

Architectural Stability

Rami Bahsoon
School of Engineering and Applied Science, Computer Sc, Aston University Birmingham, Aston Triangle, B4 7ET,
Birmingham, UK

Wolfgang Emmerich
London Software Systems, Dept of Computer Sc., University College London, WC1E 6BT, London, UK

Abstract
Evolution is a key problem in software engineering and exacts huge costs. In managing change and facilitating
evolution, considerable emphasis is placed on the architecture of the software system as a key artifact involved.
One of the major indicators of the success (failure) of software evolution is the extent to which the software sys-
tem can endure changes in requirements, while leaving the architecture of the software system intact. We refer to
the presence of this “intuitive” phenomenon as architectural stability. Ongoing research on relating requirements
to software architectures has considered the architectural stability problem as an open research challenge. This is
because the conflict between requirements volatility and architectural stability is a difficult one to handle. Hence,
the concept is still far from being understood and many architectural stability related questions are remained un-
answered. Reflecting on our extensive research into the problem, we define architectural stability and explore per-
spectives in handling the problem. We review existing research effort and discuss their limitations. We derive a
research agenda and outline research challenges and opportunities. The implications of such contribution need not
be overstated: advancing the understanding of the architectural stability, stimulating and possibly motivating fu-
ture research in architectural stability and related problems.

Keywords
Relating requirements to architectures, architectural stability, requirements evolution, software architectures for
maintenance and evolution, economics of software maintenance, software change impact analysis

Paper Type
Research

Correspondence to:
Rami Bahsoon
School of Engineering and Applied Science, Computer Sc, Aston University Birmingham, Aston Triangle, B4
7ET, Birmingham, UK. E-mail: r.bahsoon@aston.ac.uk
Phone: +44 (0) 121 204 3464
fax: +44(0) 121 204 3681

Architectural Stability

Rami Bahsoon
School of Engineering and Applied Science, Computer Sc,

Aston University Birmingham,
 Aston Triangle, B4 7ET, Birmingham, UK

r.bahsoon@aston.ac.uk

Wolfgang Emmerich
London Software Systems, Dept. of Computer Science,

University College London,
Gower Street, WC1E 6BT, London, UK

w.emmerich @cs.ucl.ac.uk

Abstract
Evolution is a key problem in software engineering and exacts
huge costs. In managing change and facilitating evolution, con-
siderable emphasis is placed on the architecture of the software
system as a key artifact involved. One of the major indicators of
the success (failure) of software evolution is the extent to which
the software system can endure changes in requirements, while
leaving the architecture of the software system intact. We refer to
the presence of this “intuitive” phenomenon as architectural sta-
bility. Ongoing research on relating requirements to software
architectures has considered the architectural stability problem
as an open research challenge. This is because the conflict be-
tween requirements volatility and architectural stability is a diffi-
cult one to handle. Hence, the concept is still far from being un-
derstood and many architectural stability related questions are
remained unanswered. Reflecting on our extensive research into
the problem, we define architectural stability and explore per-
spectives in handling the problem. We review existing research
effort and discuss their limitations. We derive a research agenda
and outline research challenges and opportunities. The implica-
tions of such contribution need not be overstated: advancing the
understanding of the architectural stability, stimulating and pos-
sibly motivating future research in architectural stability and
related problems.

1. Introduction
Software requirements, whether functional or non-functional,
are generally volatile; they are likely to change and evolve
over time. The change is inevitable as it reflects changes in
stakeholders’ needs and the environment in which the software
system works. Software architecture is the earliest design arti-
fact, which realizes the requirements of the software system. It
is the manifestation of the earliest design decisions, which
comprise the architectural structure (i.e., components and in-
terfaces), the architectural topology (i.e., the architectural
style), the architectural infrastructure (e.g., the middleware),
the relationship among them, and their relationship to the other
software artifacts (e.g., low-level design) [Bah05a]. One of the
major implications of a software architecture is to render par-
ticular kinds of changes easy or difficult, thus constraining the
software’s evolution possibilities [Jaz02]. A change may
“break” the software architecture necessitating changes to the
architectural structure (e.g., changes to components and inter-
faces), architectural topology, or even changes to the underly-
ing architectural infrastructure. It may be expensive and diffi-
cult to change the architecture as requirements evolve

[Fin00b]. Conversely, failing to accommodate the change
leads ultimately to the degradation of the usefulness of the
system. Hence, there is a pressing need for flexible software
architectures that tend to be stable as the requirements evolve.
By a stable architecture, we mean the extent to which a soft-
ware system can endure changes in requirements, while leav-
ing the architecture of the software system intact. We refer to
the presence of this “intuitive” phenomenon as architectural
stability.

Developing and evolving architectures, which are stable in
the presence of change and flexible enough to be customized
and adapted to the changing requirements is one of the key
challenges in software engineering [Gar00]. Ongoing research
on relating requirements to software architectures has consid-
ered the architectural stability problem as an open research
challenge [van00; Nus01]. This is because the conflict between
requirements volatility and architectural stability is a difficult
one to handle [van00]. As a result, many architectural stability
related questions are remained unanswered [Nus01]: For ex-
ample, what software architectures (or architectural styles) are
stable in the presence of the changing requirements, and how
do we select them? What kinds of changes are systems likely
to experience in their lifetime, and how do we manage re-
quirements and architectures (and their development proc-
esses) in order to manage the impact of these changes? Mean-
while, industrial evidence reveals situations where high re-
quirements volatility is the norm and much of the promise is
leaved to the architecture in accommodating the changes. For
example, the number of mergers between companies is in-
creasing and this trend is bound to continue. The different
divisions of a newly merged company have to deliver unified
services to their customers and this usually demands an inte-
gration of their IT systems into the core architecture. The time
frame is often so short that building a new system is not an
option and therefore existing system components have to be
integrated into a distributed system architecture to appear as an
integrated computing facility. Secondly, the trend of providing
new services or evolving existing services to target new cus-
tomers, devises and platforms, and distribution settings (e.g.,
mobility setting) is increasing. For example, moving from a
fixed distributed setting to mobility carries critical changes,
mainly to non-functionalities, such as changes in availability,
security, and scalability requirements. Often the core “fixed”
architecture falls short in accommodating the requirements;
henceforth, changes to the architecture becomes necessary.
Thirdly, it is often the case that components are procured off-
the-shelf, rather than built from scratch, in response to changes
in requirements and then need to be integrated into the core

mailto:r.bahsoon@aston.ac.uk

architecture. These components often have incompatible re-
quirements on the hardware and operating system platforms
they run on. In many software systems, the architecture is the
level that has the greatest inertia when external circumstances
change and consequently incurs the highest maintenance costs
when evolution becomes unavoidable [Coo01]. Hence, a stable
architecture which addresses such changes in requirements
within limited resources and shorter time-to-market is a sig-
nificant asset for surviving the business, cutting down mainte-
nance costs and creating value.

Reflecting on our extensive research into the problem, we
define architectural stability and explore perspectives in han-
dling the problem. We review existing research effort and dis-
cuss their limitations. We derive a research agenda and outline
research challenges and opportunities. The implications of such
contribution are numerous: exploring the architectural stability
problem, advancing the understanding of the said problem, stimu-
lating and possibly motivating future related research. This may
result in frameworks with practical implications aimed at develop-
ing stable systems in face of changes in requirements.

The paper is further structured as follows. Section 2 looks
at architectures and evolution. Section 3 explores perspectives
in handling the architectural stability problem. Section 4 out-
lines research challenges and opportunities. Section 5 concludes.

2. Architecture-Centric Evolution
In Lehman’s terminology [FEA], there are two types of
systems: these are E-type systems and S-type systems. E-Type
systems that are embedded in real world applications and are
used by humans for everyday business functions. Examples
might be customer service, order entry, payroll, operating
systems, databases engines. S-Type systems are executable
models of a formal specification. The success of this software
is judged by how well it meets the specification. For E-Type
systems the “real world” is dynamic and ever changing. As the
real world changes the specification changes and the E-Type
systems need to adapt to these changes. Hence, E-Type
systems tend to be evolvable. For S-Type systems the
specification becomes invalid in the presence of change. In
this paper, we deal with evolution and architectural stability of
E-type systems.

Change is a process that either introduces new require-
ments into an existing system; modifies the system if the re-
quirements were not correctly implemented; or moves the sys-
tem into a new operating environment [Ben00]. In software
engineering, it has been known that focusing the change on
program code leads to loss of structure and maintainability
[Ben00]. Upon managing the change of requirements consid-
erable emphasis is thus placed on the architecture of the soft-
ware system as the key artifact involved [Gar00]. Architecture-
centric evolution approaches pursue the software architecture
as the appropriate level of abstraction for reasoning about,
managing and guiding the evolution of complex software sys-
tems, and “synchronizing” the software requirements with its
detailed design and implementation. A distinctive feature of
these approaches is that they explicitly account for the non-
functional requirements, the so-called quality attributes. As the
quality attributes comprise the most substantial properties of
the system, the evolution of such properties can be best rea-
soned about and managed at the architectural level. For exam-

ple, the current trend is to build distributed systems architec-
tures with middleware technologies such as Java 2 Enterprise
Edition (J2EE) and the Common Object Request Broker Ar-
chitecture (CORBA), resulting in the so-called middleware-
induced architectures [DiN99]. Middleware-induced architec-
tures follow an architectural-centric evolution approach, as the
emphasis is placed on the induced architecture for simplifying
the construction of distributed systems by providing high-level
primitives, which shield the application engineers from the
distribution complexities, managing systems resources, and
implementing low-level details, such as concurrency control,
transaction management, and network communication. These
primitives are often responsible for realizing many of the non-
functional requirements (e.g., scalability, fault tolerance, etc.)
in the architecture of the system induced and facilitating their
evolution over time. Another example is from product-line
architectures. Product lines, a family of products sharing the
same architecture, inherently require domain-specific variation
and evolution of various products. Due to the higher level of
interdependency between the various software artifacts in a
product-line, software evolution is too complex to be dealt
with at the code level. An essential property of these architec-
tures is that they should be stable over the projected life of the
system [Bah05a]. As the focus is on the architecture for “eas-
ing” evolution, architecture-centric evolution approaches place
considerable emphasis on the flexibility of the architecture in
responding to change, deriving business value, and minimizing
evolution costs [Bah05a, Bah06].

3. Perspectives into Architectural Stability
In subsequent sections, we explore perspectives in looking
at the architectural stability problem. We review existing
research effort and discuss their limitations.

3.1 Requirements Engineering Perspective
Ongoing research on relating requirements to software archi-
tectures has considered the architectural stability problem as
an open research challenge and difficult to handle [Nus01;
van01; Emm02]. [Nus01] proposed the “Twin Peaks” model, a
partial and simplified version of the spiral model. The corner-
stone of this model is that a system’s requirements and its ar-
chitecture are developed concurrently; that is, they are “inevi-
tably intertwined” and their development is interleaved.
[Nus01] advocated the use of various kinds of patterns – re-
quirements, architectures, and designs- to achieve the model
objectives. As far as architectural stability is concerned,
Nuseibeh had only exposed a tip of the “iceberg”: develop-
ment processes that embody characteristics of the Twin Peaks
are the first steps towards developing architectures that are
stable in the face of inevitable changes in requirements.
Nuseibeh noted that many architectural stability related ques-
tions are difficult and remain unanswered. Examples include:
what software architectures (or architectural styles) are stable
in the presence of changing requirements, and how do we se-
lect them? What kinds of changes are systems likely to experi-
ence in their lifetime, and how do we manage requirements
and architectures (and their development processes) in order to
manage the impact of these changes?

With the motivation of bridging the gaps between require-
ments and software architectures, [van00] noted that the goal-
oriented approach to requirements engineering may support
building and evolving software architectures guaranteed to
meet its functional and non-functional requirements. As far as
the architectural stability problem is concerned:

“Even though streamlined derivation processes may be envis-
aged for architectural development, things get much more
complicated for evolution. For example, the conflict between
requirements volatility and architectural stability is a difficult
one to handle”. [van00]

In summary, these positions have reflected on open chal-
lenges and possible strategies in developing software architec-
tures that need to be stable as requirements evolve. They have
highlighted the architectural stability problem from a require-
ments perspective. Focused research attempts, however, have
not followed these lines.

In [Emm02; Bah05b], we reflected on the architectural sta-
bility problem with a particular focus on developing distrib-
uted software architectures induced by middleware. We advo-
cated adjusting requirements elicitation and management tech-
niques to elicit not just the current non-functional require-
ments, but also to assess the way in which they will develop
over the lifetime of the architecture. These ranges of require-
ments may then inform the selection of distributed components
technology, and subsequently the selection of application
server products. Specifically, we considered the architecture
stability problem from the distributed components technology
in the face of changes in non-functional requirements. We
argued that addition or changes in functional requirements
could be easily addressed in distributed component-based ar-
chitectures by adding or upgrading the components in the
business logic. However, changes in non-functional require-
ments are more critical; they can stress architecture considera-
bly, leading to architectural “breakdown”. Such a “break-
down” often occurs at the middleware level and is due to the
incapability of the middleware to cope with the change in non-
functional requirements (e.g., increased load demands). This
may drive the architect/developer to consider ad-hoc or propri-
ety solutions to realize the change, such as modifying the mid-
dleware, extending the middleware primitives, implementing
additional interfaces, etc. Such solutions could be costly and
unacceptable [Bah05b].

3.2. A Value-Driven Design Perspective
An established route to manage the change and facilitate evo-
lution is a universal “design for change” philosophy, where the
architecture is conceived and developed such that evolution is
possible [Par79]. Parnas’s notion of the “design for change” is
based on the recognition that much of the total lifecycle cost of
a system is expended in the change and incurred in evolution.
A system that is not designed for evolution will incur tremen-
dous costs, which are disapropionate to the benefits. For a
system to create value, the cost of a change increment should
be proportional to the benefits delivered [Par72]. “Design for
change” is thus promoted as a value-maximizing strategy pro-
vided one could anticipate changes [Boe00]. The “Design for
change” philosophy is believed to be a useful heuristic for

developing flexible architectures that tend to be stable as re-
quirements evolve. However, the challenge is that there is a
general lack of adequate models and methods, which connect
this technical engineering philosophy to value creation under
given circumstances [Boe00]. [Sul97] note that the important
book of Shaw and Garlan on software architecture begins,
“As the size and complexity of software systems increase, the
design and specification of overall system structure become
more significant issues than the choice of algorithms and data
structures…” [Sha96]. [Sul97] add, “This statement is true,
without a doubt. The problem in the field is that no serious
attempt is made to characterize the link between structural
decisions and value added”. That is, the traditional focus of
software architecture is more on structural and technical per-
fection than on value. In addressing the architectural stability
problem, linking structural decisions to future value becomes
more necessary, as presumably evolvable but stable architec-
ture should add value to the system that outweigh what ex-
pended in designing for change, as the change material-
izes[Bah05a]. Furthermore, from an economic perspective, the
change in requirements is a source of uncertainty that con-
fronts an architecture during the evolution of the software sys-
tem. The change places the investment in a particular architec-
ture at risk. Conversely, designing for change incurs upfront
costs and may not render future benefits. The benefits are un-
certain, for the demand and the nature of the future changes
are uncertain. The worthiness of designing or re-engineering
an architecture for change should involve a tradeoff between
the upfront cost of enabling the change and the future value
added by the architecture, if the change materializes. The value
added, as a result of enabling the change on a given architec-
ture, is a powerful heuristic which can provide a basis for ana-
lyzing: (i) the worthiness of designing for change, (ii) the wor-
thiness of re-engineering the architecture, (iii) the retiring and
replacement decisions of the architecture or its associated de-
sign artifacts, (iv) the decisions of selecting an architecture,
architectural style, middleware, and/or design with desired
stability requirements, and/or (v) the success (failure) of evo-
lution[Bah05a]. In ArchOptions [Bah05a; Bah04a; Bah03c;
Bah03b], we have taken an economics-driven software engi-
neering perspective [EDS99-05] to evaluate architectural sta-
bility using real options theory. We have adopted the view that
software design and engineering activity is one of investing
valuable resources under uncertainty with the goal of maxi-
mizing the value added [Boe00]. In particular, we have viewed
evolving software as a value-seeking and value-maximizing
activity: software evolution is a process in which software is
undergoing an incremental change and seeking value [Bah04a;
Bah05a]. We attribute the added value to the flexibility of the
architecture in enduring changes in requirements. Means for
achieving flexibility are typical architectural mechanisms or
strategies that are built-in or adapted into the architecture with
the objective of facilitating evolution and future growth. This
could be in response to changes in functional (e.g., changes in
features) or non-functional requirements (e.g., changes in scal-
ability demands). As we are assuming that the added value is
attributed to flexibility, arriving at a “more” stable software
architecture requires finding an architecture which maximizes
the yield in the embedded or the adapted flexibility in an archi-
tecture relative to the likely changing requirements [Bah05a;

Bah04a; Bah03c]. Optimally, a stable architecture is an archi-
tecture that shall add value to the enterprise and the system as
the requirements evolve. By valuing the flexibility of an archi-
tecture to change, we have aimed at providing the archi-
tect/analyst with a useful tool for reasoning about a crucial but
previously intangible source of value. This value can be then
used for deriving “insights” into architectural stability and
investment decisions related to evolving software. To value
flexibility, we have contributed to a novel model, ArchOp-
tions, which builds on an analogy with real options theory
[Bah05a; Bah04a; Bah03c]. The model examines some critical
likely changes in requirements and values the extent to which
the architecture is flexible to endure these changes. The model
views an investment in an architecture as an upfront invest-
ment plus “continual” increments of future investments in
likely changes in requirements. We have applied ArchOptions
to two architecture-centric evolution problems: assessing the
worthiness of re-engineering a “more” stable architecture in
face of likely changes in future requirements, where we have
taken refactoring as an example of re-engineering [Bah04b];
and informing the selection of a “more” stable middleware-
induced software architecture in the face of future changes in
non-functional requirements [Bah05b]. Our perspective has
provided a compromise through linking technical issues to
value creation. The approach has the promise to provide in-
sights and a basis for analyses to support many of the concerns
highlighted in previous sections.

3.3. Architectural Evaluation Perspective
Evaluating architectural stability aims at assessing the extent
to which the system of a given architecture is evolvable, while
leaving the architecture and its associated design decisions
unchanged as the requirements change. Approaches to evaluat-
ing software architectures for stability can be retrospective or
predictive [Jaz00]. Both approaches start with the assumption
that the software architecture’s primary goal is to facilitate the
system’s evolution. Retrospective evaluation looks at succes-
sive releases of the software system to analyze how smoothly
the evolution took place. Predictive evaluation provides in-
sights into the evolution of the software system based on ex-
amining a set of likely changes and the extent to which the
architecture can endure these changes.
 Retrospective approaches. Jazayeri [Jaz02] moti-
vated the use of retrospective approaches for evaluating soft-
ware architectures for stability and looked at the problem from
a software evolution perspective. His analyses rely on compar-
ing properties from one release of the software to the next. The
intuition is to see if the system’s architectural decisions re-
mained intact throughout the evolution of the system, that is,
through successive releases of the software. Jazayeri refers to
this “intuitive” phenomenon as architectural stability. Retro-
spective analysis can be used for empirically evaluating an
architecture for stability; calibrating the predictive evaluation
results; and predicting trends in the system evolution [Jaz02].
In other words, retrospective analysis can also provide a basis
for predictive analysis. For example, previous evolution data
of the system may be used to anticipate the resources needed
for the next release of the system, or to identify the compo-
nents most likely that require attention, need restructuring or

replacements, or to decide if it is time to entirely retire the
system. In principle, predictive analysis and retrospective
analysis should be combined. However, perfect predictive
evaluations render retrospective analysis unnecessary [Jaz02].

Jazayeri’s approach uses simple metrics such as software
size metrics, coupling metrics, and color visualization to sum-
marize the evolution pattern of the software system across its
successive releases. The evaluation assumes that the system
already exists and has evolved. This approach is therefore tend
to be unpreventive and unsuitable for early evaluation (unless
the evolution pattern is used to predict the stability of the next
release). The evaluation appears to be expensive (in the ab-
sence of dedicated tools), for it requires information to be kept
for each release of the software. Such data could be available
through configuration management repositories. Yet such data
is not commonly maintained, analyzed, or exploited. More-
over, the problem of architectural stability is strategic in es-
sence and not purely technical [Bah06]. Jazayeri addresses the
problem from a purely technical perspective. It worth noting
that ongoing projects at the S.E.A.L group of Gall at U. of
Zurich, have contributed to interesting results on mining soft-
ware repositories to visualize evolution data. Though the de-
veloped infrastructure and analyses have the potential to sup-
port retrospective analyses for stability, no explicit results
have been reported yet in this direction.

Predictive approaches. Predictive approaches to
evaluating architectural stability can be applied during the
early stages of the development life cycle to predict threats of
the change on the stability of the architecture. Unlike retro-
spective approaches, predictive approaches are preventive; the
evaluation aims to understand the impact of the change on the
stability of the architecture if the likely changes need to be
accommodated, so corrective design measures can be taken.
Therefore, in predictive approaches, the effort to evaluation is
justified as the evaluation is generally cost effective, when
compared to retrospective approaches. In ArchOp-
tions[Bah03;Bah05], we examine a set of likely changes that
are critical to the evaluation. We pursue scenarios as a possible
solution to describe these changes. To link the likely future
change in requirements to the architecture, we adopt Goal-
Oriented Requirements Engineering (GORE) paradigm
[Dar93], where the goals are extracted from scenarios [Ant97].
We then predict the extent to which the architecture can en-
dure these changes through constructing and valuing call op-
tions for a given change [Bah05a; Bah04a; Bah03c].

A comprehensive survey [Bah03a] of architectural evalua-
tion methods indicates that current approaches to architectural
evaluation focus explicitly on construction and only implicitly,
if not at all, on the phenomenon of software “evolution”. The
survey includes representative methods like ATAM [Kaz98],
SAAM [Kaz94], ARID [Kle00], PASA/SPE [Smi99], ABAS
[Kle99], and CBAM [Kaz01]. These methods provide frame-
works for software architects to evaluate architectural deci-
sions with respect to quality attributes such as performance,
security, reliability, and modifiability. Despite the concern
with “change” and accommodating changes, none of these
methods, addresses stability of an architecture over time. For
example, ATAM and SAAM indicate places where the archi-
tecture fails to meet its modifiability requirements and in some

cases shows obvious alternative designs that would work bet-
ter. When used for evaluating modifiability, the input to these
methods consists of an enumerated set of stakeholders’ scenar-
ios that represent known or likely changes that the system will
undergo in the future. These scenarios are prioritized and
mapped onto the architecture representation. The activity of
mapping indicates problem areas in the architecture: areas
where the architecture is overly complex (e.g., if distinct sce-
narios affect the same component(s)) and areas where changes
tend be problematic (e.g., if a scenario causes changes to a
large number of components). The approaches to evaluation
involve “thought experiments”, modelling, and walking-
through scenarios that exemplify requirements, as well as as-
sessment by experts who look for gaps and weaknesses in ad-
dressing modifiability based on their experience. However,
these methods do not support their prediction with an analyti-
cal basis and rigorous models. When methods, such as SAAM
and ATAM are used to analyze qualities that are related to
change (such as modifiability), they do not predict and meas-
ure the capability of the architecture to withstand the change.
This renders their predictive effectiveness myopic. Further,
these methods have ignored any economic considerations, with
CBAM [Kaz01] being the notable exception. The evaluation
decisions using these methods tend to be driven by ways that
are not connected to, and usually not optimal for value crea-
tion. Factors such as flexibility, time to market, cost and risk
reduction often have high impact on value creation [Boe00].
Such ignorance is in stark contrast to the objective of architec-
tural evaluation and where cost reduction, risk mitigation, and
long-term value creation are among the major drivers behind
conducting an evaluation for stability [Bah06]. Such provision
is important for it assists the objective assessment of the life-
time costs and benefits of evolving software, and the identifi-
cation of legacy situations, where a system or component is
indispensable but can no longer be evolved to meet changing
needs at economic cost [Coo01]. Interested reader may refer to
[Bah06], where we have highlighted the requirements for
evaluating architectural stability, which address the pitfalls in
existing methods.

4. Architecture Stability: Challenges and
Opportunities
Rapid technological advances and industrial evidence are
showing that the architecture is creating its own maintenance,
evolution, and economics problems. Part of the problem stems
in (i) the rapid technological advancements where evolution is
not limited to a specific domain but extends to “horizontally”
cover several domains, (ii) the current practice in engineering
requirements, which ignore the above, (iii) and the improper
management of the evolution of these requirements and across
different design artifacts of the software system. In subsequent
sections, we highlight some open issues that future research
may consider to address some architectural-centric software
evolution problems. Addressing these questions may have a
positive implication on understanding architectural stability.

4.1. Architectures Description Languages
Although software evaluation methods are typically human-
centred, formal notations for representing and analyzing archi-

tectural designs, generically referred to as Architectures De-
scription Languages (ADLs), have provided new opportunities
for architectural analysis [Gar00] and validation. We briefly
survey efforts on ADLs as they have implications for support-
ing the evaluation of software architectures. We explain how
ADLs can be used to support the evaluation of software archi-
tectures in general and provide some insights on their use to
evaluate architectural stability.

ADLs are languages that provide features for modelling a
software system’s conceptual architecture [Med97]. ADLs
provide a concrete syntax and a conceptual framework for
characterizing architectures [Garl97]. The conceptual frame-
work typically subsumes the ADL’s underlying semantic the-
ory (e.g., CSP, Petri nets, finite state machines). A number of
ADLs have been proposed for modelling architectures both
within a particular domain and as general-purpose architecture
modelling languages [Med97]. Examples are Aesop [Gar95],
Darwin [Mag95; Mag96], MetaH [Vest96], C2 [Med96],
Rapide [Luc95], Wright [All94], UniCon [Sha95], SADL
[Mor95], and ACME [Gar97]. ADLs are often intended to
model large, distributed, and concurrent systems. Evaluating
the properties of such systems upstream, at the architectural
level, can substantially lessen the costs of any errors. The for-
mality of ADL renders them suitable for the manipulation by
tools for architectural analysis. In the context of architectural
evaluation, the usefulness of an ADL is directly related to the
kind of analyses a particular ADL tends to support. The type
of analyses and evaluation for which an ADL is well suited
depends on its underlying semantic model. We refer to
[Med97] to state few examples: Wright is based on CSP; it
analyses individual connectors for deadlocks. MetaH and
UniCon both support schedulability analysis by specifying
non-functional properties, such as criticality and priority.
SADL can establish relative correctness of two architectures
with respect to a refinement map. Rapide’s and C2’s event
monitoring and filtering tools also facilitate analysis of an
architecture. C2 uses critics to establish adherence to style
rules and design guidelines. Another aspect of analysis, that
supports architectural evaluation, is enforcement of con-
straints. Parsers and compilers enforce constraints implicit in
types, non-functional attributes, component and connector
interfaces, and semantic models. Static and dynamic analyses
are used. Static analysis verifies that all possible executions of
the architecture description conform to the specification. Static
analysis helps the developers to understand the changes that
need to be made to satisfy the analysed properties. They span
approaches such as reachability analysis [Hol91; Val91;
God91], symbolic model checking [Bru90; McM93], flow
equations, and data-flow analysis [Dwy94]. The applicability
of such techniques to architecture descriptions has been dem-
onstrated in [Nau97] using two static analysis tools. These
tools are INCA [Cor95] and FLAVERS [Mas91; Dwy94].
Rapide [Luk95] provides a support to simulate the executions
of the system. The simulation verifies that the traces of those
executions conform to high-level specifications of the desired
behavior. [All94] use the static analysis tool FDR [FS92] to
prove freedom from deadlock as well as compatibility between
the component and connectors in an architecture description.
The term dynamic architectures denote that application’s ar-
chitecture evolves during runtime. Examples of analyses sup-

port for dynamic architectures include Darwin [Mag95], which
provides a support to the analysis of distributed message-
passing systems.

No notable research effort has explored the role of ADLs
in supporting evaluating architectural stability. However,
ADLs have the potential to support such evaluation. For in-
stance comparing properties of ADL specifications for differ-
ent releases of a software can provide insights on how the
change(s) or the likely change(s) tends to threat the stability of
the architecture. This can be achieved by analyzing the parts of
newer versions that represent syntactic and semantic changes.
Moreover, the analysis can provide insights into possible ar-
chitectural breakdown upon accommodating the change. For
example, the analysis may show how the change may break
the architectural topology (e.g., style) and/or the architectural
structure (e.g., components, connectors, interfaces ect.). We
note that ADLs have potential for performing retrospective
evaluation for stability, where the evaluation can be performed
at a correspondingly high level of abstraction. Hence, the
evaluation may be relatively less expensive as when compared,
for example, to the approach taken by [Jaz02], detailed in the
previous section.

4.2. Coping with Rapid Technological Ad-
vancements and Changes in Domain
Assume that a distributed e-shopping system architecture
which relies on a fixed network needs to evolve to support new
services, such as the provision of mobile e-shopping. Moving
to mobility, the transition may not be straightforward: the
original distributed system’s architecture may not be re-
spected, for mobility poses its own non-functional require-
ments for dynamicity that are not prevalent in traditional dis-
tributed setting [Cap03]. Examples of these requirements in-
clude the need to react to frequent changes in the environment,
such as change in location; resource availability; variability of
network bandwidth; the support of different communication
protocols; losses of connectivity when the host need to be
moved; and so forth. These requirements may not be satisfied
by the current fixed architecture, the built-in architectural
caching mechanisms, and/or the underlying middleware. Re-
placement of the current architecture may be required.

The challenge is thus to cope with the co-evolution of
both the architecture and the non-functional requirements as
we change domains. This poses challenges in understanding
the evolution trends of non-functional requirements; designing
architectures, which are aware of how these requirements will
change over the projected lifetime of the software system and
tend to evolve through the different domains. From an eco-
nomics perspective, such is necessary to reduce the future
“switching cost”, which could hinder the success of evolution.
In this perspective, engineering requirements and designing
architectures need to be treated as value-maximizing activities
in which we can maximize the net benefits (or real options) by
minimizing the future “switching costs” while transiting across
different domains. This necessitates amending the current
practice of engineering requirements and brings a need for
methods and techniques, which explicitly model the domain,
the “vertical” evolution of the software system within the do-

main itself and how the domain is likely to change over the
projected lifetime of the software system. Again, goal-oriented
requirements engineering(e.g.,[Dar93]) could be a promising
starting point to “horizontally” capture the evolution across
various domains and “vertically” across the domain itself. The
problem of selecting an architecture, which tend to be stable as
the “vertical” and the “horizontal” requirements evolve, be-
come a multi-optimization design problem, where the selected
architecture must maximize the value added relative to the
“vertical” and the “horizontal” changes. The modeling could
be then complemented by valuation frameworks which have
the promise for answering questions of interest such as which
architectural styles and middlewares, have the promise to re-
duce the switching costs and could prevail over the life time of
the software system? This we believe is a practical need for
engineering requirements to support stable software architec-
tures. Managing the change is a process which involves recog-
nizing the change through continued requirements elicitation,
requirements evaluation of risk, and evaluation of systems in
their operational environments [Nus00]. Identifying and
documenting possible future changes is important in order to
manage software evolution [Leh98] and evaluate architectural
choices [Nus00].

In software engineering, the use of technology roadmap-
ping, for example, is left unexplored in predicting and eliciting
change in requirements. Technology roadmapping is an effec-
tive technology planning tool which help identifying product
needs, map them into technology alternatives, and develop
project plans to ensure that the required technologies will be
available when needed [Sch99]. Technology roadmapping, as
a practice, emerged from industry as a practical method of
planning for new technology and product requirements. Ac-
cording to [Sch99], a roadmap is not a prediction of future
breakthroughs in the technology, but rather an articulation of
requirements to support future technical needs. A roadmap
assumes a given future and provides a framework toward real-
izing it. Often, a roadmap is part of the business and/or the
product strategy towards growth and evolution.

Figure 1 is a product roadmapping of Company x, a mobile
service provider. Figure 1 shows how the mobile services are
said to evolve as we transit from 2G to 3G networking. As the
bandwidth is improved, an emerging number of content-based
services, ranging from voice, multi-media, data, and location-
based services might be possible. This, in turn, will translate
into future requirements (functional and non-functional),
which need to be planned in advance so it can be accommo-
dated by the architecture responsible for delivering the ser-
vices. Note that many of the likely changes in the requirements
may be derived from the roadmapping process, rather than the
roadmap itself. As an example, M-banking is a service, which
allows customers to check bank balances, view statements, and
carry bank transactions using mobile phones. A distributed
architecture of a banking system, which envisions providing
such a service as the bandwidth is improved, may need to an-
ticipate changes due to mobility like changes in security re-
quirements, load, availability, etc. The architect may then need
to anticipate relevant change scenarios and ways of accommo-
dating them on the architecture.

E.g., M-banking availability:

(Requirements) Loss of connectivity is the norm in mobil-
ity. The M-banking service shall be available 99% of the
time,
(Architecture) New caching mechanisms are then required.

Source: http://www.3g-generation.com/

Figure 1. Company’s x technology road mapping showing the
evolution of its mobile services as it moves from 2G to 3G
and its value to the end user

4.3. Architectural Stability and Middleware
Recent research effort (e.g., [Jaz95; Gal97; Sul97; Ore98;
Din99; Met00; Den04]) on the relation between software ar-
chitectures and middleware has been motivated by pragmatic
needs. The effort has revolved on issues such as investigating
the compliancy of architectural styles with middleware; capa-
bilities that the middleware and the architecture can bring
when “coupled” to understand quality attributes of the system
such as performance; mapping between middleware and soft-
ware architectures; and semantics and syntactical issues related
to the mapping process. As it has been noted in several occa-
sions [Emm00b; Emm02], research on software architectures
has over-emphasized functionality and not sufficiently ad-
dressed how global properties and non-functional requirements
are achieved in an architecture, where these requirements can-
not be attributed to individual components or connectors.
Though ongoing research on the “coupling” of middleware
and architectures could have an impact on understanding the
relation between architectures and non-functional require-
ments, their contributions to such understanding is still insuffi-
cient. As far as the architectural stability problem is concerned,
no effort has been devoted for understanding the evolution of
non-functional requirements in relation to both the architecture
and the middleware, when coupled. In [bah05b], we have
claimed that as the non-functional requirements evolve, the
“coupling” between the middleware and architecture becomes
the focal point for understanding the stability of the distributed
software system architecture in the face of change. We have
hypothesised that the choice of a stable distributed software
architecture depends on the choice of the underlying middle-
ware and its flexibility in responding to future changes in non-
functional requirements. Drawing on a case study that ade-
quately represents a medium-size component-based distributed
architecture: we have reported on how a likely future change
in scalability could impact the architectural structure of two

versions, each induced with a distinct middleware: one with
CORBA and the other with J2EE. We have devised an option-
based model to value the flexibility of the induced-
architectures and to guide the selection. Both versions have
exhibited similar styles (i.e., three-tier), yet they have differed
in the way they cope with the change in scalability. The differ-
ence was not due to the architectural style, but due to the
primitives that are built in the middleware to facilitate scaling
the software system. The governing factor, hence, appears to
be to a large extent dependent on the flexibility of the middle-
ware (e.g., through its built-in primitives) in supporting the
change. Our preliminary observations suggest that the style by
itself is not revealing to the analysis of architectural stability
with respect to changes in non-functional requirements.
Though this observation reveals a trend that agrees with the
state-of-practice, confirming the validity of these observations
are still subject to some systematic empirical studies. These
studies may need to consider other non-functional require-
ments, their concurrent evolution, and their corresponding
change impact on different architectural styles and middle-
ware, which worth future research.

4.4. Traceability of Requirements to Architec-
tures
An important outcome of the initial development of the soft-
ware system is the knowledge that the development team ac-
quires: the knowledge of the application domain, user re-
quirements, role of the application in the business process,
solutions and algorithms, data formats, strength and weakness
of the architecture, and operating environment [Ben00]. This
knowledge is acknowledged to be crucial prerequisite for evo-
lution. In particular, both the architectures and the team
knowledge make the evolution possible [Ben00]. These to a
great extent allow the team to make changes in the software
without damaging the architectural integrity. Once one or the
other aspect disappears, the system is no longer evolvable and
enters the stage of servicing (also referred to as maturity by
Lehman) [Ben00]. At the servicing stage, only small tactical
changes would be possible. For the business, the software is
likely to be no longer a core product and the cost-benefit of the
change becomes marginal. According [Ben00], there is a posi-
tive feedback between the loss of software architecture coher-
ence and the loss of software knowledge. Less coherent archi-
tectures requires more extensive knowledge in order to evolve
the system of the given architecture. However, if the knowl-
edge necessary for evolution is lost, the changes in the soft-
ware will lead to faster deterioration of the architecture. Very
often on software projects, the loss of knowledge is triggered
by loss in key personnel and the project slips into the servicing
stage. Hence, planning for evolution and stable software archi-
tectures urges the need for traceability techniques, which
traces requirements and their evolution back and forth into the
architecture and aid in “preserving” the team knowledge.

[Dav93] defines traceability as “the ability to describe and
follow (track) the lifetime of an artifact, in both a forward and
a backward direction, i.e., from its origin to development and
vice versa” [Dav93]. [Got95] have preserved the spirit of
Davis’s definition of traceability. They, however, have scoped
the definition on tracing a requirement through its “life”. The

requirements life covers periods of a requirement origin, de-
velopment and specification, deployment, use, and on-going
refinement. They have defined requirements traceability as
“the ability to describe and follow the life of a requirement in
both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent
deployment and use, and through periods of on-going refine-
ment and iteration in any of these phases)”. [Got95] have par-
ticularly discussed the importance of tracing requirements
back to their source. These sources might be people, other
requirements, documents, or standards.

Traceability is important for modeling dependencies
among software objects and for managing the change across
software artifacts. Traceability information records the de-
pendencies between requirements and the sources of these
requirements, dependencies between requirements themselves,
and dependencies between requirements and the system im-
plementation. Advances in software-development environ-
ments and repository technology have enabled software engi-
neers to trace the change in software using traceability tech-
niques. These techniques span a variety of approaches ranging
from cross-referencing schemes (e.g., cross-referencing
schemes, based on some form of tagging, numbering, index-
ing, traceability matrices, and matrix sequences), through
document-centered techniques (e.g., Templates, hypertext, and
integration documents), to more elaborate structure-centered
techniques (e.g., assumption-based truth maintenance net-
works, constraint networks, axiomatic, key phrase, and/or rela-
tional dependencies).

We define requirement to architecture traceability as the
ability to describe the “life” of a requirement through the re-
quirements engineering phase to the architecture phase in both
forwards and backwards. Forwards demonstrates which (and
how) architectural element(s) satisfy an individual requirement
in the requirements specification. Backwards demonstrates
which requirement(s) in the requirements specification an in-
dividual architectural element relate to and satisfy. Current
architectural practices, however, do not provide support for
traceability from the requirements specification to the architec-
tural description. Maintaining traceability “links” is necessary
for managing the change, the co-evolution of both the re-
quirements and the architecture, confining the change, under-
standing the change impact on both the structure and the other
requirements, providing a support for automated reasoning
about a change at a high level of abstraction. Further, such
traceability “links” make it easier to preserve the acquired
knowledge of the team through guided documentation. This
may then minimize the impact of personnel losses, and may
allow the enterprise to make changes in the software system
without damaging the architectural integrity and making the
software system unevolvable.

4.5. Architectural Change Impact Analysis
Although change impact analysis techniques are widely used
at lower levels of abstractions (e.g., code level) and on a rela-
tively abstract levels (e.g., classes in O.O. paradigm), little
effort has been done on the architectural level (i.e., architec-
tural impact analysis). Formal notations for representing and
analyzing architectural designs such as ADLs have provided

new opportunities for architectural analyses [Gar00]. Exam-
ples of such analyses includes system consistency checking
[All94; Luc95], and conformance to constraints imposed by an
architectural style [Abo93].

Notable effort using dependency analysis on the architec-
tural level includes the “chaining” technique suggested by
[Sta97]. The technique is analogous in concept and application
to program slicing. In chaining, dependence relationships that
exist in an architectural specification are referred to as links.
Links connect elements of the specification that are directly
related. The links produce a chain of dependencies that can be
followed during analysis. The technique focuses the analysis
on components and their interconnections. A component may
have a set of input and output ports (which correspond to the
component’s interface). These ports may have been connected
to one another to form a particular architectural configuration.
Communication between components is accomplished by
sending events to the component’s ports. [Staf97] supports the
approach with an analysis tool, Aladdin. Aladdin accepts an
architectural specification as input. A variety of computations
can be then performed. The computations include unconnected
component identification, change impact analysis (i.e., which
components will be affected by an architectural change), and
event dependence analysis (i.e., which components can send
the following event to this port). These computations start at a
particular component and/or port. Forward and/or backward
chaining are then performed to discover related components.
Forward and backward chaining is analogous in concept to
forward and backward walk in the data-flow slicing. The ap-
plicability of this technique is demonstrated on small scale
architectures and could be extended to address current archi-
tectural development paradigms. For example, how such a
concept could be refined to perform what-if analysis on large-
scale software architectures such as product-line or model-
driven architectures? For product-line architectures, this is
necessary for reasoning about how the change could impact
the commonality, variability, and their interdependence. These
techniques could be then complemented by analysis tools
which could facilitate automated reasoning and provide a basis
for what-if analyses to manage the change across instances of
the core architecture. Understanding how the change could
then ripple across different products might be feasible. For
model-driven architectures, for example, this could help in
reasoning about how the change could affect the Platform In-
dependent Model (PIM) and ripple to affect the Platform Spe-
cific Models (PSM). These techniques could be complemented
by automated reasoning to manage evolution. When combined
with traceability links, the combination could provide a com-
prehensive framework for managing the change and guiding
evolution.

4.6. Empirical Studies
A key benefit of adopting an architecture-centric approach
to manage evolution is driven by the objective of reducing
future evolution costs, while attaining a net benefit and
embedding options [Bah05a]. Though this is the motivation
behind many architectural-centric evolution approaches,
such as product-line architectures and model-driven archi-
tectures, little -if no- documented empirical evidence is

available on the extent to which the architecture has suc-
ceeded or failed in attaining its objectives. In particular, the
architectural stability problem is just a hint on the fact that
the architecture is also creating its own problems. This
brings a need for systematic empirical studies to analyze
real life cases, which lead to substantial “break” in the ar-
chitecture of the software system upon accommodating
changes. The “breakage” could be attributed to the nature
of the change, personnel, the architectural style, the
adopted middleware, and so forth. Lessons to be learned
from these studies may have positive implications on the
way we engineer our future requirements, design architec-
tures to meet these changing requirements, and have better
understanding on how we can control risks associated with
the change and its impact. The main objective is to learn
from the state-of-practice to improve the state-of-the-art.

5. Conclusion
Reflecting on our research into the problem, we have defined
architectural stability and explored perspectives in handling
the problem. We have reviewed existing research effort, have
discussed their limitations, and have outlined research chal-
lenges and opportunities. The implications of such contribu-
tion need not be overstated: advancing the understanding of
the architectural stability, stimulating and possibly motivating
future research in architectural stability and related problems.

6. References
 [Abo93] Abowd, G., Allen, R., and Garlan, D.: Using Style to Understand

Descriptions of Software Architecture. In: Proc. of Foundations of Software
Engineering, ACM Press (1993) 9-20

 [All94] Allen, R., and Garlan, D.: Formalizing Architectural Connection. In:
Proc. of the 14th Int. Conf. on Software Engineering, ACM Press(1994) 71-80

 [Ant96] Antón, A.I.: Goal-based Requirements Analysis. In: Proc. 2nd IEEE
Int. Conf. on Requirements Engineering, IEEE CS(1996) 136-144

 [Bah03a] Bahsoon, R. and Emmerich, W.: Evaluating Software Architec-
tures: Development, Stability, and Evolution. In: Proc. of IEEE/ACS Computer
Systems and Applications, IEEE CS Press (2003a) 47-57

[Bah03b] Bahsoon, R. and Emmerich, W.: ArchOptions: A Real Options-
Based Model for Predicting the Stability of Software Architecture. In: Proc. of
the 5th Workshop on Economics-Driven Software Engineering Research, with
the 25th Int. Conf. on Software Engineering, IEEE CS (2003b) 35-40

[Bah03c] Bahsoon, R.: Evaluating Software Architectures for Stability: A
Real Options Approach. In: Proc. of the Doctoral Symposium of the 25th Int.
Conference on Software Engineering, IEEE CS Press (2003)

[Bah04a] Bahsoon, R. and Emmerich, W.: Evaluating Architectural Stability
with Real Options Theory. In: Proc. of the 20th IEEE Int. Conf. on Software
Maintenance, IEEE CS Press (2004a) 443-447

[Bah04b] Bahsoon, R. and Emmerich, W.: Applying ArchOptions to Value
the Payoff of Refactoring. In: Proc. of the Sixth Workshop on Economics-
Driven Software Engineering Research, with the 26th Int. Conf. on Software
Engineering, IEE Press (2004b) 66-70

[Bah05a] Bahsoon, R. : Evalauting Architectural Stability with Real Options
Theory, PhD thesis, U. of London, UK (2005)

[Bah05b] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions to
Select Stable Middleware-Induced Architectures. In: IEE Proceedings Soft-
ware, Special issue on Relating Requirements to Architectures, IEE Press
152(4) (2005) 176-186

[Bah06] Bahsoon, R. and Emmerich, W.: Requirements for Evaluating Ar-
chitectural Stability. In: Proc. of Int. Software Stability workshop, in Conj with
IEEE/ACS Computer Systems and Applications, IEEE CS Press (2006)

 [Ben00] Bennet, K. and Rajilich, V.: Software Maintenance and Evolution:
A Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering.
ACM Press (2000) 73-90

[Boe00] Boehm, B., and Sullivan, K. J.: Software Economics: A Roadmap.
In: A. Finkelstein (ed.): The Future of Software Engineering. ACM Press
(2000) 320-343

[Bur90] Burch, J., Clarke, E., McMillan, E., Dill, D., and Hwang, L.: Sym-
bolic Model Checking: 1020 States and Beyond. In: Proc. of the Fifth Annual
IEEE Symposium on Logic in Computer Science. IEEE CS (1990) 428-439

[Cap03] Capra, L.: Reflective Mobile Middleware for Context-Aware Appli-
cations. PhD Thesis. University of London, UK (2003)

 [Cle00] Clements, P.: Active Reviews for Intermediate Designs. Technical
Report (CMU/SEI-2000-TN-009), Software Engineering Institute, (2000)

 [Coo01] Cook, S., Ji, H., and Harrison, R.: Dynamic and Static Views of
Software Evolution. In: Int. Conf. on Software Maintenance, Florence, Italy.
IEEE CS (2001) 592-601

[Corb97] Corbett, J., and Avrunin, G.: Using Integer Programming to Verify
General Safety and Liveness Properties. Formal Methods in System design,
6(2)(1997) 97-123.

 [Dar93] Dardenne, A., van Lamsweerde A., and Fickas, S.: Goal-Directed
Requirements Acquisition, Science of Computer Programming, 20(1-2) (1993)
3-50

[Dav93] Davis, A: Software Requirements: Objects, Functions and States.
Englewood Cliffs, New Jersey: Prentice-Hall (1993)

 [Den04] Denaro, G., Polini A., and Emmerich W.: Performance Testing of
Distributed Component Architectures. In: S. Beydeda and V. Gruhn (eds.),
Building Quality into COTS Components - Testing and Debugging, Springer
(2004) 294-314

[DiN99] Di Nitto, E., and Rosenblum, D.: Exploiting ADLs to Specify Ar-
chitectural Styles Induced by Middleware Infrastructures. In: Proceedings of
the 21st International Conference on Software Engineering, ACM Press (1999)
13-22

 [Dwy94] Dwyer, M. and Clarke, L.: Dataflow Analysis for Verifying Prop-
erties of Concurrent Programs. In: Proc. of 2nd ACM SIGSOFT Symp. on
Foundations of Software Engineering, ACM Press (1994) 62-75

[EDS99-05] EDSER 1-7: Proceedings of the Workshops on Economics-
Driven Software Engineering Research: In conj. with the 21st through 27th
International Conference on Software Engineering (1999 - 2005)

[Emm00a] Emmerich, W.: Engineering Distributed Objects. John Wiley &
Sons, Chichester, UK (2000a)

[Emm00b] Emmerich, W.: Software Engineering and Middleware: A Road
Map. In: A. Finkelstein (ed.), Future of Software Engineering, ACM Press
(2000b) 117-129

[Emm02] Emmerich, W.: Distributed Component Technologies and their
Software Engineering Implications. In: Proc. of the 24th Int. Conf. on Software
Engineering, Orlando, Florida, ACM Press (2002) 537-546

 [FEA] Lehman, M.M.: Feedback, Evolution and Software Technology,
FEAST 1-2. http://www-dse.doc.ic.ac.uk/~mml/feast/

[Fin00a] Finkelstein, A., and Kramer, J.: Future of Software Engineering. In:
A. Finkelstein (ed.): The Future of Software Engineering, ACM Press (2000) 5-
21

[Fin00b] Finkelstein, A.: Architectural Stability.
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html (2000)

[FS92] Formal Systems (Europe) Ltd.: Failures Divergence Refinement:
User Manual and Tutorial (1992)

[Gal97] Gall, H., Jazayeri, M., Klösch, R., and Trausmuth, G.: The Architec-
tural Style of Component Programming. COMPSAC, IEEE CS Press (1997)
18-27

[Gar00] Garlan, D.: Software Architecture: A Roadmap. In: A. Finkelstein
(ed.): The Future of Software Engineering, ACM Press (2000) 91-101

http://www-dse.doc.ic.ac.uk/%7Emml/feast/
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html

 [Gar94] Garlan, D., Allen, R., and Ockerbloom: Exploiting Style in Archi-
tectural Design Environments. In: Proceedings of SIGSOFT’94, Foundations
of Software Engineering, ACM Press(1994)175-188

[Gar95] Garlan, D., Monroe, R. and Wile, D.: ACME: An Architectural In-
terconnection Language. Technical Report (CMU-CS-95-219) (1995)

 [God91] Godefroid, P., and Wolper, P.: Using Partial Orders for the Effi-
cient Verification of Deadlock Freedom and Safety Properties. In: Proceedings
of the Third Workshop on Computer Aided Verification, Lecture Notes in
Computer Sc, Springer (1991)417–428

[Got95] Gotel, O., and Finkelstein, A.: Contribution Structures. In: 3rd Proc.
of the Requirements Engineering Symposium, York, UK, IEEE CS Press
(1995) 169-178

 [Hol91] Holzman, G.: Design and Validation of Computer Protocol, Pren-
tice Hall Software Series (1991)

[Jaz02] Jazayeri, M.: On Architectural Stability and Evolution. Lecture Notes
in Computer Science, Springer Verlag, (2002) 13-23

 [Jaz95] Jazayeri, M.: Component Programming - a Fresh Look at Software
Components, In: 5th European Software Engineering Conference. Lecture
Notes in Computer Sc, Springer (1995) 457-478

[Kaz01] Kazman, R., Asundi, J., and Klein, M.: Quantifying the Costs and
Benefits of Architectural Decisions. In: Proc. of 23rd Int. Conf. on Software
Engineering, IEEE CS Press (2001) 297-306

[Kaz94] Kazman, R., Abowd, G., Bass, and L., Webb, M.: SAAM: A
Method for Analyzing the Properties of Software Architectures. In: Proc. of
16th Int. Conf. on Software Engineering, IEEE CS (1994) 81-90

[Kaz98] Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., and
Carrière, S.J.: The Architecture Tradeoff Analysis Method. In: Proc. of 4rth.
Int. Conf. on Engineering of Complex Computer Systems IEEE CS Press
(1998) 68-78

 [Kle99] Klein, M., and Kazman, R.: Attribute-Based Architectural
Styles.CMU/SEI-99-TR-22, Software Engineering Institute, (1999)

[Leh00] Lehman, M.M., Kahen, G., and Ramil, J.F.: Replacement Decisions
for Evolving Software. In: Proc. of the Second Workshop on Economics-
Driven Software Engineering Research (2000)

 [Leh98] Lehman, M.M.: The Future of Software – Managing Evolution.
IEEE Software (Jan. 1998)

 [Luc95] Luckham, D.C., and Vera, J.: An Event-Based Architecture Defini-
tion Language. IEEE Trans. on Software Engineering, 29(9) (1995) 717-734

[Mag95] Magee, J., Dulay, D., Eisenbach, N., and Kramer, J.: Specifying
Distributed Software Architecture. In: Proc. of Fifth European Software Engi-
neering Conf., Lecture Notes in Computer Sc, Springer (1995) 137-153

 [Mas91] Masticola, S., and Ryder, B.: A Model of ADA Programs for Static
Deadlock Detection in Polynomial Time. In: Proc. of the Workshop on Parallel
and Distributed Debugging (1991) 97–107

 [Med03] Medvidovic N., Dashofy E., and Taylor R.: On the Role of Mid-
dleware in Architecture-based Software Development. International Journal of
Software Engineering and Knowledge Engineering, 13(4) (2003) 229-306

[Med97] Medvidovic, N., and Taylor, R.: A Framework for Classifying and
Comparing Architecture Description Languages. In: Proc. of 6th. European
Software Engineering Conf., with the Fifth ACM SIGSOFT Symp. on the
Foundations of Software Engineering, ACM Press (1997)60-76

[Meh00] Mehta, N., Medvidovic, N., and Phadke, S.: Towards a Taxonomy
of Software Connectors. In: Proceedings of the 22nd International Conference
on Software Engineering, ACM Press (2000) 178-187

 [Mor95] Moriconi, M., Qian, X., and Riemenschneider, R.: Correct Archi-
tecture Refinement. IEEE Trans. on Software Engineering, 21(4) (1995) 356-
372

 [Nau97] Naumovich, G., Avrunin, G.S, Clarke, L.A., and Osterweil, L.J.:
Applying Static Analysis to Software Architectures. UM-CS-1997-008, Uni-
versity of Massachusetts, Amherst (1997)

[Nus00] Nuseibeh, B., and Easterbrook, S.: Requirements Engineering: A
Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering, ACM
Press (2000) 35-46

 [Nus01] Nuseibeh, B.: Weaving the Software Development Process between
Requirements and Architectures. In: Proc. of the First Int. workshop from
Software Requirements to Architectures, Toronto, Canada (2001)

 [Orei98] Oreizy, P., Medvidovic, N., Taylor, R., and D. Rosenblum, D.:
Software Architecture and Component Technologies: Bridging the Gap. In
Digest of the OMG-DARPA-MCC Workshop on Compositional Software
Architectures, Monterey, CA (1998)

 [Par72] Parnas, D.L.: On the Criteria to Be Used in Decomposing Systems
into Modules, Communications of the Association of Computing Machinery,
15(12) (1972)1053-58

 [Par79] Parnas, D.L.: Designing Software for Ease of Extension and Con-
traction, IEEE Transaction on Software Engineering, 5 (2) (1979)

 [Sch99] Schaller, R.R.: Technology Roadmaps: Implications for Innovation,
Strategy, and Policy, The institute of Public Policy, George Mason University
Fairfax, VA (1999)

[Sch99] Schaller, R.R.: Technology Roadmaps: Implications for Innovation,
Strategy, and Policy, The institute of Public Policy, George Mason University
Fairfax, VA (1999)

 [Sha95] Shaw, M., DeLine, R., Klein, D., Ross, T., and Young, D.: Abstrac-
tions for Software Architecture and Tools to Support them. IEEE Transactions
on Software Engineering, 21(4) (1995) 314-335

 [Smi99] Smith, C., and Woodside, M.: System Performance Evaluation:
Methodologies and Applications. CRC Press (1999)

[Staf01] Stafford, J. A., and Wolf, A. W.: Architecture-Level Dependence
Analysis for Software System. International Journal of Software Engineering
and Knowledge Engineering, 11(4) (2001) 431-453

[Sul97] Sullivan, K. J., Socha, J., and Marchukov, M.: Using Formal Meth-
ods to Reason about Architectural Standards. In: Proceedings of the 19th Int.
Conf. on Software Engineering, MA, ACM Press (1997) 503-513

[Sul99] Sullivan, K. J.: Chalasani, P., Jha, S., and Sazawal, V.: Software De-
sign as an Investment Activity: A Real Options Perspective. Real Options and
Business Strategy: Applications to Decision-Making. In: Trigeorgis L. (ed.)
Risk Books (1999) 215-260

[Val91] Valmari, A.: A Stubborn Attack on State Explosion. In: E. M.
Clarke and R. Kurshan(editors), Computer-Aided Verification 90. American
Mathematical Society, Providence RI. Number 3 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, (1991) 25–41

[van00] van Lamsweerde, A.: Requirements Engineering in the Year 00: A
Research perspective. In: Proc. 22nd Int. Conf. on Software Engineering,
(2000) ACM Press 5-19

[Ves96] Vestal, S.: MetaH Programmer’s Manual, Version 1.09, Technical
Report, Honeywell Technology Center (1996)

	
	Abstract
	
	1. Introduction
	6. References

