for some likely changes, then it is worth investing in M1, as
the investment in M1 is likely to generate more growth options for
S1 than for S0 and relative to the p valuation point of view.
 If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely to pay-
off, relative to M0, as the flexibility of the architecture to the
change is not likely to add a value for S1 on p, if the change need
to be exercised. Two interpretations might be possible: (i) the
architecture is overly flexible in the sense that its response to the
change(s) has not “pulled” the options relative to p. This implies
that the embedded flexibility (or the resources invested in imple-
menting flexibility- if any) are wasted and unutilized to reveal the
options relative to the changes and relative to p (ii) the other case
is when the architecture is inflexible relative to the change. This is
when the cost of accommodating the change on S1 is much more
than the cumulative expected value of the architecture respon-
siveness to the change.

2.4.2 Application of ArchOptions
The case of valuing the scalability of the architecture is appealing
to ArchOptions for the following major reasons: First, there is
cone of uncertainty associated with the growing load and conse-
quently in the value added as result of our choice. Moreover, the
TOPS are of straightforward contribution to value. That is, the
more operations are completed per second, the more value is
added to the enterprise. However, TOPS incur a price upon exe-
cuting the operations. The price again is dependent on several
factors such as the number of hosts, the hardware, the license
cost, and any additional costs that are necessary for making the
middleware adaptable to the growing load. In the context of the
Duke’s Bank, the TOPS range is often uncertain as it is dependent
on the customers’ behavior at a time. The uncertainty in the likely
range (i.e., TOPS), the associated costs for executing the TOPS,
and the “fluctuation” in the value added as a result make the case
very appealing to the use of ArchOptions. For the throughput
valuation point of view, the analysis using ArchOptions aims at
complementing the behavioral analysis to understand the trend in
the added value upon embarking on either J2EE (JBOSS or WLS)
or CORBA(JacORB) to induce the architecture of a given system.
Second, in the context of ArchOptions, our use of benchmarks
resembles the use of a twin asset. Real options valuation based on
Black and Scholes pricing technique determines the value of an
asset in question in span of the market value using a correlated
twin asset [Tri95]. The twin asset is an asset that has the same
risks as the asset in question will have when the investment has
been completed [Tri95]. The intuition is that to understand the
behavior of the asset in question, we can use a twin asset, also
referred to as a replicated portfolio. The assumption is that under
similar conditions the twin asset and the asset in question are
interchangeable for all practical purposes and should be worth the
same. That is, if we know how much the twin asset is worth in the
present, we can then determine how much the option on the asset
in question is worth in the present. We argue that using bench-
marks satisfies the concept of the twin asset as we are relying on
historical information showing possible variations in performance
in connection to change in load and relative to the candidate im-
plementations. These benchmarks often hint that the throughput is
dependent on and can be estimated from the middle-tier “process-
ing power” of the architecture. Such variation, we believe, is a
wealth as it reveals pros and cons of the Duke’s Bank execution
under possible operating environments and/or in relation to other
participating applications. This is advantageous because scalabil-

ity is also a factor of the number of independently developed
applications that might share an execution platform. The advan-
tage of this approach is that the published benchmarks could re-
veal risks of the operating environment on the choice.

For the throughput valuation point of view, Pthro, an addi-
tional operation is said to “buy” an architectural potential paying
an exercise price. In terms of throughput, the architectural poten-
tial is a performance measure. That is, the more TOPS are said to
be completed at a host (or for a configuration), the more value is
said to be added to the enterprise. The more valuable is said the
architectural potential relative to the TOPS. The exercise price is
price/TOPS. If we assume that xiVPthroS1 is the value added in S1
over S0 due to the support of more TOPS, it is reasonable to con-
sider that if (∑ i=1…n E [max (xiVPthro - CeiPthro, 0)] S1 > ∑ i=1…n E
[max (xiVPthro - CeiPthro, 0)] S0), then investing in M1 is said to pay-
off relative to Pthro. We construct call options for a likely
change in load-range. The objective is to analyze the architectural
potential in supporting a likely growth of TOPS. Below, we show
how we estimate the parameters relative to Pthro.
 Estimating (CeiPthro). A change in a load-range is said to buy
an architectural potential paying an exercise price. As we men-
tioned before, TOPS denotes the Total Operations completed per
Second. For the simplicity of explanation, let us assume that the
system of the induced architecture needs to scale up to support an
additional operation per unit-time. An additional operation is said
to buy an architectural potential paying an exercise price. In terms
of throughput, the architectural potential is a performance meas-
ure. Hence, what an extra operation pays, if materializes, is a
bandwidth for performing that operation. Inducing the Duke’s
bank with either J2EE or CORBA provide different bandwidth
capabilities for performing the operation at different price. If the
implementation of either happens to hold embedded growth op-
tions in supporting the extra operation, then the operation is said
to pay an exercise price to buy options on the architecture. To
estimate the exercise price, we use a well-known normalization
factor, which is the price/performance
[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle cost of
the System Under Test (SUT) as configured for the benchmark
divided by the throughput). As an example, assuming five-year
lifecycle, the cost would include all hardware (purchase price),
software including license charges, and hardware/software main-
tenance. If the total price is $5,734,417 and the reported through-
put is 105.12 TOPS, then the price/performance is
$54,551.16/TOPS (54,551.151 rounded up).

Estimating (xiVPthro). For simplicity, we estimate xiVPthro
relevant to the business domain. For every completed on-
line operation, Duke’s would not need to have to serve a customer
in person at a branch. That is, the Duke’s savings are in the man-
ual-effort for serving the clients at a branch. For example, let us
assume a scenario where a clerk needs one minute for completing
a business operation: if we assume an overhead cost of
$100,000/year for each clerk, then an online operation saves about
a dollar per operation in a minute: $100000/ (220day * 8hours *
60minutes). Computing savings per second is then straightfor-
ward. We use scenarios of 8 and 20 clerks for computing xiVPthro.

Estimating volatility (σPthro). Volatility represents uncer-
tainty attributed to the likely growing of load. For some computa-
tion, we abide to the real options principles in computing volatil-
ity: we use the standard deviation of xiVPthros due supporting extra
operations for a range of load at a particular host (as the range is
said to be revealing to the fluctuation in the value). For other
computations, we use modeling estimates for volatility, represent-

ing uncertainty, with the objective of demonstrating how volatil-
ity is said to influence the options results.

 Exercise time (t Pthro) and free risk interest rate(r Pthro). As
a simulation assumption, we set the exercise time to one year,
assuming that the Duke’s Bank needs to accommodate the change
in one-year time. We set the free risk interest rate to zero (i.e.,
assuming that the value of money today is the same as that in one
year’s time).

2.4.3 Results, analysis, and discussion
Flexibility creates real options. Let us consider the flexibility
that S1 provides over S0, relative to Pthro: Consider a scenario,
where the likely load is 1042 TOPS. Table 3 shows that 1042
TOPS can be supported by three hosts, if the Duke’s architecture
is induced with either M1 (WLS) or M0 (JacORB). Table 3 shows
that for three hosts, supporting 1042 TOPS costs $1488.88 for S1
when induced with WLS but $243.05 for S0 when induced with
JacORB. The cost is denoted by CeiPthro. Supporting 1042 TOPS
online is assumed to eliminate manual-overhead and create xiVs,
and computed using eight clerks scenario. Using high volatility
modeling assumptions for σPthro= 100% for simplicity, Table 3
shows that S1 adds more value than So for three hosts. This is be-
cause the cost of implementing both load balancing and fault-
tolerance is far from breaking even on S0 for three hosts. Let us
now suppose that Duke’s can only afford to invest in three hosts
and the investment is to be made. Let us now assume that the load
is likely to grow from 1042 TOPS to the range of 1250-1395
TOPS, as a result of accommodating more customers.

According to Table 4, as the load increases over 1042 TOPS,
M1 continues to be of a better value for flexibility as when com-
pared to M0 for the following reasons: First, S0 will be inflexible
to support an extra operation beyond 1042 TOPS for three hosts
(Table 1). That is, the growing load requires an additional host;
henceforth, incurring hardware costs. Second, the cost of imple-
menting both load balancing and fault-tolerance is far from break-
ing even on S0 for three hosts. As a result, S0 ceases to create real
options on three hosts if the load exceeds the expected 1024
TOPS. Conversely, for the range of 1250-1395 TOPS, S1 tends to
carry growth options on three hosts. This is because at threshold,
S1 can support around 1395 TOPS (Table 1). That is, S1 when
induced with WLS, tends to create value for an additional 371
TOPS on three hosts. Formalizing this thinking,

The architectural potential of S1 (WLS) = value in supporting

1042 TOPS now + growth options in supporting an additional 371
TOPS;

The architectural potential of S0 (JacORB) = value in support-
ing 1042 TOPS now + zero growth options beyond 1042 TOPS.

 Table 3. Supporting 1042 TOPS with three hosts and their options
value, if the Duke’s architecture is induced with either M1 (WLS) or
M0 (JacORB), σPthro= 100%

1042 TOPS No
Hosts

CeiPthro XiVPthro OptionsPthro

S1(WLS) 3 148.88 131.61 45.44

S1(JBOSS) 4 126.96 131.61 51.86

S0(JacORB) 3 243.05 131.61 27.59

Table 4. Supporting 1395 TOPS with three hosts and their options
value, if the Duke’s architecture is induced with either M1 (WLS) or
M0 (JacORB) σPthro= 100%

1250-1395
TOPS

No
Host

s

CeiPthro XiVPthro OptionsPthro Growth

Options

S1(WLS) 3 148.88 176.61 77.05 31.61

S1(JBOSS) 4 126.96 176.1 85.79 33.93 for
4 hosts

S0(JacORB) 3 243.05 131.61 27.59 0

Hence, for three hosts and with the likely growing load in the

range of 1250-1390 TOPS, S1 exhibits that it has flexibility under
uncertainty. This flexibility takes the form of growth options held
on S1. The value of these options is in supporting an additional
371 TOPS. The more uncertain we are about the likely growth in
load (i.e., beyond 1024 TOPS and in the range of 1250-1390
TOPS), the more valuable is the flexibility in S1 relative to S0.
Real options is suited to address typical software evolution prob-
lems, where uncertainty attributed to the change in requirements
is the norm. Using real options theory is better suited than tech-
niques that are based on Present Value (PV) and Discount Cash
Flow (DCF) as these techniques tend to systematically underesti-
mate the value of flexibility under uncertainty[Trig95; Erd02]. As
we have mentioned in several occasions, in our case the likely
change in load is the major source of uncertainty that the Duke’s
Bank faces. To address such uncertainty and provide better in-
sights on value creation, we have appealed to the use of real op-
tions theory. Let us provide an evidence to support our use: Let us
assume that the load is assumed to be in the range of 30- 50
TOPS. Based on the benchmarks, 30-50 TOPS could be easily
addressed by one host using either M0 (JacORB) or M1 (Jboss or
WLS). Figure 4 sketches the likely associated costs when induc-
ing the architecture with either alternative. For such a low
throughput requirements, inducing the architecture with M0 may
appear to be more attractive as when compared to inducing the
architecture with M1 (using either JBOSS or WLS). This is be-
cause M1 incurs license costs for WLS. Moreover, looking at S1
when induced with JBOSS, S1 is likely to be in magnitude slower
than S0 as when induced with JacORB. This means that S1
(JBOSS) will support fewer TOPS and consequently will create
less value added per second as when compared to S0. For this low
load, the fault-tolerance and load-balancing services need not be
implemented on S0. If options analysis is not used, M0 will be a
no-brain choice for inducing the Duke’s Bank architecture.
Though inducing the architecture S1 with M1 (using WLS) ap-
pears less attractive than M0 (JacORB), S1 may still carry embed-
ded growth options which will only materialize if the load grows.

If we use a PV or DCF approach, the resulted valuation will
compute the present value as realized and ignore these growth
options. In other words, inducing the architecture with WLS if
undertaken, PV or DCF would hint that S1 would destroy value
rather than create it. Formulating this argument, a PV approach,
for example, will leave us with Value S1 = PV. However, ValueS1
is actually Value S1 = PV + Opt. That is, M1 carry embedded
growth options, Opt. The Opt, if left unexercised, are ignored by
the non-options analysis. Hence, Value for S1 is then said to be
underestimated. As a result, S0 may look more attractive (Table
5).

S1(WLS), S1(JBOSS), and S0(JacORB) costs for 1
host (low throughput)

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

1

Host

($
)

WLS

JBOSS

JacORB

Figure 4. The likely associated costs compared upon inducing
Duke’s architecture with WLS, JBOSS, and JacORB for very low
throughput requirements on one host

 The PV and DCF calculation of Table 5 shows that S1 is the
least attractive for this range of load. The computation is based on
the benefits of supporting 100 TOPS less their costs. However,
the computation ignores the growth options on S1 in supporting
additional 632 TOPS using the first host. Similarly, the PV and
DCF systematically undervalue the growth potential of S1
(JBOSS) and S0 (JacORB) in respectively supporting 300.26
TOPS and 446.26 TOPS. In other words, PV and DCF ignore the
flexibility value of S1 and S0 in responding to the growing load at
host 1. Note that it is a fact that NPV or DCF does not work well
for projects with future decisions that depend on how uncertainty
resolves. Though they can be used to evaluate the operational
benefits in a stable environment with well-understood and meas-
urable costs and benefits, they have little to offer when capturing
additional value due to flexibility under uncertainty, such as stra-
tegic opportunities and the ability to respond to changing condi-
tions. Using PV or DCF, S1, when induced with WLS, reports
negative values upon inducing the architecture with WLS for this
range of load. However, the situation indicates that these results
underestimate the value of S1, as S1 can better respond to uncer-
tainty, where the load is likely to grow over 100 TOPS. In Table
6, we have turned to the intuition and used ArchOptions to cap-
ture the growth options on S1 and S0. The volatility parameter is
an expression of the range of “benefits” at a host. For example,
consider S1 (WLS): the benefits could “wander” from zero (i.e.,
idle state with no operations executing at a second) to the benefits
derived from full utilization of capacity (i.e., in the support of 732
TOPS). That is, the volatility of 66% for S1 (WLS) indicates that
the benefits of executing the TOPS is in the range of $0(idle) to
$92.42(full utilization) per second on host 1. Similarly, for S0
(JacORB): the 45% volatility for S0 (JacORB) indicates that the
benefits of executing the TOPS are in the range of $0(idle) to
$69.04 (full utilization) per second on host 1. As far as the options
on S1(WLS) are concerned, S1 has “pulled” the options on one
host for this range of load. This is because we have accounted for
the possible fluctuation in the derived values from supporting the
TOPS. Considering such “fluctuation” provides us with better
insights on the architectural potential of S1 in support of this
likely change in load. Table 6 suggests S1 has reported a value
added of $0.017 on 1 host.

Table 5. Illustration NPV and DCF per second ($) very low through-
put scenario (100 TOPS)

10
0

TO
PS

M
ax

 T
O

PS

C
ei

PT
hr

o

X
iV

PT
hr

o

PV

D
C

F

Value

Ignored

(TOPS)

S1(WLS) 732.00 853.11 12.63 -840.48 -933.87 -632

S1(JBOSS)
400.26 603.11 12.63 -590.48 -656.09

 -300.26

S0(JacORB)
546.80

603.11 12.63 -590.48 -656.09

-446.80

Table 6. Illustration options per second ($) very low throughput
scenario (100 TOPS)

100 TOPS CeiPThro XiVP-

Thro
σPthro Options Actual Value

 (TOPS)

S1(WLS) 853.11 92.42
4

66% 0.01700 100 + 632

S1(JBOSS) 603.11 50.53 35% 0+ 100 + 300.26

S0(JacORB) 603.11 69.04 49% 0.00001 100 + 446.80

The impact of volatility on value. A critical difference between
PV/DCF and real options is the effect of uncertainty (or risk) on
value. Figures 5a-c shows that PV and DCF systematically under-
estimate the potential value of S1 and S0 in supporting a range in
load on one to four hosts. The reason why DCF reports steeper
values is due to the discount rate (10% is used for illustration
purposes only). We have turned to the intuition and have used a
more powerful technique offered by the theory of option pricing
to capture the value of flexibility under the dynamic and the un-
certain range of load. However, how this uncertainty is ex-
pressed? How does this relate to Duke’s case? Let us have a close
look at the impact of the volatility parameter, which is an expres-
sion of the value of flexibility under uncertainty.

In the context of ArchOptions, the volatility parameter esti-
mates the “cone of uncertainty” in the future value of the asset,
rooted as its current value and extending over time as a function
of volatility. As volatility increases, total uncertainty around the
benefits also increases. The more TOPS a host is likely to support,
the more likely that the actual benefits to “wander” up and down
and deviate from the expected present value if the load grows.
Hence, the more volatile the environment is said to be.

Let us now assume that Duke’s Bank needs to support more
customers. Assume that the load is likely to grow and be in the
range of 600- 686 TOPS (Table 7): S1, when induced with WLS,
realizes the change in load by one host. S0, when induced with
JacORB, will need two hosts and will incur the cost of developing
the fault-tolerance and load-balancing services on the structure.
Yet, S1 when induced with JBOSS will require three hosts and
will incur additional hardware costs for completing the 686
TOPS. Figure 6 shows a scenario for a likely load of 600-686
TOPS for S1 when induced with WLS and for S0 when induced
with JacORB. S1 could be regarded as an investment with a wide
range of possible outcomes. However, S0 is an investment with a
relatively narrower range. For S1, the investment is said to be
more volatile. This is because S1 can support more TOPS/host
resulting in a possible range of values. Relating this to PV, this
means that there is a chance of producing positive PV in the fu-
ture. Hence, a real option under this set of outcomes would have

value. As for the S0, the valuation under this scenario is more
stable. This is because S0 can support at most 686 TOPS for the
existing configuration. This means that S0 has no chance of pro-
ducing a project with a positive NPV beyond 686 TOPS. That is
an option using the latter set of outcomes would have no value.

S1(WLS) Options, PV, and DCF

-1000

-800

-600

-400

-200

0

200

400

1 2 3 4

No of Hosts

$

Options

PV

DCF

Figure 5a. The options, PV, and DCF on S1 when induced with
WLS relative to the throughput valuation point of view

S1(JBOSS)- Options, PV, and DCF

-700.00

-600.00

-500.00

-400.00

-300.00

-200.00

-100.00

0.00

100.00

200.00

1 2 3 4

No of Hosts

$
Options
PV
DCF

Figure 5b. The options, PV, and DCF on S1 when induced with
JBOSS relative to the throughput valuation point of view

S0(JacORB)- Options, PV, and DCF

-700

-600

-500

-400

-300

-200

-100

0

100

200

1 2 3 4

No of Hosts

$

Options

PV

DCF

Figure 5c. The options, PV, and DCF on S0 when induced with
JacORB relative to the throughput valuation point of view

Figure 6. Impact of volatility on value

Table 7. PV and DCF ($) per second for supporting 686 TOPS on
S0 and S1 and the values they ignore

68
6T

O
PS

N
o

H
os

ts

M
ax

 T
O

PS

C
ei

PT
hr

o

X
iV

PT
hr

o

PV

D
C

F

V
al

ue

Ig
no

re
d

(T
O

PS
)

S1(WLS)

1

73
2

 124.36

216.54 92.18 83.80

-46 TOPS

S1(JBOSS)

3

76
3 193.51 216.54 23.03 20.93

-77 TOPS

S0(JacORB)

2

68
6

285.32

216.54 -68.78 -76.42

 0 TOPS

Table 8. Adjusted PV and the options in ($) per second under full
utilization scenario of hosts for load greater than 686 TOPS on S0
and S1 and the values added per second

Fu
ll

U
til

iz
at

io
n

N
o

H
os

ts

C
ei

PT
hr

o

X
iV

PT
hr

o

σ
Pt

hr
o

PV
 p

ri
or

 A
d-

ju
st

m
en

t

A
dj

us
te

d
PV

O
pt

io
ns

Pr

ed
ic

te
d(

$)

A
dd

ed
 V

al
ue

 l

A
ct

ua
l V

al
ue

(T

O
PS

)

S 1
(W

L
S)

1

12
4.

36

23
1.

06

10
.5

2%

92
.1

8

10
6.

7

10
6.

7

14
.5

2

68
6

TO
PS

Pl

us

 4

6
TO

PS

S 1
(J

B
O

SS
)

3

19
3.

51

24
0.

85

6.
9%

23
.0

3

47
.3

4

47
.3

4

24
.3

4

68
6

TO
PS

Pl

us

 7

7
TO

PS

S 0
(J

ac
O

R
B

)

2

28
5.

32

21
6.

54

0%

-6
8.

78

-6
8.

78

0 0

0
TO

PS

 Let us now assume that we have induced the Duke’s archi-
tecture with M1 (WLS) for one version and M0 (JacORB) for the
other. Hence, investment is made. As time passes, let us assume
that an increase in load materializes. As change in load material-
izes, uncertainty is assumed to be resolved. Thus, the present
value, as a result of supporting more TOPS (analogous to the
future value of a stock), can be then calculated more accurately. If
we examine the PV of this scenario, we can see that PV reports
$92.18/second for WLS for 686 TOPS. That is, this is equal to the
benefits minus the costs of completing the 686 TOPS. However,
this value is said to be underestimated, as it ignores the additional
46 TOPS that S1 can support using one host (i.e., 732 minus 46
TOPS). S1, when induced with JBoss, reports a PV of $23.03,
ignoring the additional value of supporting 77 TOPS for this con-
figuration. S0, when induced with JacORB, reports a negative PV.
The negative value is attributed to cost incurred upon the devel-
opment of the fault tolerance and the load balancing services on
S0. Let us now turn to options: Table 8 suggests that for 686
TOPS, S1, when induced with WLS, creates more options than S0
using one host. In particular, S1 (WLS) reports a value of $106.7.
S1 (JBOSS) reports a value of $47.3. S0 (JacORB) reports a value
of $0. Why is this difference? Technically speaking, this is be-
cause of the volatility parameter that captures variation in the
value potentials of the said structures. For S1 (WLS), the differ-
ence for S1 (WLS) is attributed the range of possible returns that

the additional 46 could ascribe to S1(WLS). This means that for
S1 (WLS), the additional future values, if the range in load
changes, is in the bound of $0(i.e., at most 686 TOPS) to
$46*216.54/686(i.e., assuming equal returns upon supporting the
additional 46TOPS). This will leave us with a volatility of
%10.52, using the standard deviation of the returns over this
bound. Similar argument applies for S1 (JBOSS), leaving us with
a volatility equal to 6.9% in support of the additional 77 TOPS. S0
(JacORB) reports $0 options. This is because S0 (JacORB) cannot
support additional TOPS on this structure. In the language of
options, S0 (JacORB) is not volatile and ceases to create options
beyond 686 TOPS; henceforth, the reported zero values.
 Let us now turn to PV again and assume an additional load
has materialized (i.e., uncertainty has been resolved). Let us ad-
just the PV based on the new information at hand: if we compute
the PV of the additional 46 TOPS for S1 (WLS), this will leave us
with an added value of $14.52 over the previously computed PV,
as reported in Table 8. If we compute the PV of the additional 77
TOPS for S1 (JBOSS), this will leave us with an added value of
$24.34 over the previously computed PV for S1 (JBOSS)- see
Table 8. Adjusting the PV, we sum these values with the previ-
ously reported PVs of Table 8. This will leave us with $106.7
value for S1 (WLS) and $47.3 value for S1 (JBOSS). Henceforth,
this is a match with the ArchOptions results for S1 (WLS) and S1
(JBOSS).
 This observation leaves us with following conclusions: First,
though it is still possible to adjust PV or DCF techniques for cap-
turing the options, ArchOptions provides us with a ready and
closed-form solution, rooted in options theory, for capturing the
value of flexibility under uncertainty on a given architecture. This
solution is said to be superior to PV and DCF, as the latter they
systematically underestimate the value of the flexibility of an
architecture under uncertainty. Secondly, the analysis of matching
the adjusted PV values with that of ArchOptions confirms the
correctness and the effectiveness of the model. Nevertheless, the
effectiveness of ArchOptions is essentially rooted in our use of
Black and Scholes options theory. The analysis, however, has
established confidence on both its correctness and effectiveness.
Third, the results of this observation show that the volatility pa-
rameter is critical for the valuation of the options. In real situa-
tions, the performance analyst/architect may inspect available
performance benchmarks, screen historical load-trends to predict
future ones, or use prototypes of partial implementations to col-
lect performance indices. Consequently, volatility can be then
empirically extracted. The analyst can make use of the sensitivity
analysis for better understanding of the impact of throughput on
the value added when uncertainty in the likely future load domi-
nates.

3. RELATED WORK
In this Section, we provide a quick overview of closely related
research on: (i) the use of real options in software design and
engineering; (ii) related research on architectural evaluation, and
(iii) ongoing research on the “coupling” of software architecture
and middleware.

The use of real options in software engineering. Economics
approaches to software design appeal to the concept of static Net
Present Value (NPV) as a mechanism for estimating value
[Boe00]. These techniques, however, are not readily suitable for
strategic reasoning of software development as they fail to factor
flexibility [Boe00; Erd99]. The use of strategic flexibility to value

software design decisions has been explored in, for example, [Er-
d99; Erd02; Erd00; Sul96; Sul99; Sul01] and real options theory
has been adopted to value the strategic flexibility: [Bal01] studied
the flexibility created by modularity in design of components (of
computer systems) connected through standard interfaces. [Sul96;
Sul99; Sul01] pioneered the use of real options in software engi-
neering. [Sul96; Sul99] suggested that real options analysis can
provide insights concerning modularity, phased projects struc-
tures, delaying of decisions and other dynamic software design
strategies. [Sul99] formalized that option-based analysis, focusing
in particular on the flexibility to delay decisions making. An in-
teresting approach that has inspired the early stages of our work is
that of [Sul01]. [Sul01] extended [Bal01] that is developed to
account for the influence of modularity on the evolution of the
computer industry. [Sul01] use the model developed in [Bal01] to
treat the “evolovability” of software design using the value of
strategic flexibility. Specifically, they argued that the structure
and value of modularity in software design creates value in the
form of real options. A module creates an option to invest in a
search for a superior replacement and to replace the currently
selected module with the best alternative discovered, or to keep
the current one if it is still the best choice. The value of such an
option is the value that could be realized by the optimal experi-
ment-and-replace policy. Knowing this value can help a designer
to reason about both investment in modularity and how much to
spend searching for alternatives. [Erd99] describes how strategic
flexibility in software development, involving COTS components,
can be valued using real options. An interesting use of real op-
tions theory is that of [Erd02]. [Erd02] uses real options to value
the inherent flexibility in the Extreme Programming (XP), where
they have considered XP as a lightweight process that is well
positioned to respond to change and future opportunities; hence,
creating more value than a heavy-duty process that tends to freeze
development decisions.

 Architectural evaluation. Interested reader may refer to
[Bah03b] in which we provide a comprehensive survey on archi-
tectural evaluation methods. In short, we have distinguished be-
tween two classes of software architecture evaluation methods:
(i) general-purpose methods(e.g., ABAS[Kle99], ATAM[Kaz98],
SAAM[Kaz94]) that evaluate software architectures for qualities
that need to be met by the system (e.g. performance, security, and
modifiability) and (ii) an emerging class of methods that explicate
evaluation for stability and evolution. Existing methods to archi-
tectural evaluation have ignored any economic considerations,
with CBAM [Kaz01] being the notable exception. The evaluation
decisions using these methods tend to be driven by ways that are
not connected to, and usually not optimal for value creation. Fac-
tors such as flexibility, time to market, cost and risk reduction
often have higher impacts on value creation [Boe00]. Hence,
flexibility is in the essence. In our work, we link flexibility to
value, as a way to make the value of scalability tangible.
 Relating CBAM to our work, the following distinctions can
be made: with the motivation to analyse the cost and benefits of
architectural strategies, where an architecture strategy is subset of
changes gathered from stakeholders, CBAM does not appeal to
the analysis of the value of scalability or the architectural strate-
gies responsible for realising scalability in an architecture. Fur-
ther, CBAM does not tend to capture the long-term and the strate-
gic value of the specified strategy. ArchOptions, in contrast,
views flexibility as a strategic architectural quality that adds to
the architecture values in the form of growth options. When
CBAM complements ATAM [Kaz98] to reason about qualities

related to change such as modifiability, CBAM does not supply
rigorous predictive basis for valuing such impact. Plausible im-
provements of the existing CBAM include the adoption of real
options theory to reason about the value of postponing investment
decisions. CBAM uses real options theory to calculate the value
of option to defer the investment into an architectural strategy.
The delay is based on cost and benefit information. In the context
of the real options theory, CBAM tends to reason about the option
to delay the investment in a specific strategy until more informa-
tion becomes available as other strategies are met. In contrast, we
uses real options to value the flexibility provided by the architec-
ture to expand in the face of evolutionary requirements; hence-
forth, referred to as the options to expand or growth options.
 On the “coupling” of software architectures and middle-
ware. There is only very little work on the “coupling” of middle-
ware and software architectures. Notable exceptions include
[Jaz95; Gal97; Sul97; Ore98; DiN99; Met00; Med03; Den04].
 [Jaz95] explores the relationship between software architec-
tures and component technologies. [Gal97] have looked at an
existing component framework, the C ++ standard library, and
identified the architectural style induced. [Sul97] claims that for a
system to be implemented in a straightforward manner on top of a
middleware, the corresponding architecture has to be compliant
with the architectural constraints imposed by the middleware.
[Ore98] discuss the importance of complementing component
interoperability models with explicit architectural models.
[DiN99] devised the term middleware-induced architectural
styles and used Architecture Definition Languages (ADLs) to
describe the assumptions and constraints that middleware infra-
structures impose on the architecture of system. [Met00] proposed
a classification framework of software connectors and described
types of services provided by connectors for enabling and facili-
tating component interactions. They aim at building implementa-
tion topologies (e.g., bridging of middleware) that preserve the
properties of the original architecture. [Med03] stated the idea of
“coupling” the modelling power of software architectures with the
implementation support provided by middleware. They have in-
vestigated the possibility of defining systematic mappings be-
tween architectures and middleware. [Den04] measured perform-
ance attributes of an architecture based on the early available
implementation support provided by the middleware.

In summary, research effort on the relation between software
architectures and middleware has been motivated by pragmatic
needs. The effort has revolved on issues such as investigating the
compliancy of architectural styles with middleware; capabilities
that the middleware and the architecture can bring when “cou-
pled” to understand quality attributes of the system such as per-
formance; mapping between middleware and software architec-
tures; and semantics and syntactical issues related to the mapping
process. As it has been noted in several occasions [Emm00b;
Emm02], research on software architectures has over-emphasized
functionality and not sufficiently addressed how global properties
and non-functional requirements are achieved in an architecture,
where these requirements cannot be attributed to individual com-
ponents or connectors. Moreover, no notable effort has been de-
voted on understanding the economics of non-functional require-
ments in relation to both architecture and middleware, when cou-
pled. Our use of architectural flexibility and its value is novel and
only a step toward such an understanding using a value-based
[EDSR 1-8] reasoning.

4. CONCLUSIONS
We have reported on how ranges in which scalability require-
ments change can inform the selection of distributed components
technology and subsequently the selection of application server
products. As the exact method for analyzing scalability is subject
to debate, we have identified two views to the analysis of scalabil-
ity and have focused the analysis on throughput for valuing scal-
ability. We have applied ArchOptions, a real options-based
model, to the problem of valuing the flexibility of the architecture
in scaling up two versions of a given architecture, each induced
with a distinct middleware: one with CORBA and the other with
J2EE. The results show that the application of real options theory
is said to be superior to the application of traditional techniques,
such as Net Present Value, for estimating value in software. The
contribution demonstrates that using value-based reason-
ing, we can value scalability and support the development
(evolution) of software systems that need to adapt to the
inevitable evolving requirements.

5. REFERENCES

[Bah03a] Bahsoon, R. and Emmerich, W.: Evaluating Software Architectures:
Development, Stability, and Evolution. In: Proc. of IEEE/ACS Computer Systems
and Applications, IEEE CS Press (2003a) 47-57

[Bah03b] Bahsoon, R. and Emmerich, W.: ArchOptions: A Real Options-Based
Model for Predicting the Stability of Software Architecture. In: Proc. of the 5th
Workshop on Economics-Driven Software Engineering Research, with the 25th Int.
Conf. on Software Engineering, IEEE CS (2003b) 35-40

[Bah03c] Bahsoon, R.: Evaluating Software Architectures for Stability: A Real
Options Approach. In: Proc. of the Doctoral Symposium of the 25th Int. Conference
on Software Engineering, IEEE CS Press (2003)

[Bah04a] Bahsoon, R. and Emmerich, W.: Evaluating Architectural Stability with
Real Options Theory. In: Proc. of the 20th IEEE Int. Conf. on Software Mainte-
nance, IEEE CS Press (2004a) 443-447

[Bah04b] Bahsoon, R. and Emmerich, W.: Applying ArchOptions to Value the
Payoff of Refactoring. In: Proc. of the Sixth Workshop on Economics-Driven Soft-
ware Engineering Research, with the 26th Int. Conf. on Software Engineering, IEE
Press (2004b) 66-70

[Bah05a] Bahsoon, R.: Evalauting Architectural Stability with Real Options The-
ory, PhD thesis, U. of London, UK (2005)

[Bah05b] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions to Se-
lect Stable Middleware-Induced Architectures. In: IEE Proceedings Software, Spe-
cial issue on Relating Requirements to Architectures, IEE Press 152(4) (2005) 176-
186

[Bald01] Baldwin, C. Y., and Clark, K.B.: Design Rules - The Power of Modular-
ity. MIT Press (2001)

 [Bla73] Black, F., and Scholes, M.: The Pricing of Options and Corporate Liabili-
ties. Journal of Political Economy. U. of Chicago Press (1973) 637-654

[Boe00] Boehm, B., and Sullivan, K. J.: Software Economics: A Roadmap. In: A.
Finkelstein (ed.): The Future of Software Engineering. ACM Press (2000) 320-343

[Coo01] Cook, S., Ji, H., and Harrison, R.: Dynamic and Static Views of Soft-
ware Evolution. In: Int. Conf. on Software Maintenance, Florence, Italy. IEEE CS
(2001) 592-601

[Den04] Denaro, G., Polini A., and Emmerich W.: Performance Testing of Dis-
tributed Component Architectures. In: S. Beydeda and V. Gruhn (eds.), Building
Quality into COTS Components - Testing and Debugging, Springer (2004) 294-314

[DiN99] Di Nitto, E., and Rosenblum, D.: Exploiting ADLs to Specify Architec-
tural Styles Induced by Middleware Infrastructures. In: Proceedings of the 21st Int.
Conference on Software Engineering, ACM Press (1999) 13-22

 [EDS99-06] EDSER 1-8: Proceedings of the Workshops on Economics-Driven
Software Engineering Research: In conj. with the 21st through 28th International
Conference on Software Engineering (1999 - 2006)

[Emm00a] Emmerich, W.: Engineering Distributed Objects. John Wiley & Sons,
Chichester, UK (2000a)

[Emm00b] Emmerich, W.: Software Engineering and Middleware: A Road Map.
In: A. Finkelstein (ed.), Future of Software Engineering, ACM Press (2000b) 117-
129

[Emm02] Emmerich, W.: Distributed Component Technologies and their Software
Engineering Implications. In: Proc. of the 24th Int. Conf. on Software Engineering,
Orlando, Florida, ACM Press (2002) 537-546

[Erd00] Erdogmus, H.: Value of Commercial Software Development under Tech-
nology Risk. The Financier 7(2000)

[Erd02] Erdogmus, H., Boehm, B., Harrison, W., Reifer, D. J., and Sullivan, K. J.:
Software Engineering Economics: Background, Current Practices, and Future Direc-
tions.Tutorial Summary. In: Proc. of 24th Int. Conf. on Software Engineering, ACM
Press (2002) 683-684

[Erd99] Erdogmus, H., and Vandergraaf. J: Quantitative Approaches for Assess-
ing the Value of COTS-Centric Development. In: the Proc. of the Sixth International
Symposium on Software Metrics (METRICS' 99), Boca Raton, FL, IEEE CS Press
(1999) 279-290

[Fin00] Finkelstein, A.: Architectural Stability.
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html (2000)

[Gal97] Gall, H., Jazayeri, M., Klösch, R., and Trausmuth, G.: The Architectural
Style of Component Programming. COMPSAC, IEEE CS Press (1997) 18-27

 [Jaz95] Jazayeri, M.: Component Programming - a Fresh Look at Software Com-
ponents, In: 5th European Software Engineering Conference. Lecture Notes in Com-
puter Sc, Springer (1995) 457-478

[Kaz01] Kazman, R., Asundi, J., and Klein, M.: Quantifying the Costs and Bene-
fits of Architectural Decisions. In: Proc. of 23rd Int. Conf. on Software Engineering,
IEEE CS Press (2001) 297-306

[Kaz94] Kazman, R., Abowd, G., Bass, and L., Webb, M.: SAAM: A Method for
Analyzing the Properties of Software Architectures. In: Proc. of 16th Int. Conf. on
Software Engineering, IEEE CS (1994) 81-90

[Kaz98] Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., and Car-
rière, S.J.: The Architecture Tradeoff Analysis Method. In: Proc. of 4rth. Int. Conf.
on Engineering of Complex Computer Systems IEEE CS Press (1998) 68-78

 [Kle99] Klein, M., and Kazman, R.: Attribute-Based Architectural
Styles.CMU/SEI-99-TR-22, Software Engineering Institute(1999)

[Med03] Medvidovic N., Dashofy E., and Taylor R.: On the Role of Middleware
in Architecture-based Software Development. Int. Journal of Software Engineering
and Knowledge Engineering, 13(4) (2003) 229-306

[Med97] Medvidovic, N., and Taylor, R.: A Framework for Classifying and Com-
paring Architecture Description Languages. In: Proc. of 6th. European Software
Engineering Conf., with the Fifth ACM SIGSOFT Symp. on the Foundations of
Software Engineering, ACM Press (1997)60-76

[Meh00] Mehta, N., Medvidovic, N., and Phadke, S.: Towards a Taxonomy of
Software Connectors. In: Proc. of the 22nd International Conference on Software
Engineering, ACM Press (2000) 178-187

[OMG00] Object Management Group: The Common Object Request Broker: Ar-
chitecture and Specification, 2.4 ed., OMG (2000)

[Orei98] Oreizy, P., Medvidovic, N., Taylor, R., and D. Rosenblum, D.: Software
Architecture and Component Technologies: Bridging the Gap. In Digest of the
OMG-DARPA-MCC Workshop on Compositional Software Architectures, Mon-
terey, CA (1998)

[Sul01] Sullivan, K.J., Griswold, W., Cai, Y., and Hallen, B.: The Structure and
Value of Modularity in Software Design. In: the Proceedings of the ninth
ESEC/FSE, Vienna, Austria (2001) 99-108

[Sul96] Sullivan, K. J.: Software Design: The Options Approach. In: the Proc. of
the Second Int. Software Architecture Workshop. Joint Proceedings of the SIGSOFT
'96 Workshops, San Francisco, CA (1996) 15–18

[Sul97] Sullivan, K. J., Socha, J., and Marchukov, M.: Using Formal Methods to
Reason about Architectural Standards. In: Proc. of the 19th Int. Conf. on Software
Engineering, ACM Press (1997) 503-513

[Sul99] Sullivan, K. J.: Chalasani, P., Jha, S., and Sazawal, V.: Software Design
as an Investment Activity: A Real Options Perspective. Real Options and Business
Strategy: Applications to Decision-Making. In: Trigeorgis L. (ed.) Risk Books
(1999) 215-260

[Sun] Sun Microsystems Inc.: Duke’s bank application,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html

[Sun02] Inc Sun MicroSystems Inc: Enterprise JavaBeans Specification v2.1
(June 2002)

 [Tri95] Trigeorgis, L.: Real options in Capital Investment: Models, Strategies,
and Applications. Praeger Westport, London (1995)

