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Abstract. Architecture stability refers to the extent to which a 
software system can endure changes in requirements, while 
leaving the architecture of the software system intact. We argue 
that changes in non-functional requirements are critical to threat 
the stability of a software architecture over its projected lifetime. 
We claim that focusing the analysis on the “coupling” of 
middleware and software architectures is a step towards 
understanding the ramifications of the change in the so called 
middleware-induced architectures. Middleware-induced 
architectures follow an architecture-centric evolution approach, 
as the emphasis is placed on the induced architecture and the 
provided middleware primitives to simplify the construction of 
distributed systems, realize many of the non-functional 
requirements (e.g., scalability, fault tolerance, etc.) and facilitate 
their evolution over time. To support the claim, we use a case 
study and we observe how a software architecture, when induced 
by distinct middleware, differs in coping with changes in non-
functional requirements.  We conclude by hinting on future 
research directions in the area. 
 
1. Architectural Stability and Middleware  
Software requirements, whether functional or non-
functional, are generally volatile; they are likely to change 
and evolve over time. The change is inevitable as it reflects 
changes in stakeholders’ needs and the environment in 
which the software system works. The change may “break” 
the software system architecture necessitating changes to 
the architectural structure (e.g., changes to components and 
interfaces), architectural topology (e.g., architectural style), 
or even changes to the underlying architectural 
infrastructure (e.g., middleware). It may be expensive and 
difficult to change the architecture as requirements evolve 
[10]. Consequently, failing to accommodate the change 
leads ultimately to the degradation of the usefulness of the 
system. Hence, there is a pressing need for flexible 
software architectures that tend to be stable as the 
requirements evolve. By a stable architecture, we refer to 
the extent to which a software system can endure changes 
in requirements, while leaving the architecture of the 
software system intact. We refer to the presence of this 
“intuitive” phenomenon as architectural stability [1].   

Ongoing research on relating requirements to software 
architectures has considered the architectural stability 
problem as an open research challenge and difficult to 
handle [7, 10, 13, 18]. van Lamsweerde [18] acknowledges 
that: “the conflict between requirements volatility and 
architectural stability is a difficult one to handle”. Nuseibeh 
[13] noted that many architectural stability related 

questions are difficult and remain unanswered. Examples 
include: what software architectures (or architectural styles) 
are stable in the presence of changing requirements, and 
how do we select them?  What kinds of changes are 
systems likely to experience in their lifetime, and how do 
we manage requirements and architectures (and their 
development processes) in order to manage the impact of 
these changes? In [2, 7], we reflected on the architectural 
stability problem with a particular focus on developing 
distributed software architectures induced by middleware. 
Specifically, we considered the architecture stability 
problem from the distributed components technology in the 
face of changes in non-functional requirements. We argued 
that addition or changes in functional requirements could 
be easily addressed in distributed component-based 
architectures by adding or upgrading the components in the 
business logic. However, changes in non-functional 
requirements are more critical; they can stress an 
architecture considerably, leading to architectural 
“breakdown”. Such a “breakdown” often occurs at the 
middleware level and is due to the incapability of the 
middleware to cope with the change in non-functional 
requirements (e.g., increased load demands). This may 
drive the architect/developer to consider ad-hoc or 
propriety solutions to realize the change, such as modifying 
the middleware, extending the middleware primitives, 
implementing additional interfaces, etc. Such solutions 
could be problematic, costly, and unacceptable. 

We argue that changes in non-functional requirements 
are critical to threat the stability of the software architecture 
over its projected lifetime. We claim that “coupling” 
middleware with software architectures is a step towards 
understanding the ramifications of the change in distributed 
systems that are built on top of middleware. To support the 
claim, we observe how a software architecture, when 
induced by distinct middleware, differs in coping with 
changes in non-functional requirements. We hint on 
“tactics” that requirements engineering must consider to 
proactively engineer stable architectures to facilitate 
evolution of the system and its environment.  

   
2. Middleware-Induced Architectures  
The requirements that drive the decision towards building a 
distributed system architecture are usually of a non-
functional and global nature. Scalability, openness, 
heterogeneity, and fault-tolerance are just examples. The 



current trend is to build distributed systems architectures 
with middleware technologies such as Java 2 Enterprise 
Edition (J2EE) [17] and the Common Object Request 
Broker Architecture (CORBA) [14]. Middleware-induced 
architectures follow an architecture-centric approach to 
evolution, as the emphasis is placed on the induced 
architecture for simplifying the construction of distributed 
systems by providing high-level primitives, which shield 
the application engineers from the distribution 
complexities, managing systems resources, and 
implementing low-level details, such as concurrency 
control, transaction management, and network 
communication. These primitives are often responsible for 
realizing many of the non-functional requirements (e.g., 
scalability, fault tolerance, etc.) in the architecture of the 
system induced and facilitating their evolution over time. 
Despite the fact that architectures and middleware address 
different phases of software development, the usage of 
middleware can influence the architecture of the system 
being developed. Conversely, specific architectural choices 
constrain the selection of the underlying middleware [6]. 
Once a particular middleware system has been chosen for a 
software architecture, it is extremely expensive to revert 
that choice and adopt a different middleware or a different 
architecture. The choice is influenced by the non-functional 
requirements. Unfortunately, the requirements tend to be 
unstable and evolve over time and threat the stability of the 
architecture. Non-functional requirements often change 
with the setting in which the system is embedded, for 
example when new hardware or operating system platforms 
are added as a result of a merger, or when scalability 
requirements increase as a result of having to build web-
based interfaces that customers use directly [8]. Hence, as 
the non-functional requirements of the software system 
evolve, “coupling” middleware and architectures becomes 
the focal point for understanding the stability of the 
distributed software system architecture in the face of the 
change. 
 
3. Case Study: The Evidence   
 We observe how a software architecture, when induced by 
distinct middleware, differs in coping with changes in non-
functional requirements. The experiment is fully 
documented in [2]. We use the Duke’s Bank application, an 
online banking application provided by Sun [17], as part of 
the J2EE reference application. Given the software 
architecture of the Duke’s Bank, we have instantiated from 
the core architecture two versions, each induced by a 
different middleware: one with CORBA and the other with 
J2EE. We have observed how a likely future change in 
scalability could impact the architectural structure of each 
version. Scalability denotes the ability to accommodate a 
growing future load, be it expected or not. We look at the 
changes in scalability demands as a representative of a 
critical change in non-functional requirements that could 
impact the architecture at its various levels: structure, 
topology, and infrastructure. The ability to scale the 

software system of a given architecture is revealing to its 
stability, for the change may break the architecture and/or 
ripple to impact other non-functionalities such as fault-
tolerance, performance, reliability, availability, when 
poorly accommodated by the system. Further, the challenge 
of building a scalable system is to support changes in the 
allocation of components to hosts without breaking the 
architecture of the software system, or changing the design 
and code of a component [8]. We note that the stability 
notion is relative to the change. Hence, what we observe is 
how the architecture of the given system, when induced by 
a particular middleware cope with the scalability change. 

Though the experiment is conducted in a controlled 
environment, we regard the Duke’s bank application to be 
adequately representative of medium-size component-based 
distributed application. The architecture of the Duke’s 
Bank application is a 3-tier style, given in Figure 1. The 
architecture has two clients: an application client used by 
administrators to manage customers and accounts, and a 
Web client used by customers to access account statements 
and perform transactions. The server-side components 
perform the business methods: these include managing 
customers, accounts, and transactions. The clients access 
the customer, account, and transaction information 
maintained in a database.  
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Figure 1. The Architecture of the Duke’s Bank 

 
 We have assumed that the Duke’s Bank system needs 
to scale to accommodate the growing number of clients in 
one-year time. We have considered scalability as a goal that 
needs to be achieved by the architecture of the software 
system. We have adopted a goal-oriented approach to 
refining requirements (e.g., [5]). We have refined the goal, 
using guidance on how it could be operationalised[5] by the 
architecture, when induced by a particular middleware. In 
more abstract terms, the guidance was given through the 
knowledge of the domain; vendor’s specification, and 
previous design and implementation experience. We note 
that different architectural mechanisms may operationalise 
the scalability goal. As an operationalisation alternative, we 
use replication as way for achieving scalability. The reason 
is due to the fact that both CORBA and J2EE do provide 
the primitives or guidelines for scaling a software system 
using replication, which make the comparison between the 
two versions feasible. In particular, the Object Management 
Group’s CORBA specification defines a fault tolerance and 
a load balancing support, both when combined provide the 
core capability for implementing scalability through 



replication. Similarly, J2EE provides the primitives for 
scaling the software system through replication. We have 
then estimated the structural impact upon achieving the 
scalability goal on both the CORBA and the J2EE versions. 
We have estimated the SLOC to be added for implementing 
the change on both versions. We have calculated the 
expected relative savings in maintenance including 
development, deployment, and configuration efforts. We 
have applied the ArchOptions model [1,2,3,4] to quantify 
the flexibility of the architecture of each version relative to 
the change. An observable advantage of scaling the 
software architecture when induced by EJB is that no 
development effort is required to realize the scalability 
requirements through replication, as when compared to the 
CORBA version. J2EE does provide the primitives for 
scaling the software system, which result in making the 
architecture of the software system more flexible in 
accommodating the change in scalability, as when 
compared to the CORBA version. Our claim that 
middleware induced software architecture differs in coping 
with changes is verified to be true for the given change. 

Evidence 1. Understanding architectural stability has 
to be done in connection with the solution domain. 

For the category of distributed software systems that 
are built on top of middleware, the observations affirm the 
belief that investigating the stability of the distributed 
software architecture could be fruitless, if done in isolation 
of the middleware. This is because the middleware 
constraints and dominates much of the solution that relate 
to the non-functionalities, and consequently constraint how 
smoothly the non-functionalities may evolve over the 
projected lifetime of the software system. Hence, the 
development and the analysis for architectural stability 
should consider the “coupling” between the architecture 
and the middleware. This addresses pragmatic needs and is 
feasible even at earlier stages of the software development 
life cycle, where a considerable part of the distributed 
system implementation could be available, when the 
architecture is defined during the Elaboration phase of the 
Unified Process. We also note that the change in 
requirements could have been addressed by other 
architectural mechanisms. However, the middleware has 
guided the solution for evolving the software system. For 
instance, the choice of replication as an architectural 
mechanism for scaling the software system, was guided by 
the clustering primitives provided by J2EE and the core 
capabilities provided by CORBA to support load balancing 
and fault tolerance. Interestingly, [6] state that “despite the 
fact that architectures and middleware address different 
phases of software development, the usage of middleware 
and predefined components can influence the architecture 
of the system being developed. Conversely, specific 
architectural choices constrain the selection of the 
underlying middleware used in the implementation phase”. 
In abstract terms, Rapanotti et al. [15] advocate the use of 
information in the solution domain (e.g., the middleware-to 
be induced for our case) to inform the problem space: 

“Whereas Problem Frames are used only in the problem 
space, we observe that each of these competing views uses 
knowledge of the solution space: the first through the software 
engineer’s domain knowledge; the second through choice of 
domain-specific architectures, architectural styles, 
development patterns, etc; the third through the reuse of past 
development experience. All solution space knowledge can 
and should be used to inform the problem analysis for new 
software developments within that domain” [15].  

 
Evidence 2. Understanding Architectural Stability: 

Intertwined with changes in non-functional requirements, 
style, and the middleware   
 Following the definition of [6], a style defines a set of 
general rules that describe or constrain the structure of 
architectures and the way their components interact. Styles 
are a mechanism for categorizing architectures and for 
defining their common characteristics. Though both 
versions have exhibited similar styles (i.e., three-tier), they 
have differed in the way they cope with the change in 
scalability. The difference was not due to the architectural 
style, but due to the primitives that are built in the 
middleware to facilitate scaling the software system. The 
governing factor, hence, appears to be to a large extent 
dependent on the flexibility of the middleware (e.g., 
through its built-in primitives) in supporting the change. 
The intuition and the preliminary observations, therefore, 
suggest that the style by itself may  not be revealing for the 
analysis of architectural stability when the non-functional 
requirements evolve. It is, however, a factor of the extent to 
which the middleware primitives can support the change in 
non-functional requirements. Interestingly, [16] claims that 
for a system to be implemented in a straightforward manner 
on top of a middleware, the corresponding architecture has 
to be compliant with the architectural constraints imposed 
by the middleware. [16] supports this claim by 
demonstrating that a style, that in principle seems to be 
easily implementable using the COM middleware, is 
actually incompatible with it. Following a similar 
argument, adopting an architectural style that is in principle 
appear to be suitable for realizing the non-functionality and 
supporting its evolution, may not be complaint with the 
middleware in the first place. And if the architectural style 
happens to be compliant with the middleware, there are still 
uncertainties in the ability of the middleware primitives to 
support the change. In fact, the middleware primitives 
realize much of the non-functional requirements. Hence, 
the architectural style by itself may not be revealing for 
potential threats that the architecture may face when the 
non-functional requirements evolve. The evolution of non-
functionality maybe in principle easily supported by the 
style, but could be uneasily accommodated by the 
middleware. An observable advantage of scaling the 
software architecture induced by J2EE, for example, is that 
no development effort required to realize the scalability 
requirements through replication, as when compared to that 
of CORBA, knowing that in principle the style of both 
versions exhibit similar capabilities. 



4. Discussion and Conclusion  
The evidence is appealing to employ the “coupling” 
between middleware and software architectures in 
developing, analyzing, and facilitating evolution. This is 
because the solution domain can guide the development 
and evolution of the software system; provide more 
pragmatic and deterministic knowledge on the potential 
success (failure) of evolution; and consequently assist in 
practically understanding the stability of the software 
architectures in the face of the change. 

Identifying and documenting possible future changes is 
important in order to manage software evolution [11] and 
evaluate architectural choices [12]. Managing the change is 
a process which involves recognizing the change through 
continued requirements elicitation, requirements evaluation 
of risk, and evaluation of systems in their operational 
environments [12]. Eliciting and dealing with the change in 
requirements, however, is still one of the major research 
challenges facing the requirements engineering community 
[9]. Engineering requirements for evolution, we advocate 
adjusting requirements elicitation and management 
techniques to elicit not just the current non-functional 
requirements, but also to assess the way in which they will 
develop over the projected lifetime of the architecture. 
These ranges of requirements may then inform the selection 
of candidate distributed components technology, and 
subsequently the selection of application server products. 
Further, requirements engineering has not only to be aware 
of the architecture (e.g., the style), but also of the 
underlying middleware. For example, if we take a goal-
oriented approach to requirements engineering (e.g., [5]), 
we advocate adjusting the non-functional requirements 
elicitation and their corresponding refinements to be aware 
of both the architectural style and the constraints imposed 
by middleware. Hence, the operationalisation of these 
requirements in the software architecture have to be guided 
by both the architectural style, the complaint middleware 
for the said style, and guided by previous experience. 
Architecture representations (e.g., ADLs), in turn, may 
need to be populated by middleware-related information 
(e.g., metadata) which could facilitate analysis and 
traceability from requirements. This, we believe, is a 
pragmatic need towards managing the change and focusing 
the analysis for change on high level of abstraction and 
hence developing “evolvable” software in face of changes 
in non-functional requirements.  

Despite the fact that ongoing research on the 
“coupling” of middleware and architectures could have an 
impact on understanding the relation between architectures 
and non-functional requirements, their contributions to 
such understanding is still insufficient. For example, there 
is minimal research effort on understanding the evolution 
of non-functional requirements in relation to both the 
architecture and the middleware when coupled, with our 
work being the notable exception [2]. Though the reported 
observations reveal a trend that agrees with the intuition, 

research, and the state-of-practice, confirming the validity 
of the observations is still subject to careful further 
empirical studies. These studies may need to consider other 
non-functional requirements, their concurrent evolution, 
and their corresponding change impact on different 
architectural styles and middleware, which we are currently 
investigating as part of our ongoing research agenda.  
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