

Architectural Stability and Middleware: An Architecture-Centric Evolution
Perspective

Rami Bahsoon1 and Wolfgang Emmerich2

1School of Engineering and Applied Science, Computer Sc, Aston University Birmingham, UK, {r.bahsoon@aston.ac.uk}
2London Software Systems, Dept. of Computer Science, University College London, UK, {w.emmerich@cs.ucl.ac.uk}

Abstract. Architecture stability refers to the extent to which a
software system can endure changes in requirements, while
leaving the architecture of the software system intact. We argue
that changes in non-functional requirements are critical to threat
the stability of a software architecture over its projected lifetime.
We claim that focusing the analysis on the “coupling” of
middleware and software architectures is a step towards
understanding the ramifications of the change in the so called
middleware-induced architectures. Middleware-induced
architectures follow an architecture-centric evolution approach,
as the emphasis is placed on the induced architecture and the
provided middleware primitives to simplify the construction of
distributed systems, realize many of the non-functional
requirements (e.g., scalability, fault tolerance, etc.) and facilitate
their evolution over time. To support the claim, we use a case
study and we observe how a software architecture, when induced
by distinct middleware, differs in coping with changes in non-
functional requirements. We conclude by hinting on future
research directions in the area.

1. Architectural Stability and Middleware
Software requirements, whether functional or non-
functional, are generally volatile; they are likely to change
and evolve over time. The change is inevitable as it reflects
changes in stakeholders’ needs and the environment in
which the software system works. The change may “break”
the software system architecture necessitating changes to
the architectural structure (e.g., changes to components and
interfaces), architectural topology (e.g., architectural style),
or even changes to the underlying architectural
infrastructure (e.g., middleware). It may be expensive and
difficult to change the architecture as requirements evolve
[10]. Consequently, failing to accommodate the change
leads ultimately to the degradation of the usefulness of the
system. Hence, there is a pressing need for flexible
software architectures that tend to be stable as the
requirements evolve. By a stable architecture, we refer to
the extent to which a software system can endure changes
in requirements, while leaving the architecture of the
software system intact. We refer to the presence of this
“intuitive” phenomenon as architectural stability [1].

Ongoing research on relating requirements to software
architectures has considered the architectural stability
problem as an open research challenge and difficult to
handle [7, 10, 13, 18]. van Lamsweerde [18] acknowledges
that: “the conflict between requirements volatility and
architectural stability is a difficult one to handle”. Nuseibeh
[13] noted that many architectural stability related

questions are difficult and remain unanswered. Examples
include: what software architectures (or architectural styles)
are stable in the presence of changing requirements, and
how do we select them? What kinds of changes are
systems likely to experience in their lifetime, and how do
we manage requirements and architectures (and their
development processes) in order to manage the impact of
these changes? In [2, 7], we reflected on the architectural
stability problem with a particular focus on developing
distributed software architectures induced by middleware.
Specifically, we considered the architecture stability
problem from the distributed components technology in the
face of changes in non-functional requirements. We argued
that addition or changes in functional requirements could
be easily addressed in distributed component-based
architectures by adding or upgrading the components in the
business logic. However, changes in non-functional
requirements are more critical; they can stress an
architecture considerably, leading to architectural
“breakdown”. Such a “breakdown” often occurs at the
middleware level and is due to the incapability of the
middleware to cope with the change in non-functional
requirements (e.g., increased load demands). This may
drive the architect/developer to consider ad-hoc or
propriety solutions to realize the change, such as modifying
the middleware, extending the middleware primitives,
implementing additional interfaces, etc. Such solutions
could be problematic, costly, and unacceptable.

We argue that changes in non-functional requirements
are critical to threat the stability of the software architecture
over its projected lifetime. We claim that “coupling”
middleware with software architectures is a step towards
understanding the ramifications of the change in distributed
systems that are built on top of middleware. To support the
claim, we observe how a software architecture, when
induced by distinct middleware, differs in coping with
changes in non-functional requirements. We hint on
“tactics” that requirements engineering must consider to
proactively engineer stable architectures to facilitate
evolution of the system and its environment.

2. Middleware-Induced Architectures
The requirements that drive the decision towards building a
distributed system architecture are usually of a non-
functional and global nature. Scalability, openness,
heterogeneity, and fault-tolerance are just examples. The

current trend is to build distributed systems architectures
with middleware technologies such as Java 2 Enterprise
Edition (J2EE) [17] and the Common Object Request
Broker Architecture (CORBA) [14]. Middleware-induced
architectures follow an architecture-centric approach to
evolution, as the emphasis is placed on the induced
architecture for simplifying the construction of distributed
systems by providing high-level primitives, which shield
the application engineers from the distribution
complexities, managing systems resources, and
implementing low-level details, such as concurrency
control, transaction management, and network
communication. These primitives are often responsible for
realizing many of the non-functional requirements (e.g.,
scalability, fault tolerance, etc.) in the architecture of the
system induced and facilitating their evolution over time.
Despite the fact that architectures and middleware address
different phases of software development, the usage of
middleware can influence the architecture of the system
being developed. Conversely, specific architectural choices
constrain the selection of the underlying middleware [6].
Once a particular middleware system has been chosen for a
software architecture, it is extremely expensive to revert
that choice and adopt a different middleware or a different
architecture. The choice is influenced by the non-functional
requirements. Unfortunately, the requirements tend to be
unstable and evolve over time and threat the stability of the
architecture. Non-functional requirements often change
with the setting in which the system is embedded, for
example when new hardware or operating system platforms
are added as a result of a merger, or when scalability
requirements increase as a result of having to build web-
based interfaces that customers use directly [8]. Hence, as
the non-functional requirements of the software system
evolve, “coupling” middleware and architectures becomes
the focal point for understanding the stability of the
distributed software system architecture in the face of the
change.

3. Case Study: The Evidence
 We observe how a software architecture, when induced by
distinct middleware, differs in coping with changes in non-
functional requirements. The experiment is fully
documented in [2]. We use the Duke’s Bank application, an
online banking application provided by Sun [17], as part of
the J2EE reference application. Given the software
architecture of the Duke’s Bank, we have instantiated from
the core architecture two versions, each induced by a
different middleware: one with CORBA and the other with
J2EE. We have observed how a likely future change in
scalability could impact the architectural structure of each
version. Scalability denotes the ability to accommodate a
growing future load, be it expected or not. We look at the
changes in scalability demands as a representative of a
critical change in non-functional requirements that could
impact the architecture at its various levels: structure,
topology, and infrastructure. The ability to scale the

software system of a given architecture is revealing to its
stability, for the change may break the architecture and/or
ripple to impact other non-functionalities such as fault-
tolerance, performance, reliability, availability, when
poorly accommodated by the system. Further, the challenge
of building a scalable system is to support changes in the
allocation of components to hosts without breaking the
architecture of the software system, or changing the design
and code of a component [8]. We note that the stability
notion is relative to the change. Hence, what we observe is
how the architecture of the given system, when induced by
a particular middleware cope with the scalability change.

Though the experiment is conducted in a controlled
environment, we regard the Duke’s bank application to be
adequately representative of medium-size component-based
distributed application. The architecture of the Duke’s
Bank application is a 3-tier style, given in Figure 1. The
architecture has two clients: an application client used by
administrators to manage customers and accounts, and a
Web client used by customers to access account statements
and perform transactions. The server-side components
perform the business methods: these include managing
customers, accounts, and transactions. The clients access
the customer, account, and transaction information
maintained in a database.

D B

C u s to m er

A cco u n ts

T ra ns a c tion

S e rve rs

A ccou n t

C us to m e r

T ra n sa c tio n

W e b C lien t

A p p lica tio n

Figure 1. The Architecture of the Duke’s Bank

 We have assumed that the Duke’s Bank system needs
to scale to accommodate the growing number of clients in
one-year time. We have considered scalability as a goal that
needs to be achieved by the architecture of the software
system. We have adopted a goal-oriented approach to
refining requirements (e.g., [5]). We have refined the goal,
using guidance on how it could be operationalised[5] by the
architecture, when induced by a particular middleware. In
more abstract terms, the guidance was given through the
knowledge of the domain; vendor’s specification, and
previous design and implementation experience. We note
that different architectural mechanisms may operationalise
the scalability goal. As an operationalisation alternative, we
use replication as way for achieving scalability. The reason
is due to the fact that both CORBA and J2EE do provide
the primitives or guidelines for scaling a software system
using replication, which make the comparison between the
two versions feasible. In particular, the Object Management
Group’s CORBA specification defines a fault tolerance and
a load balancing support, both when combined provide the
core capability for implementing scalability through

replication. Similarly, J2EE provides the primitives for
scaling the software system through replication. We have
then estimated the structural impact upon achieving the
scalability goal on both the CORBA and the J2EE versions.
We have estimated the SLOC to be added for implementing
the change on both versions. We have calculated the
expected relative savings in maintenance including
development, deployment, and configuration efforts. We
have applied the ArchOptions model [1,2,3,4] to quantify
the flexibility of the architecture of each version relative to
the change. An observable advantage of scaling the
software architecture when induced by EJB is that no
development effort is required to realize the scalability
requirements through replication, as when compared to the
CORBA version. J2EE does provide the primitives for
scaling the software system, which result in making the
architecture of the software system more flexible in
accommodating the change in scalability, as when
compared to the CORBA version. Our claim that
middleware induced software architecture differs in coping
with changes is verified to be true for the given change.

Evidence 1. Understanding architectural stability has
to be done in connection with the solution domain.

For the category of distributed software systems that
are built on top of middleware, the observations affirm the
belief that investigating the stability of the distributed
software architecture could be fruitless, if done in isolation
of the middleware. This is because the middleware
constraints and dominates much of the solution that relate
to the non-functionalities, and consequently constraint how
smoothly the non-functionalities may evolve over the
projected lifetime of the software system. Hence, the
development and the analysis for architectural stability
should consider the “coupling” between the architecture
and the middleware. This addresses pragmatic needs and is
feasible even at earlier stages of the software development
life cycle, where a considerable part of the distributed
system implementation could be available, when the
architecture is defined during the Elaboration phase of the
Unified Process. We also note that the change in
requirements could have been addressed by other
architectural mechanisms. However, the middleware has
guided the solution for evolving the software system. For
instance, the choice of replication as an architectural
mechanism for scaling the software system, was guided by
the clustering primitives provided by J2EE and the core
capabilities provided by CORBA to support load balancing
and fault tolerance. Interestingly, [6] state that “despite the
fact that architectures and middleware address different
phases of software development, the usage of middleware
and predefined components can influence the architecture
of the system being developed. Conversely, specific
architectural choices constrain the selection of the
underlying middleware used in the implementation phase”.
In abstract terms, Rapanotti et al. [15] advocate the use of
information in the solution domain (e.g., the middleware-to
be induced for our case) to inform the problem space:

“Whereas Problem Frames are used only in the problem
space, we observe that each of these competing views uses
knowledge of the solution space: the first through the software
engineer’s domain knowledge; the second through choice of
domain-specific architectures, architectural styles,
development patterns, etc; the third through the reuse of past
development experience. All solution space knowledge can
and should be used to inform the problem analysis for new
software developments within that domain” [15].

Evidence 2. Understanding Architectural Stability:

Intertwined with changes in non-functional requirements,
style, and the middleware
 Following the definition of [6], a style defines a set of
general rules that describe or constrain the structure of
architectures and the way their components interact. Styles
are a mechanism for categorizing architectures and for
defining their common characteristics. Though both
versions have exhibited similar styles (i.e., three-tier), they
have differed in the way they cope with the change in
scalability. The difference was not due to the architectural
style, but due to the primitives that are built in the
middleware to facilitate scaling the software system. The
governing factor, hence, appears to be to a large extent
dependent on the flexibility of the middleware (e.g.,
through its built-in primitives) in supporting the change.
The intuition and the preliminary observations, therefore,
suggest that the style by itself may not be revealing for the
analysis of architectural stability when the non-functional
requirements evolve. It is, however, a factor of the extent to
which the middleware primitives can support the change in
non-functional requirements. Interestingly, [16] claims that
for a system to be implemented in a straightforward manner
on top of a middleware, the corresponding architecture has
to be compliant with the architectural constraints imposed
by the middleware. [16] supports this claim by
demonstrating that a style, that in principle seems to be
easily implementable using the COM middleware, is
actually incompatible with it. Following a similar
argument, adopting an architectural style that is in principle
appear to be suitable for realizing the non-functionality and
supporting its evolution, may not be complaint with the
middleware in the first place. And if the architectural style
happens to be compliant with the middleware, there are still
uncertainties in the ability of the middleware primitives to
support the change. In fact, the middleware primitives
realize much of the non-functional requirements. Hence,
the architectural style by itself may not be revealing for
potential threats that the architecture may face when the
non-functional requirements evolve. The evolution of non-
functionality maybe in principle easily supported by the
style, but could be uneasily accommodated by the
middleware. An observable advantage of scaling the
software architecture induced by J2EE, for example, is that
no development effort required to realize the scalability
requirements through replication, as when compared to that
of CORBA, knowing that in principle the style of both
versions exhibit similar capabilities.

4. Discussion and Conclusion
The evidence is appealing to employ the “coupling”
between middleware and software architectures in
developing, analyzing, and facilitating evolution. This is
because the solution domain can guide the development
and evolution of the software system; provide more
pragmatic and deterministic knowledge on the potential
success (failure) of evolution; and consequently assist in
practically understanding the stability of the software
architectures in the face of the change.

Identifying and documenting possible future changes is
important in order to manage software evolution [11] and
evaluate architectural choices [12]. Managing the change is
a process which involves recognizing the change through
continued requirements elicitation, requirements evaluation
of risk, and evaluation of systems in their operational
environments [12]. Eliciting and dealing with the change in
requirements, however, is still one of the major research
challenges facing the requirements engineering community
[9]. Engineering requirements for evolution, we advocate
adjusting requirements elicitation and management
techniques to elicit not just the current non-functional
requirements, but also to assess the way in which they will
develop over the projected lifetime of the architecture.
These ranges of requirements may then inform the selection
of candidate distributed components technology, and
subsequently the selection of application server products.
Further, requirements engineering has not only to be aware
of the architecture (e.g., the style), but also of the
underlying middleware. For example, if we take a goal-
oriented approach to requirements engineering (e.g., [5]),
we advocate adjusting the non-functional requirements
elicitation and their corresponding refinements to be aware
of both the architectural style and the constraints imposed
by middleware. Hence, the operationalisation of these
requirements in the software architecture have to be guided
by both the architectural style, the complaint middleware
for the said style, and guided by previous experience.
Architecture representations (e.g., ADLs), in turn, may
need to be populated by middleware-related information
(e.g., metadata) which could facilitate analysis and
traceability from requirements. This, we believe, is a
pragmatic need towards managing the change and focusing
the analysis for change on high level of abstraction and
hence developing “evolvable” software in face of changes
in non-functional requirements.

Despite the fact that ongoing research on the
“coupling” of middleware and architectures could have an
impact on understanding the relation between architectures
and non-functional requirements, their contributions to
such understanding is still insufficient. For example, there
is minimal research effort on understanding the evolution
of non-functional requirements in relation to both the
architecture and the middleware when coupled, with our
work being the notable exception [2]. Though the reported
observations reveal a trend that agrees with the intuition,

research, and the state-of-practice, confirming the validity
of the observations is still subject to careful further
empirical studies. These studies may need to consider other
non-functional requirements, their concurrent evolution,
and their corresponding change impact on different
architectural styles and middleware, which we are currently
investigating as part of our ongoing research agenda.

5. References
[1] Bahsoon, R.: Evaluating Architectural Stability with Real Options. PhD

Thesis, University of London(2005)

[2] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions to Select
Stable Middleware-Induced Architectures. In: IEE Proceedings Software,
Special issue on Relating Requirements to Architectures, IEE Press
152(4) (2005) 176-186

[3] Bahsoon, R., Emmerich, W.: ArchOptions: A Real Options-Based Model
for Predicting the Stability of Software Architecture. In: Proceedings of
the Fifth ICSE Workshop on Economics-Driven Software Engineering
Research (2003)

[4] Bahsoon, R., Emmerich, W.: Evaluating Architectural Stability with Real
Options Theory. In: Proc. of the 20th IEEE Int. Conference on Software
Maintenance, Chicago, Illinois, IEEE CS Press (2004)

[5] Dardenne, A., van Lamsweerde A., and Fickas, S.: Goal-Directed
Requirements Acquisition, Science of Computer Programming, 20, pp. 3-
50 (1993)

[6] Di Nitto, E. and Rosenblum, D.: Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures. In: Proc. of
the 21st Int'l Conf. on Software Engineering, (1999) 13-22

[7] Emmerich, W.: Distributed Component Technologies and their Software
Engineering Implications. In: Proc. of the 24th Int. Conference on
Software Engineering, Orlando, Florida (2002) 537-546

[8] Emmerich, W.: Software Engineering and Middleware: A Road Map. In:
A. Finkelstein, ed., Future of Software Engineering. ACM Press (2000)

[9] Finkelstein, A., and Kramer, J.: Future of Software Engineering. In: A.
Finkelstein (ed.): The Future of Software Engineering, ACM Press
(2000) 5-21

[10] Finkelstein, A.: Architectural Stability.
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html (2000)

[11] Lehman, M.M.: The Future of Software – Managing Evolution. IEEE
Software (Jan. 1998)

[12] Nuseibeh, B., and Easterbrook, S.: Requirements Engineering: A
Roadmap. In: A. Finkelstein (ed.): The Future of Software Engineering,
ACM Press (2000) 35-46

[13] Nuseibeh, B.: Weaving the Software Development Process Between
Requirements and Architectures. In: Proc. of the 1st. International
Workshop From Software Requirements to Architectures (2001)

[14] Object Management Group: The Common Object Request Broker:
Architecture and Specification, 2.4 ed., OMG, Needham, Mass. (2000)

[15] Rapanotti, L., Hall, J., Jackson, M., and Nuseibeh, B.: Architecture
Driven Problem Decomposition. In: Proc. of 12th IEEE International
Requirements Engineering Conference (RE'04), Kyoto, Japan (2004)

[16] Sullivan, K. J., Socha, J., and Marchukov, M.: Using Formal Methods to
Reason about Architectural Standards. In: Proc. of the 19th International
Conference on Software Engineering, Boston, MA (1997)

[17] Sun MicroSystems Inc: Enterprise JavaBeans Specification v2.1 (June
2002)

[18] van Lamsweerde, A.: Requirements Engineering in the Year 00: A
Research perspective. In: Proc. 22nd International Conference on
Software Engineering, Limerick, Ireland (2000)

http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html

