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Abstract

This paper describes a method of acknowledging packets in an untrusted network while maintaining
unlinkability. The recipient of a packet generates an unforgeable acknowledgement that allows relays as
well as the sender to verify that the packet was delivered unmodified to its intended recipient. Unlike
digital signature schemes, relays do not need to share any keys with the sender or recipient, or to know
their identities or pseudonyms. Acknowledgements enable nodes to measure the level of service provided
by their downstream neighbours and optionally to adjust the level of service they provide in return,
creating an incentive to forward packets and preventing certain denial of service attacks. Unforgeable
acknowledgements are based on standard cryptographic primitives and have low storage, bandwidth and
computation requirements for all parties.
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1 Introduction

Security protocols have traditionally attempted to ensure authentication, accountability and non-repudiation, whereas
privacy protocols have attempted to ensure anonymity, unlinkability and deniability. There is an obvious tension
between these two sets of goals, despite the similar cryptographic tools used to achieve them. Many security protocols
have recently been proposed for peer-to-peer and ad hoc networks, to address the problem of users who consume
more resources than they contribute. Encouraging these ‘free riders’ to cooperate may have a significant impact on
the performance and even viability of decentralised networks. Free riding also has security implications, because
denial of service attacks often depend on resource exhaustion. Unfortunately, many of the proposed solutions to
the free riding problem require detailed record-keeping and information-sharing that could undermine the privacy of
users [1, 2, 3]. Other proposals depend on central coordination or identity management, introducing a single point of
failure into otherwise decentralised systems [4, 5, 6].

If pairs of nodes can measure the level of service they receive from one another and use this information to adjust the
level of service they provide in return, then each node has an incentive to cooperate in order to continue receiving
cooperation [7]. This local, reciprocal approach does not require central coordination, record-keeping or information-
sharing. Each node must be able to identify and authenticate its neighbours, but identities do not need to have
global scope: a node can potentially present a different identity to each neighbour. If the level of service offered to
each neighbour is proportional to the level of service received, there is no incentive for a node to present multiple
simultaneous identities to the same neighbour [8].

The next section describes a protocol that enables nodes in a packet-forwarding network to measure the level of
service provided by their neighbours. By measuring reliability at the packet level, a single incentive mechanism can
support a wide range of end-to-end services without relays needing to be aware of the details of higher protocol layers
[9]. Our protocol uses end-to-end unforgeable acknowledgements that can be verified by relays without establishing
a security association with either of the endpoints. Unlike a digital signature scheme, relays do not need to share
any keys with the sender or recipient, or to know their identities or pseudonyms, so the protocol supports unlinkable
communication. Section 3 demonstrates that the protocol is secure as long as the underlying cryptographic primitives
are secure. Section 4 considers possible applications of the protocol, Section 5 reviews related work, and Section 6
concludes the paper.

2 Unforgeable Acknowledgements

The unforgeable acknowledgement protocol uses two kinds of messages: packets, which contain a header and a data
payload, and acknowledgements, which only contain a header. The sender and recipient of each packet must share a
secret authentication key that is not revealed to any other node, and each packet sent between the same endpoints must
contain a unique serial number or nonce to prevent replay attacks. This number need not be visible to intermediate
nodes, and indeed the protocol does not reveal any information that can be used to determine whether two packets
have the same source or destination, although such information might be revealed by traffic analysis or by other
protocol layers.

Unforgeable acknowledgements make use of two standard cryptographic primitives: message authentication codes
and collision-resistant hashing. Before transmitting a packet, the sender computes a message authentication code
over the packet using a secret key shared with the recipient. Instead of attaching the message authentication code
to the packet, the sender hashes the message authentication code and attaches the hash to the packet. Relays store
a copy of the hash when they forward the packet. If the packet reaches its destination, the recipient computes a
message authentication code over the received packet using the secret key shared with the sender. If the hash of this
message authentication code matches the hash attached to the packet, the recipient sends the message authentication
code as an acknowledgement, which is forwarded back along the path taken by the packet. Relays can verify that the
acknowledgement hashes to the same value that was attached to the packet, but they cannot forge acknowledgements
because they lack the secret key to compute the correct message authentication code, and because the hash function
is collision-resistant.

More formally, let H(x) denote the hash of x, let MAC(y, z) denote a message authentication code computed over
the message z using the key y, and let {a, b} denote the concatentation of a and b. Let k be the secret key shared by
the sender and recipient, and let d be the data to be sent. The relays between the sender and recipient are denoted
r1 . . . rn.

The sender first attaches a unique nonce or serial number s to the data, to produce the payload p1 = {s, d}. The sender
calculates h1 = H(MAC(k, p1)) and sends {h1, p1} to relay r1. Each relay ri stores the identity of the previous
hop under the hash hi, and forwards {hi+1, pi+1} to the next hop, where hi+1 = hi unless ri modifies the header and
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pi+1 = pi unless ri modifies the payload. On receiving {hn+1, pn+1} the recipient calculates H(MAC(k, pn+1))
and compares the result to hn+1. If the result does not match, then either hn+1 6= h1 or pn+1 6= p1 – in other words
either the header or the payload has been modified by one of the relays, and the recipient does not acknowledge the
packet. If the packet has not been modified, the recipient returns the acknowledgement an+1 = MAC(k, pn+1)
to relay rn. Each relay ri calculates H(ai+1), and if the result matches a stored hash, forwards ai to the previous
hop stored under the hash, where ai = ai+1 unless ri modifies the acknowledgement. When a relay receives an
acknowledgement that matches a stored hash, it knows that neither the header, the payload, nor the acknowledgement
was modified downstream.

It is important to note that while packets may carry source or destination addresses, the acknowledgement protocol
does not authenticate these addresses. An unforgeable acknowledgement proves one of two things. To the sender, it
proves that the downstream neighbour delivered the packet to its intended destination. To a relay, it proves that the
downstream neighbour delivered the packet to the destination intended by the upstream neighbour – this does not
necessarily correspond to the destination written on the packet. The upstream and downstream neighbours might col-
lude to produce and acknowledge packets with spoofed addresses, so unforgeable acknowledgements cannot be used
to discover reliable routes to particular destination addresses. However, in the context of unlinkable communication
this limitation becomes a strength: packets need not carry any information to associate them with one another, or
with any particular sender or recipient.

There is nothing to stop an attacker from modifying the header of a packet, perhaps replacing it with a hash generated
by the attacker for acknowledgement by a downstream accomplice. However, the attacker will then be unable to
provide a suitable acknowledgement to its upstream neighbour, and thus from the point of view of the attacker’s
upstream neighbour the attacker will effectively have dropped the packet and transmitted one of its own instead,
albeit one with an identical payload. The upstream neighbour will not consider the attacker to have delivered the
packet as requested, and will reduce its level of service accordingly. Likewise if the attacker modifies the payload
instead of the header, the recipient will not acknowledge the packet and again the attacker will be unable to provide an
acknowledgement to its upstream neighbour. Any modification to a packet or acknowledgement is thus equivalent to
dropping the packet, and with respect to reliability measurement a node that modifies packets or acknowledgements
is equivalent to a free rider. The protocol does not attempt to distinguish between malicious and accidental packet
loss, since attempting to do so might allow dishonest users to manipulate the system.

3 Proof of Security

This section demonstrates that the unforgeable acknowledgement protocol is secure as long as the underlying cryp-
tographic primitives are secure. Four specific assumptions are made about the underlying primitives:

1. It is not feasible to recover the secret key k by observing any sequence of authenticated messages
{MAC(k, m1),m1} . . . {MAC(k, mn),mn}.

2. It is not feasible to calculate MAC(k, m) for a given message m without knowing the secret key k.

3. It is not feasible to find the preimage x of a given hash H(x).

4. It is not feasible to find a second preimage y 6= x for a given preimage x, such that H(y) = H(x).

The first two properties are standard requirements for MAC functions, and the last two properties (inversion resistance
and second preimage resistance) are standard requirements for cryptographic hash functions. We note in passing that
these properties are not affected by recent collision attacks on cryptographic hash functions [10, 11].

First we show that the protocol does not reveal the secret key. If an eavesdropper could recover the secret key from
some sequence of packets {H(MAC(k, m1)),m1} . . . {H(MAC(k, mn)),mn} and their acknowledgements
MAC(k, m1) . . .MAC(k, mn), then the attacker could also recover the key from
{MAC(k, m1),m1} . . . {MAC(k, mn),mn}, contradicting the first assumption above.

Next we show that an attacker cannot forge acknowledgements without the secret key. Assume that an attacker
succeeds in forging an acknowledgement. Either the forged acknowledgement is identical to the genuine acknowl-
edgement, or it is different. If it is identical then either the attacker has succeeded in calculating MAC(k, m) without
knowing k, which contradicts the second assumption above, or the attacker has found a way of inverting the hash
function, which contradicts the third assumption. On the other hand if the forged acknowledgement is different from
the genuine acknowledgement, the attacker has found a second preimage y 6= x such that H(y) = H(x), which
contradicts the fourth assumption.

RN/06/05 Page 2



Unforgeable Acknowledgements for Unlinkable Communication Michael Rogers and Saleem Bhatti

4 Applications

This paper does not describe a complete communication system, but rather a building block that allows nodes to
measure reliability without sacrificing unlinkability. The mechanism by which senders and recipients exchange secret
keys is not discussed here, because the acknowledgement protocol is independent of the key exchange mechanism;
similarly, end-to-end encryption is not discussed, although we would expect it to be used by any parties requiring
unlinkability.

Unforgeable acknowledgements can operate in a peer-to-peer overlay or at the network layer, providing an incen-
tive for nodes to forward packets as well as transmitting their own. There are no dependencies between messages
other than between a packet and its acknowledgement, so each packet can be treated as an independent datagram;
retransmission, sequencing and flow control can be handled by higher protocol layers. This allows a single incen-
tive mechanism to support a wide range of services. In contrast, many existing incentive mechnisms are limited to
file-sharing applications, because they require content hashes to be known in advance [12, 13, 14, 15].

We assume that acknowledgements can be forwarded back along the same path as the packets they acknowledge –
if the reverse path is not the same as the forward path then acknowledgements can only be verified end-to-end. This
could make our protocol unsuitable for use over wireless networks with unidirectional links, for example. We do not
assume that links have symmetric bandwidth or latency.

The acknowledgement protocol does not require relays to share keys with senders or recipients, but it can easily be
generalised to situations where the sender wishes to direct traffic through a certain trusted relay: the sender exchanges
keys with the relay, and the relay exchanges keys with the recipient; the relay acknowledges and forwards the packets
it receives from the sender, and the recipient acknowledges the packets it receives from the relay. The recipient does
not need to know the identity of the sender, and indeed onion routing [16] could be layered on top of the unforgeable
acknowledgement protocol just like any other service.

The bandwidth, storage and computation overheads of our protocol are modest. Each packet must carry the hash of
its message authentication code and a unique nonce or serial number, and the sender and recipient must each perform
one hash computation in addition to the normal cost of using message authentication codes. Each relay must store
one hash per outstanding packet, perform a single hash computation and table lookup per acknowledgement, and
forward one message authentication code per acknowledgement. Since acknowledgements are small and there is at
most one acknowledgement per packet, acknowledgements can be piggybacked on packets to reduce transmission
costs.

5 Related Work

5.1 Reciprocation

Reciprocation between neighbours is used to encourage resource contribution in several deployed peer-to-peer net-
works [12, 13, 14]. These systems differ in how they allocate resources among cooperative neighbours, but all of
them provide a higher level of service to contributors than non-contributors. The level of service received from a
neighbour is measured by the amount of data downloaded, and hash trees [17] are used to verify each block of data
received.

SLIC [18] is an incentive mechanism for message forwarding in peer-to-peer search overlays. The level of service
received from a neighbour is measured by the number of search results it returns, but without a way to verify results
this creates an incentive to return a large number of bogus results.

SHARP [19] is a general framework for peer-to-peer resource trading; digitally signed ‘tickets’ are used to reserve
and claim resources such as storage, bandwidth and computation. Claims can be delegated, so peers can exchange
resources with peers more than one hop away, but the identities of all peers in the delegation chain must be visible in
order to validate the claim. This makes SHARP unsuitable for unlinkable communication.

5.2 Authenticated Acknowledgements

IPSec [20] uses message authentication codes for end-to-end authentication at the network layer. This makes it
possible to authenticate transport-layer acknowledgements, but the message authentication codes can only verified
by the endpoints, not by third parties such as relays.

TLS [21] uses message authentication codes at the transport layer. TCP headers are not authenticated, however,
so it is possible for relays to forge TCP acknowledgements; to ensure reliable delivery the endpoints must also
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use application-layer acknowledgements. As with IPSec, the message authentication codes used by TLS cannot be
verified by relays.

Some robust routing protocols for ad hoc networks use message authentication codes to acknowledge packets and
detect faulty links and nodes [22, 23]. This requires a trusted certificate authority for key distribution, and rules out
unlinkable communication.

5.3 Authentication using One-Way Functions

Gennaro and Rohatgi [24] describe two methods for authenticating streams using one-way functions. The on-line
scheme uses one-time signatures [25, 26]. Each block of the stream contains a public key, and is signed with the
private key corresponding to the public key contained in the previous block. The first block carries a conventional
asymmetric signature. One-time signatures are large, so the on-line scheme has a considerable bandwidth overhead.
The computational cost of verifying a one-time signature is comparable to an asymmetric signature, although signing
is more efficient.

The off-line scheme uses chained hashes, where each block contains the hash of the next block, and the first block
carries an asymmetric signature. The entire stream must be known to the sender before the first block is sent. This
scheme is similar to the use of hash trees in file-sharing networks.

The Guy Fawkes protocol [27] also uses chained hashes. The sender does not need to know the entire stream in
advance, but each block must be known before the previous block is sent. Each block Ai carries a preimage Xi−1

and a hash H(Xi) that are used to verify the previous block, and a hash H(Ai+1,H(Xi+1), Xi) that commits to the
contents of the next block. The first block carries a conventional signature.

Several ad hoc routing protocols use hash chains to reduce the number of asymmetric signature operations [28, 29,
30, 31]. Others use delayed disclosure, in which a hash and its preimage are sent by the same party at different times,
requiring loose clock synchronisation [32, 29, 33]. In the present protocol the preimage is not sent until the hash is
received, so no clock synchronisation is required.

The schemes described above use similar techniques to the protocol described in this paper, but their aims are dif-
ferent. Whereas the aim of a signature scheme is to associate messages with a sender, the aim of our protocol is
to associate an acknowledgement with a packet, without identifying the sender or recipient of the packet. Thus all
of the signature schemes mentioned above require an initial asymmetric signature to identify the sender, whereas
unforgeable acknowledgements do not require asymmetric cryptography.

6 Conclusion

We have described a protocol for acknowledging packets without revealing the identities of the sender or recipient.
The acknowledgements created by the protocol are unforgeable but can be verified by untrusted third parties. The
protocol has broad applicability: it can operate at the network layer and does not require relays to establish a security
association with the endpoints, or to be aware of the details of higher-layer protocols. It can be seen as a building
block for unlinkable communication systems, allowing nodes to measure the level of service received from their
neighbours so that they can adjust the level of service they provide in return.
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