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Abstract 
Evolution is a key problem in software engineering and exacts 
huge costs. In managing change and facilitating evolution, con-
siderable emphasis is placed on the architecture of the software 
system as a key artifact involved. One of the major indicators of 
the success (failure) of software evolution is the extent to which 
the software system can endure changes in requirements, while 
leaving the architecture of the software system intact. We refer to 
the presence of this “intuitive” phenomenon as architectural sta-
bility. Ongoing research on relating requirements to software 
architectures has considered the architectural stability problem 
as an open research challenge. This is because the conflict be-
tween requirements volatility and architectural stability is a diffi-
cult one to handle. Hence, the concept is still far from being un-
derstood and many architectural stability related questions are 
remained unanswered. Reflecting on our extensive research into 
the problem, we define architectural stability and explore per-
spectives in handling the problem. We review existing research 
effort and discuss their limitations. We derive a research agenda 
and outline research challenges and opportunities. The implica-
tions of such contribution need not be overstated: advancing the 
understanding of the architectural stability, stimulating and pos-
sibly motivating future research in architectural stability and 
related problems. 

 
1. Introduction 
Software requirements, whether functional or non-functional, 
are generally volatile; they are likely to change and evolve 
over time. The change is inevitable as it reflects changes in 
stakeholders’ needs and the environment in which the software 
system works. Software architecture is the earliest design arti-
fact, which realizes the requirements of the software system. It 
is the manifestation of the earliest design decisions, which 
comprise the architectural structure (i.e., components and in-
terfaces), the architectural topology (i.e., the architectural 
style), the architectural infrastructure (e.g., the middleware), 
the relationship among them, and their relationship to the other 
software artifacts (e.g., low-level design) [Bah05a]. One of the 
major implications of a software architecture is to render par-
ticular kinds of changes easy or difficult, thus constraining the 
software’s evolution possibilities [Jaz02]. A change may 
“break” the software architecture necessitating changes to the 
architectural structure (e.g., changes to components and inter-
faces), architectural topology, or even changes to the underly-
ing architectural infrastructure. It may be expensive and diffi-
cult to change the architecture as requirements evolve 

[Fin00b]. Conversely, failing to accommodate the change 
leads ultimately to the degradation of the usefulness of the 
system. Hence, there is a pressing need for flexible software 
architectures that tend to be stable as the requirements evolve. 
By a stable architecture, we mean the extent to which a soft-
ware system can endure changes in requirements, while leav-
ing the architecture of the software system intact. We refer to 
the presence of this “intuitive” phenomenon as architectural 
stability.  

Developing and evolving architectures, which are stable in 
the presence of change and flexible enough to be customized 
and adapted to the changing requirements is one of the key 
challenges in software engineering [Gar00]. Ongoing research 
on relating requirements to software architectures has consid-
ered the architectural stability problem as an open research 
challenge [van00; Nus01]. This is because the conflict between 
requirements volatility and architectural stability is a difficult 
one to handle [van00]. As a result, many architectural stability 
related questions are remained unanswered [Nus01]: For ex-
ample, what software architectures (or architectural styles) are 
stable in the presence of the changing requirements, and how 
do we select them? What kinds of changes are systems likely 
to experience in their lifetime, and how do we manage re-
quirements and architectures (and their development proc-
esses) in order to manage the impact of these changes? Mean-
while, industrial evidence reveals situations where high re-
quirements volatility is the norm and much of the promise is 
leaved to the architecture in accommodating the changes. For 
example, the number of mergers between companies is in-
creasing and this trend is bound to continue. The different 
divisions of a newly merged company have to deliver unified 
services to their customers and this usually demands an inte-
gration of their IT systems into the core architecture. The time 
frame is often so short that building a new system is not an 
option and therefore existing system components have to be 
integrated into a distributed system architecture to appear as an 
integrated computing facility. Secondly, the trend of providing 
new services or evolving existing services to target new cus-
tomers, devises and platforms, and distribution settings (e.g., 
mobility setting) is increasing. For example, moving from a 
fixed distributed setting to mobility carries critical changes, 
mainly to non-functionalities, such as changes in availability, 
security, and scalability requirements. Often the core “fixed” 
architecture falls short in accommodating the requirements; 
henceforth, changes to the architecture becomes necessary. 
Thirdly, it is often the case that components are procured off-
the-shelf, rather than built from scratch, in response to changes 
in requirements and then need to be integrated into the core 
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architecture. These components often have incompatible re-
quirements on the hardware and operating system platforms 
they run on. In many software systems, the architecture is the 
level that has the greatest inertia when external circumstances 
change and consequently incurs the highest maintenance costs 
when evolution becomes unavoidable [Coo01]. Hence, a stable 
architecture which addresses such changes in requirements 
within limited resources and shorter time-to-market is a sig-
nificant asset for surviving the business, cutting down mainte-
nance costs and creating value. 

Reflecting on our extensive research into the problem, we 
define architectural stability and explore perspectives in han-
dling the problem. We review existing research effort and dis-
cuss their limitations. We derive a research agenda and outline 
research challenges and opportunities. The implications of such 
contribution are numerous: exploring the architectural stability 
problem, advancing the understanding of the said problem, stimu-
lating and possibly motivating future related research. This may 
result in frameworks with practical implications aimed at develop-
ing stable systems in face of changes in requirements.  

The paper is further structured as follows. Section 2 looks 
at architectures and evolution. Section 3 explores perspectives 
in handling the architectural stability problem. Section 4 out-
lines research challenges and opportunities. Section 5 concludes.  

 
2. Architecture-Centric Evolution  
In Lehman’s terminology [FEA], there are two types of 
systems: these are E-type systems and S-type systems. E-Type 
systems that are embedded in real world applications and are 
used by humans for everyday business functions. Examples 
might be customer service, order entry, payroll, operating 
systems, databases engines. S-Type systems are executable 
models of a formal specification. The success of this software 
is judged by how well it meets the specification. For E-Type 
systems the “real world” is dynamic and ever changing. As the 
real world changes the specification changes and the E-Type 
systems need to adapt to these changes. Hence, E-Type 
systems tend to be evolvable. For S-Type systems the 
specification becomes invalid in the presence of change. In 
this paper, we deal with evolution and architectural stability of 
E-type systems.  

Change is a process that either introduces new require-
ments into an existing system; modifies the system if the re-
quirements were not correctly implemented; or moves the sys-
tem into a new operating environment [Ben00]. In software 
engineering, it has been known that focusing the change on 
program code leads to loss of structure and maintainability 
[Ben00]. Upon managing the change of requirements consid-
erable emphasis is thus placed on the architecture of the soft-
ware system as the key artifact involved [Gar00]. Architecture-
centric evolution approaches pursue the software architecture 
as the appropriate level of abstraction for reasoning about, 
managing and guiding the evolution of complex software sys-
tems, and “synchronizing” the software requirements with its 
detailed design and implementation. A distinctive feature of 
these approaches is that they explicitly account for the non-
functional requirements, the so-called quality attributes. As the 
quality attributes comprise the most substantial properties of 
the system, the evolution of such properties can be best rea-
soned about and managed at the architectural level. For exam-

ple, the current trend is to build distributed systems architec-
tures with middleware technologies such as Java 2 Enterprise 
Edition (J2EE) and the Common Object Request Broker Ar-
chitecture (CORBA), resulting in the so-called middleware-
induced architectures [DiN99]. Middleware-induced architec-
tures follow an architectural-centric evolution approach, as the 
emphasis is placed on the induced architecture for simplifying 
the construction of distributed systems by providing high-level 
primitives, which shield the application engineers from the 
distribution complexities, managing systems resources, and 
implementing low-level details, such as concurrency control, 
transaction management, and network communication. These 
primitives are often responsible for realizing many of the non-
functional requirements (e.g., scalability, fault tolerance, etc.) 
in the architecture of the system induced and facilitating their 
evolution over time. Another example is from product-line 
architectures. Product lines, a family of products sharing the 
same architecture, inherently require domain-specific variation 
and evolution of various products. Due to the higher level of 
interdependency between the various software artifacts in a 
product-line, software evolution is too complex to be dealt 
with at the code level. An essential property of these architec-
tures is that they should be stable over the projected life of the 
system [Bah05a]. As the focus is on the architecture for “eas-
ing” evolution, architecture-centric evolution approaches place 
considerable emphasis on the flexibility of the architecture in 
responding to change, deriving business value, and minimizing 
evolution costs [Bah05a, Bah06].  
  

3. Perspectives into Architectural Stability 
In subsequent sections, we explore perspectives in looking 
at the architectural stability problem. We review existing 
research effort and discuss their limitations. 
 
3.1 Requirements Engineering Perspective  
Ongoing research on relating requirements to software archi-
tectures has considered the architectural stability problem as 
an open research challenge and difficult to handle [Nus01; 
van01; Emm02]. [Nus01] proposed the “Twin Peaks” model, a 
partial and simplified version of the spiral model. The corner-
stone of this model is that a system’s requirements and its ar-
chitecture are developed concurrently; that is, they are “inevi-
tably intertwined” and their development is interleaved. 
[Nus01] advocated the use of various kinds of patterns – re-
quirements, architectures, and designs- to achieve the model 
objectives. As far as architectural stability is concerned, 
Nuseibeh had only exposed a tip of the “iceberg”: develop-
ment processes that embody characteristics of the Twin Peaks 
are the first steps towards developing architectures that are 
stable in the face of inevitable changes in requirements. 
Nuseibeh noted that many architectural stability related ques-
tions are difficult and remain unanswered. Examples include: 
what software architectures (or architectural styles) are stable 
in the presence of changing requirements, and how do we se-
lect them? What kinds of changes are systems likely to experi-
ence in their lifetime, and how do we manage requirements 
and architectures (and their development processes) in order to 
manage the impact of these changes?  



With the motivation of bridging the gaps between require-
ments and software architectures, [van00] noted that the goal-
oriented approach to requirements engineering may support 
building and evolving software architectures guaranteed to 
meet its functional and non-functional requirements. As far as 
the architectural stability problem is concerned:  

“Even though streamlined derivation processes may be envis-
aged for architectural development, things get much more 
complicated for evolution. For example, the conflict between 
requirements volatility and architectural stability is a difficult 
one to handle”. [van00] 

In summary, these positions have reflected on open chal-
lenges and possible strategies in developing software architec-
tures that need to be stable as requirements evolve. They have 
highlighted the architectural stability problem from a require-
ments perspective. Focused research attempts, however, have 
not followed these lines.  

In [Emm02; Bah05b], we reflected on the architectural sta-
bility problem with a particular focus on developing distrib-
uted software architectures induced by middleware. We advo-
cated adjusting requirements elicitation and management tech-
niques to elicit not just the current non-functional require-
ments, but also to assess the way in which they will develop 
over the lifetime of the architecture. These ranges of require-
ments may then inform the selection of distributed components 
technology, and subsequently the selection of application 
server products. Specifically, we considered the architecture 
stability problem from the distributed components technology 
in the face of changes in non-functional requirements. We 
argued that addition or changes in functional requirements 
could be easily addressed in distributed component-based ar-
chitectures by adding or upgrading the components in the 
business logic. However, changes in non-functional require-
ments are more critical; they can stress architecture considera-
bly, leading to architectural “breakdown”. Such a “break-
down” often occurs at the middleware level and is due to the 
incapability of the middleware to cope with the change in non-
functional requirements (e.g., increased load demands). This 
may drive the architect/developer to consider ad-hoc or propri-
ety solutions to realize the change, such as modifying the mid-
dleware, extending the middleware primitives, implementing 
additional interfaces, etc. Such solutions could be costly and 
unacceptable [Bah05b]. 
   
3.2. A Value-Driven Design Perspective 
An established route to manage the change and facilitate evo-
lution is a universal “design for change” philosophy, where the 
architecture is conceived and developed such that evolution is 
possible [Par79]. Parnas’s notion of the “design for change” is 
based on the recognition that much of the total lifecycle cost of 
a system is expended in the change and incurred in evolution. 
A system that is not designed for evolution will incur tremen-
dous costs, which are disapropionate to the benefits. For a 
system to create value, the cost of a change increment should 
be proportional to the benefits delivered [Par72]. “Design for 
change” is thus promoted as a value-maximizing strategy pro-
vided one could anticipate changes [Boe00]. The “Design for 
change” philosophy is believed to be a useful heuristic for 

developing flexible architectures that tend to be stable as re-
quirements evolve. However, the challenge is that there is a 
general lack of adequate models and methods, which connect 
this technical engineering philosophy to value creation under 
given circumstances [Boe00]. [Sul97] note that the important 
book of Shaw and Garlan on software  architecture begins, 
“As the size and complexity of software systems increase, the 
design and specification of overall system structure become 
more significant issues than the choice of algorithms and data 
structures…” [Sha96]. [Sul97] add, “This statement is true, 
without a doubt. The problem in the field is that no serious 
attempt is made to characterize the link between structural 
decisions and value added”. That is, the traditional focus of 
software architecture is more on structural and technical per-
fection than on value. In addressing the architectural stability 
problem, linking structural decisions to future value becomes 
more necessary, as presumably evolvable but stable architec-
ture should add value to the system that outweigh what ex-
pended in designing for change, as the change material-
izes[Bah05a]. Furthermore, from an economic perspective, the 
change in requirements is a source of uncertainty that con-
fronts an architecture during the evolution of the software sys-
tem. The change places the investment in a particular architec-
ture at risk. Conversely, designing for change incurs upfront 
costs and may not render future benefits. The benefits are un-
certain, for the demand and the nature of the future changes 
are uncertain. The worthiness of designing or re-engineering 
an architecture for change should involve a tradeoff between 
the upfront cost of enabling the change and the future value 
added by the architecture, if the change materializes. The value 
added, as a result of enabling the change on a given architec-
ture, is a powerful heuristic which can provide a basis for ana-
lyzing: (i) the worthiness of designing for change, (ii) the wor-
thiness of re-engineering the architecture, (iii) the retiring and 
replacement decisions of the architecture or its associated de-
sign artifacts, (iv) the decisions of selecting an architecture, 
architectural style, middleware, and/or design with desired 
stability requirements, and/or (v)  the success (failure) of evo-
lution[Bah05a]. In ArchOptions [Bah05a; Bah04a; Bah03c; 
Bah03b], we have taken an economics-driven software engi-
neering perspective [EDS99-05] to evaluate architectural sta-
bility using real options theory. We have adopted the view that 
software design and engineering activity is one of investing 
valuable resources under uncertainty with the goal of maxi-
mizing the value added [Boe00]. In particular, we have viewed 
evolving software as a value-seeking and value-maximizing 
activity: software evolution is a process in which software is 
undergoing an incremental change and seeking value [Bah04a; 
Bah05a]. We attribute the added value to the flexibility of the 
architecture in enduring changes in requirements. Means for 
achieving flexibility are typical architectural mechanisms or 
strategies that are built-in or adapted into the architecture with 
the objective of facilitating evolution and future growth. This 
could be in response to changes in functional (e.g., changes in 
features) or non-functional requirements (e.g., changes in scal-
ability demands). As we are assuming that the added value is 
attributed to flexibility, arriving at a “more” stable software 
architecture requires finding an architecture which maximizes 
the yield in the embedded or the adapted flexibility in an archi-
tecture relative to the likely changing requirements [Bah05a; 



Bah04a; Bah03c]. Optimally, a stable architecture is an archi-
tecture that shall add value to the enterprise and the system as 
the requirements evolve. By valuing the flexibility of an archi-
tecture to change, we have aimed at providing the archi-
tect/analyst with a useful tool for reasoning about a crucial but 
previously intangible source of value. This value can be then 
used for deriving “insights” into architectural stability and 
investment decisions related to evolving software. To value 
flexibility, we have contributed to a novel model, ArchOp-
tions, which builds on an analogy with real options theory 
[Bah05a; Bah04a; Bah03c]. The model examines some critical 
likely changes in requirements and values the extent to which 
the architecture is flexible to endure these changes. The model 
views an investment in an architecture as an upfront invest-
ment plus “continual” increments of future investments in 
likely changes in requirements. We have applied ArchOptions 
to two architecture-centric evolution problems: assessing the 
worthiness of re-engineering a “more” stable architecture in 
face of likely changes in future requirements, where we have 
taken refactoring as an example of re-engineering [Bah04b]; 
and informing the selection of a “more” stable middleware-
induced software architecture in the face of future changes in 
non-functional requirements [Bah05b]. Our perspective has 
provided a compromise through linking technical issues to 
value creation. The approach has the promise to provide in-
sights and a basis for analyses to support many of the concerns 
highlighted in previous sections. 

   
3.3. Architectural Evaluation Perspective  
Evaluating architectural stability aims at assessing the extent 
to which the system of a given architecture is evolvable, while 
leaving the architecture and its associated design decisions 
unchanged as the requirements change. Approaches to evaluat-
ing software architectures for stability can be retrospective or 
predictive [Jaz00]. Both approaches start with the assumption 
that the software architecture’s primary goal is to facilitate the 
system’s evolution. Retrospective evaluation looks at succes-
sive releases of the software system to analyze how smoothly 
the evolution took place. Predictive evaluation provides in-
sights into the evolution of the software system based on ex-
amining a set of likely changes and the extent to which the 
architecture can endure these changes. 
 Retrospective approaches. Jazayeri [Jaz02] moti-
vated the use of retrospective approaches for evaluating soft-
ware architectures for stability and looked at the problem from 
a software evolution perspective. His analyses rely on compar-
ing properties from one release of the software to the next. The 
intuition is to see if the system’s architectural decisions re-
mained intact throughout the evolution of the system, that is, 
through successive releases of the software. Jazayeri refers to 
this “intuitive” phenomenon as architectural stability. Retro-
spective analysis can be used for empirically evaluating an 
architecture for stability; calibrating the predictive evaluation 
results; and predicting trends in the system evolution [Jaz02]. 
In other words, retrospective analysis can also provide a basis 
for predictive analysis. For example, previous evolution data 
of the system may be used to anticipate the resources needed 
for the next release of the system, or to identify the compo-
nents most likely that require attention, need restructuring or 

replacements, or to decide if it is time to entirely retire the 
system. In principle, predictive analysis and retrospective 
analysis should be combined. However, perfect predictive 
evaluations render retrospective analysis unnecessary [Jaz02].  

Jazayeri’s approach uses simple metrics such as software 
size metrics, coupling metrics, and color visualization to sum-
marize the evolution pattern of the software system across its 
successive releases. The evaluation assumes that the system 
already exists and has evolved. This approach is therefore tend 
to be unpreventive and unsuitable for early evaluation (unless 
the evolution pattern is used to predict the stability of the next 
release). The evaluation appears to be expensive (in the ab-
sence of dedicated tools), for it requires information to be kept 
for each release of the software. Such data could be available 
through configuration management repositories. Yet such data 
is not commonly maintained, analyzed, or exploited. More-
over, the problem of architectural stability is strategic in es-
sence and not purely technical [Bah06]. Jazayeri addresses the 
problem from a purely technical perspective. It worth noting 
that ongoing projects at the S.E.A.L group of Gall at U. of 
Zurich, have contributed to interesting results on mining soft-
ware repositories to visualize evolution data. Though the de-
veloped infrastructure and analyses have the potential to sup-
port retrospective analyses for stability, no explicit results 
have been reported yet in this direction.  

Predictive approaches. Predictive approaches to 
evaluating architectural stability can be applied during the 
early stages of the development life cycle to predict threats of 
the change on the stability of the architecture. Unlike retro-
spective approaches, predictive approaches are preventive; the 
evaluation aims to understand the impact of the change on the 
stability of the architecture if the likely changes need to be 
accommodated, so corrective design measures can be taken. 
Therefore, in predictive approaches, the effort to evaluation is 
justified as the evaluation is generally cost effective, when 
compared to retrospective approaches. In ArchOp-
tions[Bah03;Bah05], we examine a set of likely changes that 
are critical to the evaluation. We pursue scenarios as a possible 
solution to describe these changes. To link the likely future 
change in requirements to the architecture, we adopt Goal-
Oriented Requirements Engineering (GORE) paradigm 
[Dar93], where the goals are extracted from scenarios [Ant97]. 
We then predict the extent to which the architecture can en-
dure these changes through constructing and valuing call op-
tions for a given change [Bah05a; Bah04a; Bah03c].  

A comprehensive survey [Bah03a] of architectural evalua-
tion methods indicates that current approaches to architectural 
evaluation focus explicitly on construction and only implicitly, 
if not at all, on the phenomenon of software “evolution”.  The 
survey includes representative methods like ATAM [Kaz98], 
SAAM [Kaz94], ARID [Kle00], PASA/SPE [Smi99], ABAS 
[Kle99], and CBAM [Kaz01]. These methods provide frame-
works for software architects to evaluate architectural deci-
sions with respect to quality attributes such as performance, 
security, reliability, and modifiability. Despite the concern 
with “change” and accommodating changes, none of these 
methods, addresses stability of an architecture over time. For 
example, ATAM and SAAM indicate places where the archi-
tecture fails to meet its modifiability requirements and in some 



cases shows obvious alternative designs that would work bet-
ter. When used for evaluating modifiability, the input to these 
methods consists of an enumerated set of stakeholders’ scenar-
ios that represent known or likely changes that the system will 
undergo in the future. These scenarios are prioritized and 
mapped onto the architecture representation. The activity of 
mapping indicates problem areas in the architecture: areas 
where the architecture is overly complex (e.g., if distinct sce-
narios affect the same component(s)) and areas where changes 
tend be problematic (e.g., if a scenario causes changes to a 
large number of components). The approaches to evaluation 
involve “thought experiments”, modelling, and walking-
through scenarios that exemplify requirements, as well as as-
sessment by experts who look for gaps and weaknesses in ad-
dressing modifiability based on their experience. However, 
these methods do not support their prediction with an analyti-
cal basis and rigorous models. When methods, such as SAAM 
and ATAM are used to analyze qualities that are related to 
change (such as modifiability), they do not predict and meas-
ure the capability of the architecture to withstand the change. 
This renders their predictive effectiveness myopic. Further, 
these methods have ignored any economic considerations, with 
CBAM [Kaz01] being the notable exception. The evaluation 
decisions using these methods tend to be driven by ways that 
are not connected to, and usually not optimal for value crea-
tion. Factors such as flexibility, time to market, cost and risk 
reduction often have high impact on value creation [Boe00]. 
Such ignorance is in stark contrast to the objective of architec-
tural evaluation and where cost reduction, risk mitigation, and 
long-term value creation are among the major drivers behind 
conducting an evaluation for stability [Bah06]. Such provision 
is important for it assists the objective assessment of the life-
time costs and benefits of evolving software, and the identifi-
cation of legacy situations, where a system or component is 
indispensable but can no longer be evolved to meet changing 
needs at economic cost [Coo01]. Interested reader may refer to 
[Bah06], where we have highlighted the requirements for 
evaluating architectural stability, which address the pitfalls in 
existing methods.  
 
4. Architecture Stability: Challenges and 
Opportunities 
Rapid technological advances and industrial evidence are 
showing that the architecture is creating its own maintenance, 
evolution, and economics problems. Part of the problem stems 
in (i) the rapid technological advancements where evolution is 
not limited to a specific domain but extends to “horizontally” 
cover several domains, (ii) the current practice in engineering 
requirements, which ignore the above, (iii) and the improper 
management of the evolution of these requirements and across 
different design artifacts of the software system. In subsequent 
sections, we highlight some open issues that future research 
may consider to address some architectural-centric software 
evolution problems. Addressing these questions may have a 
positive implication on understanding architectural stability.  
 
4.1. Architectures Description Languages  
Although software evaluation methods are typically human-
centred, formal notations for representing and analyzing archi-

tectural designs, generically referred to as Architectures De-
scription Languages (ADLs), have provided new opportunities 
for architectural analysis [Gar00] and validation. We briefly 
survey efforts on ADLs as they have implications for support-
ing the evaluation of software architectures. We explain how 
ADLs can be used to support the evaluation of software archi-
tectures in general and provide some insights on their use to 
evaluate architectural stability.  

ADLs are languages that provide features for modelling a 
software system’s conceptual architecture [Med97]. ADLs 
provide a concrete syntax and a conceptual framework for 
characterizing architectures [Garl97]. The conceptual frame-
work typically subsumes the ADL’s underlying semantic the-
ory (e.g., CSP, Petri nets, finite state machines). A number of 
ADLs have been proposed for modelling architectures both 
within a particular domain and as general-purpose architecture 
modelling languages [Med97]. Examples are Aesop [Gar95], 
Darwin [Mag95; Mag96], MetaH [Vest96], C2 [Med96], 
Rapide [Luc95], Wright [All94], UniCon [Sha95], SADL 
[Mor95], and ACME [Gar97]. ADLs are often intended to 
model large, distributed, and concurrent systems. Evaluating 
the properties of such systems upstream, at the architectural 
level, can substantially lessen the costs of any errors. The for-
mality of ADL renders them suitable for the manipulation by 
tools for architectural analysis. In the context of architectural 
evaluation, the usefulness of an ADL is directly related to the 
kind of analyses a particular ADL tends to support. The type 
of analyses and evaluation for which an ADL is well suited 
depends on its underlying semantic model. We refer to 
[Med97] to state few examples: Wright is based on CSP; it 
analyses individual connectors for deadlocks. MetaH and 
UniCon both support schedulability analysis by specifying 
non-functional properties, such as criticality and priority. 
SADL can establish relative correctness of two architectures 
with respect to a refinement map. Rapide’s and C2’s event 
monitoring and filtering tools also facilitate analysis of an 
architecture. C2 uses critics to establish adherence to style 
rules and design guidelines. Another aspect of analysis, that 
supports architectural evaluation, is enforcement of con-
straints. Parsers and compilers enforce constraints implicit in 
types, non-functional attributes, component and connector 
interfaces, and semantic models. Static and dynamic analyses 
are used. Static analysis verifies that all possible executions of 
the architecture description conform to the specification. Static 
analysis helps the developers to understand the changes that 
need to be made to satisfy the analysed properties. They span 
approaches such as reachability analysis [Hol91; Val91; 
God91], symbolic model checking [Bru90; McM93], flow 
equations, and data-flow analysis [Dwy94]. The applicability 
of such techniques to architecture descriptions has been dem-
onstrated in [Nau97] using two static analysis tools. These 
tools are INCA [Cor95] and FLAVERS [Mas91; Dwy94]. 
Rapide [Luk95] provides a support to simulate the executions 
of the system. The simulation verifies that the traces of those 
executions conform to high-level specifications of the desired 
behavior. [All94] use the static analysis tool FDR [FS92] to 
prove freedom from deadlock as well as compatibility between 
the component and connectors in an architecture description. 
The term dynamic architectures denote that application’s ar-
chitecture evolves during runtime. Examples of analyses sup-



port for dynamic architectures include Darwin [Mag95], which 
provides a support to the analysis of distributed message-
passing systems. 

No notable research effort has explored the role of ADLs 
in supporting evaluating architectural stability. However, 
ADLs have the potential to support such evaluation. For in-
stance comparing properties of ADL specifications for differ-
ent releases of a software can provide insights on how the 
change(s) or the likely change(s) tends to threat the stability of 
the architecture. This can be achieved by analyzing the parts of 
newer versions that represent syntactic and semantic changes. 
Moreover, the analysis can provide insights into possible ar-
chitectural breakdown upon accommodating the change. For 
example, the analysis may show how the change may break 
the architectural topology (e.g., style) and/or the architectural 
structure (e.g., components, connectors, interfaces ect.). We 
note that ADLs have potential for performing retrospective 
evaluation for stability, where the evaluation can be performed 
at a correspondingly high level of abstraction. Hence, the 
evaluation may be relatively less expensive as when compared, 
for example, to the approach taken by [Jaz02], detailed in the 
previous section.  

 
 
4.2. Coping with Rapid Technological Ad-
vancements and Changes in Domain 
Assume that a distributed e-shopping system architecture 
which relies on a fixed network needs to evolve to support new 
services, such as the provision of mobile e-shopping. Moving 
to mobility, the transition may not be straightforward: the 
original distributed system’s architecture may not be re-
spected, for mobility poses its own non-functional require-
ments for dynamicity that are not prevalent in traditional dis-
tributed setting [Cap03]. Examples of these requirements in-
clude the need to react to frequent changes in the environment, 
such as change in location; resource availability; variability of 
network bandwidth; the support of different communication 
protocols; losses of connectivity when the host need to be 
moved; and so forth. These requirements may not be satisfied 
by the current fixed architecture, the built-in architectural 
caching mechanisms, and/or the underlying middleware. Re-
placement of the current architecture may be required. 

The challenge is thus to cope with the co-evolution of 
both the architecture and the non-functional requirements as 
we change domains. This poses challenges in understanding 
the evolution trends of non-functional requirements; designing 
architectures, which are aware of how these requirements will 
change over the projected lifetime of the software system and 
tend to evolve through the different domains. From an eco-
nomics perspective, such is necessary to reduce the future 
“switching cost”, which could hinder the success of evolution. 
In this perspective, engineering requirements and designing 
architectures need to be treated as value-maximizing activities 
in which we can maximize the net benefits (or real options) by 
minimizing the future “switching costs” while transiting across 
different domains. This necessitates amending the current 
practice of engineering requirements and brings a need for 
methods and techniques, which explicitly model the domain, 
the “vertical” evolution of the software system within the do-

main itself and how the domain is likely to change over the 
projected lifetime of the software system. Again, goal-oriented 
requirements engineering(e.g.,[Dar93]) could be a promising 
starting point to “horizontally” capture the evolution across 
various domains and “vertically” across the domain itself. The 
problem of selecting an architecture, which tend to be stable as 
the “vertical” and the “horizontal” requirements evolve, be-
come a multi-optimization design problem, where the selected 
architecture must maximize the value added relative to the 
“vertical” and the “horizontal” changes. The modeling could 
be then complemented by valuation frameworks which have 
the promise for answering questions of interest such as which 
architectural styles and middlewares, have the promise to re-
duce the switching costs and could prevail over the life time of 
the software system? This we believe is a practical need for 
engineering requirements to support stable software architec-
tures. Managing the change is a process which involves recog-
nizing the change through continued requirements elicitation, 
requirements evaluation of risk, and evaluation of systems in 
their operational environments [Nus00]. Identifying and 
documenting possible future changes is important in order to 
manage software evolution [Leh98] and evaluate architectural 
choices [Nus00].  

In software engineering, the use of technology roadmap-
ping, for example, is left unexplored in predicting and eliciting 
change in requirements. Technology roadmapping is an effec-
tive technology planning tool which help identifying product 
needs, map them into technology alternatives, and develop 
project plans to ensure that the required technologies will be 
available when needed [Sch99]. Technology roadmapping, as 
a practice, emerged from industry as a practical method of 
planning for new technology and product requirements. Ac-
cording to [Sch99], a roadmap is not a prediction of future 
breakthroughs in the technology, but rather an articulation of 
requirements to support future technical needs. A roadmap 
assumes a given future and provides a framework toward real-
izing it. Often, a roadmap is part of the business and/or the 
product strategy towards growth and evolution. 

Figure 1 is a product roadmapping of Company x, a mobile 
service provider. Figure 1 shows how the mobile services are 
said to evolve as we transit from 2G to 3G networking. As the 
bandwidth is improved, an emerging number of content-based 
services, ranging from voice, multi-media, data, and location-
based services might be possible. This, in turn, will translate 
into future requirements (functional and non-functional), 
which need to be planned in advance so it can be accommo-
dated by the architecture responsible for delivering the ser-
vices. Note that many of the likely changes in the requirements 
may be derived from the roadmapping process, rather than the 
roadmap itself. As an example, M-banking is a service, which 
allows customers to check bank balances, view statements, and 
carry bank transactions using mobile phones. A distributed 
architecture of a banking system, which envisions providing 
such a service as the bandwidth is improved, may need to an-
ticipate changes due to mobility like changes in security re-
quirements, load, availability, etc. The architect may then need 
to anticipate relevant change scenarios and ways of accommo-
dating them on the architecture.  

 



E.g., M-banking availability:  

(Requirements) Loss of connectivity is the norm in mobil-
ity. The M-banking service shall be available 99% of the 
time,   
(Architecture) New caching mechanisms are then required.  

 

 
Source: http://www.3g-generation.com/ 

Figure 1. Company’s x technology road mapping showing the 
evolution of its mobile services as it moves from 2G to 3G 
and its value to the end user 
 

4.3. Architectural Stability and Middleware  
Recent research effort (e.g., [Jaz95; Gal97; Sul97; Ore98; 
Din99; Met00; Den04]) on the relation between software ar-
chitectures and middleware has been motivated by pragmatic 
needs. The effort has revolved on issues such as investigating 
the compliancy of architectural styles with middleware; capa-
bilities that the middleware and the architecture can bring 
when “coupled” to understand quality attributes of the system 
such as performance; mapping between middleware and soft-
ware architectures; and semantics and syntactical issues related 
to the mapping process. As it has been noted in several occa-
sions [Emm00b; Emm02], research on software architectures 
has over-emphasized functionality and not sufficiently ad-
dressed how global properties and non-functional requirements 
are achieved in an architecture, where these requirements can-
not be attributed to individual components or connectors. 
Though ongoing research on the “coupling” of middleware 
and architectures could have an impact on understanding the 
relation between architectures and non-functional require-
ments, their contributions to such understanding is still insuffi-
cient. As far as the architectural stability problem is concerned, 
no effort has been devoted for understanding the evolution of 
non-functional requirements in relation to both the architecture 
and the middleware, when coupled. In [bah05b], we have 
claimed that as the non-functional requirements evolve, the 
“coupling” between the middleware and architecture becomes 
the focal point for understanding the stability of the distributed 
software system architecture in the face of change. We have 
hypothesised that the choice of a stable distributed software 
architecture depends on the choice of the underlying middle-
ware and its flexibility in responding to future changes in non-
functional requirements. Drawing on a case study that ade-
quately represents a medium-size component-based distributed 
architecture: we have reported on how a likely future change 
in scalability could impact the architectural structure of two 

versions, each induced with a distinct middleware: one with 
CORBA and the other with J2EE. We have devised an option-
based model to value the flexibility of the induced-
architectures and to guide the selection. Both versions have 
exhibited similar styles (i.e., three-tier), yet they have differed 
in the way they cope with the change in scalability. The differ-
ence was not due to the architectural style, but due to the 
primitives that are built in the middleware to facilitate scaling 
the software system. The governing factor, hence, appears to 
be to a large extent dependent on the flexibility of the middle-
ware (e.g., through its built-in primitives) in supporting the 
change. Our preliminary observations suggest that the style by 
itself is not revealing to the analysis of architectural stability 
with respect to changes in non-functional requirements. 
Though this observation reveals a trend that agrees with the 
state-of-practice, confirming the validity of these observations 
are still subject to some systematic empirical studies. These 
studies may need to consider other non-functional require-
ments, their concurrent evolution, and their corresponding 
change impact on different architectural styles and middle-
ware, which worth future research.  
 
4.4. Traceability of Requirements to Architec-
tures 
An important outcome of the initial development of the soft-
ware system is the knowledge that the development team ac-
quires: the knowledge of the application domain, user re-
quirements, role of the application in the business process, 
solutions and algorithms, data formats, strength and weakness 
of the architecture, and operating environment [Ben00]. This 
knowledge is acknowledged to be crucial prerequisite for evo-
lution. In particular, both the architectures and the team 
knowledge make the evolution possible [Ben00]. These to a 
great extent allow the team to make changes in the software 
without damaging the architectural integrity. Once one or the 
other aspect disappears, the system is no longer evolvable and 
enters the stage of servicing (also referred to as maturity by 
Lehman) [Ben00]. At the servicing stage, only small tactical 
changes would be possible. For the business, the software is 
likely to be no longer a core product and the cost-benefit of the 
change becomes marginal. According [Ben00], there is a posi-
tive feedback between the loss of software architecture coher-
ence and the loss of software knowledge. Less coherent archi-
tectures requires more extensive knowledge in order to evolve 
the system of the given architecture. However, if the knowl-
edge necessary for evolution is lost, the changes in the soft-
ware will lead to faster deterioration of the architecture. Very 
often on software projects, the loss of knowledge is triggered 
by loss in key personnel and the project slips into the servicing 
stage. Hence, planning for evolution and stable software archi-
tectures urges the need for traceability techniques, which 
traces requirements and their evolution back and forth into the 
architecture and aid in “preserving” the team knowledge.  

[Dav93] defines traceability as “the ability to describe and 
follow (track) the lifetime of an artifact, in both a forward and 
a backward direction, i.e., from its origin to development and 
vice versa” [Dav93]. [Got95] have preserved the spirit of 
Davis’s definition of traceability. They, however, have scoped 
the definition on tracing a requirement through its “life”. The 



requirements life covers periods of a requirement origin, de-
velopment and specification, deployment, use, and on-going 
refinement. They have defined requirements traceability as 
“the ability to describe and follow the life of a requirement in 
both a forwards and backwards direction (i.e., from its origins, 
through its development and specification, to its subsequent 
deployment and use, and through periods of on-going refine-
ment and iteration in any of these phases)”. [Got95] have par-
ticularly discussed the importance of tracing requirements 
back to their source. These sources might be people, other 
requirements, documents, or standards.  

Traceability is important for modeling dependencies 
among software objects and for managing the change across 
software artifacts. Traceability information records the de-
pendencies between requirements and the sources of these 
requirements, dependencies between requirements themselves, 
and dependencies between requirements and the system im-
plementation. Advances in software-development environ-
ments and repository technology have enabled software engi-
neers to trace the change in software using traceability tech-
niques. These techniques span a variety of approaches ranging 
from cross-referencing schemes (e.g., cross-referencing 
schemes, based on some form of tagging, numbering, index-
ing, traceability matrices, and matrix sequences), through 
document-centered techniques (e.g., Templates, hypertext, and  
integration documents), to more elaborate structure-centered 
techniques (e.g., assumption-based truth maintenance net-
works, constraint networks, axiomatic, key phrase, and/or rela-
tional dependencies). 

We define requirement to architecture traceability as the 
ability to describe the “life” of a requirement through the re-
quirements engineering phase to the architecture phase in both 
forwards and backwards. Forwards demonstrates which (and 
how) architectural element(s) satisfy an individual requirement 
in the requirements specification. Backwards demonstrates 
which requirement(s) in the requirements specification an in-
dividual architectural element relate to and satisfy. Current 
architectural practices, however, do not provide support for 
traceability from the requirements specification to the architec-
tural description. Maintaining traceability “links” is necessary 
for managing the change, the co-evolution of both the re-
quirements and the architecture, confining the change, under-
standing the change impact on both the structure and the other 
requirements, providing a support for automated reasoning 
about a change at a high level of abstraction. Further, such 
traceability “links” make it easier to preserve the acquired 
knowledge of the team through guided documentation. This 
may then minimize the impact of personnel losses, and may 
allow the enterprise to make changes in the software system 
without damaging the architectural integrity and making the 
software system unevolvable.  
 
4.5. Architectural Change Impact Analysis 
Although change impact analysis techniques are widely used 
at lower levels of abstractions (e.g., code level) and on a rela-
tively abstract levels (e.g., classes in O.O. paradigm), little 
effort has been done on the architectural level (i.e., architec-
tural impact analysis). Formal notations for representing and 
analyzing architectural designs such as ADLs have provided 

new opportunities for architectural analyses [Gar00]. Exam-
ples of such analyses includes system consistency checking 
[All94; Luc95], and conformance to constraints imposed by an 
architectural style [Abo93].  

Notable effort using dependency analysis on the architec-
tural level includes the “chaining” technique suggested by 
[Sta97]. The technique is analogous in concept and application 
to program slicing. In chaining, dependence relationships that 
exist in an architectural specification are referred to as links. 
Links connect elements of the specification that are directly 
related. The links produce a chain of dependencies that can be 
followed during analysis. The technique focuses the analysis 
on components and their interconnections. A component may 
have a set of input and output ports (which correspond to the 
component’s interface). These ports may have been connected 
to one another to form a particular architectural configuration. 
Communication between components is accomplished by 
sending events to the component’s ports. [Staf97] supports the 
approach with an analysis tool, Aladdin. Aladdin accepts an 
architectural specification as input. A variety of computations 
can be then performed. The computations include unconnected 
component identification, change impact analysis (i.e., which 
components will be affected by an architectural change), and 
event dependence analysis (i.e., which components can send 
the following event to this port). These computations start at a 
particular component and/or port. Forward and/or backward 
chaining are then performed to discover related components. 
Forward and backward chaining is analogous in concept to 
forward and backward walk in the data-flow slicing. The ap-
plicability of this technique is demonstrated on small scale 
architectures and could be extended to address current archi-
tectural development paradigms. For example, how such a 
concept could be refined to perform what-if analysis on large-
scale software architectures such as product-line or model-
driven architectures? For product-line architectures, this is 
necessary for reasoning about how the change could impact 
the commonality, variability, and their interdependence. These 
techniques could be then complemented by analysis tools 
which could facilitate automated reasoning and provide a basis 
for what-if analyses to manage the change across instances of 
the core architecture. Understanding how the change could 
then ripple across different products might be feasible. For 
model-driven architectures, for example, this could help in 
reasoning about how the change could affect the Platform In-
dependent Model (PIM) and ripple to affect the Platform Spe-
cific Models (PSM). These techniques could be complemented 
by automated reasoning to manage evolution. When combined 
with traceability links, the combination could provide a com-
prehensive framework for managing the change and guiding 
evolution.  

 
4.6. Empirical Studies 
A key benefit of adopting an architecture-centric approach 
to manage evolution is driven by the objective of reducing 
future evolution costs, while attaining a net benefit and 
embedding options [Bah05a]. Though this is the motivation 
behind many architectural-centric evolution approaches, 
such as product-line architectures and model-driven archi-
tectures, little -if no- documented empirical evidence is 



available on the extent to which the architecture has suc-
ceeded or failed in attaining its objectives. In particular, the 
architectural stability problem is just a hint on the fact that 
the architecture is also creating its own problems. This 
brings a need for systematic empirical studies to analyze 
real life cases, which lead to substantial “break” in the ar-
chitecture of the software system upon accommodating 
changes. The “breakage” could be attributed to the nature 
of the change, personnel, the architectural style, the 
adopted middleware, and so forth. Lessons to be learned 
from these studies may have positive implications on the 
way we engineer our future requirements, design architec-
tures to meet these changing requirements, and have better 
understanding on how we can control risks associated with 
the change and its impact. The main objective is to learn 
from the state-of-practice to improve the state-of-the-art.  
 

5. Conclusion  
Reflecting on our research into the problem, we have defined 
architectural stability and explored perspectives in handling 
the problem. We have reviewed existing research effort, have 
discussed their limitations, and have outlined research chal-
lenges and opportunities. The implications of such contribu-
tion need not be overstated: advancing the understanding of 
the architectural stability, stimulating and possibly motivating 
future research in architectural stability and related problems. 
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