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Abstract

We present results from applying information theory based
measures to simulated robots controlled by evolved Genetic
Regulatory Networks. Measuring the information flow across
sensory and effector surfaces, we create an information pro-
file illustrated using area-proportional Venn diagrams. We
examine the relationship between this information profile and
various elements of the overall system including the GRN
controlling the robot, the environment, the nature of the task
for which the GRN controller has been evolved, and evolu-
tionary fitness.

Introduction
In the natural world, Genetic Regulatory Networks (GRNs)
exist as part of a system of interacting elements that shapes
how a cell engages with its external environment—typically
other cells in the case of eukaryotes or an environment ex-
ternal to the organism in the case of prokaryotes (West-
Eberhard, 2003; Alberts et al., 2002). This is a process that
continues as an essential part of an organism’s development
throughout its lifetime (Davidson, 2001; Arthur, 2000).

In Artificial Life research, GRNs have traditionally been
studied as stand-alone dynamical systems (Kauffman, 1969;
Reil, 1999; de Jong et al., 2003) or as models of develop-
mental processes as discussed in (Dellaert and Beer, 1996).
This latter approach has been used to grow neural net-
works (Astor and Adami, 2000), body plans and nervous
systems for artificial agents (Bongard, 2002; Hornby and
Pollack, 2002) and to generate other morphologies and pat-
tern formation phenomena (Eggenberger, 1997; Kumar and
Bentley, 2003), with varying degrees of biological realism.
A common feature of such research is the use of GRNs as
a tool for implementing a biologically inspired non-linear
mapping from genotype to phenotype. The phenotype is
typically matured in isolation from its environment, at which
point the GRN is discarded. In contrast, building on previ-
ous work (Quick et al., 2003), we use our GRNs as the pri-
mary driver of behaviour throughout each simulated agent’s
lifetime, during which it is constantly engaged with an envi-
ronment.

In this paper we show and evaluate results using mea-
sures from information theory (Shannon, 1948; Cover and
Thomas, 2001) represented using area-proportional Venn di-
agrams (Chow and Ruskey, 2004) as an analytic tool, ap-
plied to this relationship.

There is excellent research available on the use of in-
formation theory in robotics. Lungarella has produced ex-
tensive studies on various measures applied to sensorimo-
tor coordination during foveation tasks (Lungarella et al.,
2005). Olsson provides elegant illustrations of information-
based measures and metrics applied to robot sensory data
sets (Olsson et al., 2004). However, the former focuses on
a very specific task were we address a more general and ba-
sic case of robot–environment interaction during an evolu-
tionary process, whilst the latter is not concerned with task
performance.

In the following section we present our GRN-driven
model. We then describe the task for which we evolve so-
lutions: controlling a simple simulated robot to seek light
and avoid obstacles. We present our methods of analysis,
based on information theory and area-proportional Venn di-
agrams, and then show our experimental results and apply
these methods to them. Finally, we discuss some of the im-
plications from the results and analysis and draw some con-
clusions.

Biosys: An evolvable GRN-driven control
system

Biosys is a biologically derived system that models simple
gene-protein-environment interaction. For the experiments
described here, the system was set-up as follows.

Each gene has two regulatory sites (cis), each represented
by an integer in the range 0-7 and a bit indicating whether
protein binding at that site has an activatory or inhibitory
effect on the gene’s expression.

Proteins, also represented by integers in the same range,
acting as transcription factors (trans) bind to cis sites that
have identical integer values to themselves. Each gene out-
puts instances of a single protein, again in the range 0-7,
henceforth denoted pn. The number of instances output is



determined by summing the number of proteins bound to
each regulatory site. An overall activation level for each
gene is derived by adding the figures for activatory cis sites
and subtracting for inhibitory cis sites.

Each gene’s activation level is then input into a simple
tanh-derived output function to determine the number of
protein instances produced.

Each gene has a bit determining if it is on or off by default.
Genes that are on by default, or ‘default active’, have a small
integer added to their output such that it is > 0 even when
their activation level is 0. Negative activation levels make it
possible for a gene to be completely suppressed even though
it may be on by default.

Proteins that are not bound to cis sites can engage with the
cell’s environment. The system maintains a fixed one-to-one
mapping between sensory events and specific protein types,
and between specific protein types and actuator events. The
challenge for the evolutionary algorithm, described below,
is then to evolve GRNs that engage with these and the other
non- environmentally mapped proteins over time in such a
way that a ‘fit’ behaviour is produced.

In the case of the Khepera robot used for this paper (simu-
lated using the YAKS software package1), light from the left
side of the robot’s body was summed and input as instances
of p0, and light from the right as p1. Summed proximity data
from the left Infrared sensors was input as p3, and from the
right as p4. The light and protein sums were each multiplied
by a gain value to determine the number of protein instances
to input. A gain of 0.3 was applied to summed light data,
and 0.08 to summed proximity data.

The robot’s left wheel speed was determined by the level
of p6, and the right by p7. These were mapped by calcu-
lating each protein type’s level as a proportion of a protein
saturation value (itself a genome-wide evolvable parameter),
and setting the relevant wheel’s speed to be the equivalent
proportion of its maximum possible value (a feature of the
robot or simulation implementation).

This protein-based environmental mapping allows a
round-trip from environmental events, to cellular protein
levels, to gene activation levels, in turn impacting regulatory
dynamics, cellular protein levels, and activity within the en-
vironment in an ongoing dynamical process that shapes the
system’s responses to its environment over time.

Each cell’s lifetime is implemented as a series of sim-
ulated time-steps, each broken down into sequential bind-
transcribe-decay operations. During binding, proteins not
already bound to cis sites bind to those that they match to,
based on simple identity. Where possible, multiple cis sites
with the same value share an equal number of binding trans
proteins. The number of proteins that bind as a proportion of
the total available is determined by a global genetic param-
eter that sets the proportion of available matching proteins

1http://r2d2.ida.his.se/

that bind to cis sites.
Next, transcription is performed. Each gene in turn ex-

presses a number of proteins based on its activation level, as
described above.

Next, proteins are decayed. This applies whether or not
they are bound to cis sites. Each protein type has its own
decay rate. This specifies the proportion of proteins of that
type that decay at each time step. Each decay rate is a global
evolvable parameter.

Finally, environmental interaction occurs as described
above. Proteins that are involved in environmental output
(i.e. proteins 6 and 7, which determine the robot’s wheel
speed) are automatically decayed, or ‘burnt’.

Evolving light-seeking with obstacle avoidance
Individuals, each with 5 genes with 2 cis sites on each gene
were evolved to maximise their exposure to light during their
lifetime in a simple bounded square environment with a light
source in the centre.

We tried at first to evolve from a random population in an
environment containing an intermittently broken wall (fig-
ure 1(c)), thus creating both initial exposure to light and the
need for obstacle avoidance to achieve greater light expo-
sure, each individual starting their 1000 time-step life posi-
tioned behind the wall and oriented at 90 degrees to the light
source. Note that we were more interested in investigating
the system’s ability to evolve a GRN integrating both types
of sensor data than potential robustness to environmental
variation, so did not vary starting position and orientation.

We used a basic fixed-length haploid Genetic Algorithm
(GA) (Goldberg, 1989), with single point cross-over, tour-
nament selection and weak elitism (a single fittest individual
being retained from each population into the next). Cross-
over occurred with a probability of 0.9, and mutation with a
probability of 0.01 per bit. Each population comprised 150
individuals and was evolved over 100 generations for each
evolutionary run.

However, fit individuals repeatedly failed to evolve. We
believe that this is because the fitness landscape was littered
with local minima caused by spaces between wall sections
allowing an increase in light reaching the robot’s light sen-
sors. Using the proximity sensors and moving away from
the wall involved a corresponding drop in exposure to light,
and hence fitness.

We therefore tried incrementally evolving in three phases,
as illustrated in figure 1. The first phase (a) involved an envi-
ronment with small solid walls behind which the robot was
positioned. The final generation from the first phase was
then used as the seed population for the second phase (b),
in which the length of the walls was increased. The process
was repeated for the third phase (c), in which ‘holes’ were
made in the walls. This incremental regime succeeded in
producing individuals able to use their proximity sensors to



Figure 1: Environments in which light-maximising individ-
uals were evolved incrementally, first for (a), then (b) and
finally (c). X indicates a central light-source, the large circle
its diffusion boundary. The small circle denotes each indi-
vidual’s starting position and orientation.

navigate past the walls, entering the region of greater light
intensity nearer the centre of their environment.

Methods
This section describes the primary information-theoretic
tools and representations used to analyse the results data
generated over the three incremental evolutionary phases de-
scribed above.

Measuring information
Let X be the alphabet of values of a discrete random vari-
able (information source) X , where X in the present article
will represent a sensor or actuator. The probability that the
random variable X assumes a value x ∈ X is denoted p(x).
Then the entropy, or uncertainty associated with X is

H(X) := −
∑
x∈X

p(x) log2 p(x) (1)

which specifies in bits the information necessary to specify
the value assumed by X . The joint entropy of two variables
X and Y is calculated taking into account the joint probabil-
ity of every unique combination of the two:

H(X ,Y ) := −
∑
x∈X

∑
y∈Y

p(x,y) log2 p(x,y) (2)

The conditional entropy,

H(Y |X) :=
∑
x∈X

p(x)H(Y |X = x) (3)

:= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x) (4)

specifies the uncertainty associated with the discrete random
variable Y if the value of X is known. This describes how
much more information is required to fully determine Y once
X is known, or equally, how much information about Y is in-
dependent of X . The mutual information is the information
shared between the two random variables X and Y and is
defined as

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X). (5)

Figure 2: Venn diagram representation of the relations be-
tween entropy H(X), conditional information H(X |Y ), mu-
tual information I(X ;Y ) and joint entropy H(X ,Y )

Area-proportional Venn diagrams
A Venn diagram can be used to illustrate the informational
relationship between between mutual information, I(X ;Y ),
entropy, H(X), and conditional entropy, H(X |Y ), as portions
of the joint entropy H(X ,Y ) as illustrated in figure 2.

Furthermore, it is possible to generate area-proportional
Venn diagrams (Chow and Ruskey, 2004). Applying this
technique to the information relations as described above,
we can create a visual representation of the balance between
information flowing into and out of a system via its sensori-
motor surfaces.

A single Venn diagram is used to represent the informa-
tion profile or balance of an individual over the duration of
its lifetime (1000 time-steps), such that variation in this bal-
ance between different fit individuals from different popu-
lations can be readily compared, and evolutionary shifts in
GRN dynamics producing different behavioural strategies
can be identified in terms of the consequences for the flow
of information into and out of the system.

Here we use the region H(X) to represent the joint entropy
of the four sets of sensor data that are passed into the cell
model as protein instances: light and proximity from the left
and right hand side of the robot. H(Y ) represents the joint
entropy of the two sets of wheel data, left and right.

In calculating H(X), each unique combination of values
occurring in the four sensor data sets is treated as a member
of the alphabet X , and similarly for calculating H(Y ) from
the two wheel data sets. H(X ,Y ) therefore shows the total
sensorimotor information of an individual over its lifetime.

The relative areas of H(X), sensory information, and
H(Y ), motor information, illustrate the proportion of sen-
sor to motor information. The relative area of the region
H(X |Y ) shows the proportion of sensor information that is
disregarded insofar as it is not reflected in actuator informa-
tion, H(Y ), and vice-versa for H(Y |X), showing the propor-
tion of actuator information that is independent of sensory
information. The relative area of I(X ;Y ) shows the propor-
tion of information common to both sensors and motors.

In determining the relative areas of H(X), H(X |Y ) and
I(X ;Y ) for the area-proportional diagrams, we divide each



Figure 3: Fitness over 3 phases of incremental evolution.
Phases 1–3 correspond to the environments illustrated in fig-
ure 1(a)–(c)

of these values by H(X ,Y ).

Results and Analysis
Fitness over the 3 phases of incremental evolution described
above is shown in figure 3. Incremental evolution was suc-
cessful in so far as individuals were evolved in phase 3 that
successfully navigated past the broken wall into the central
and well-lit region of the environment. Evolution in phase 2
successfully continued increasing fitness from phase 1 with
no significant initial drop in fitness.

Figure 4 shows for phase 1, at points of significant
shifts in fitness, an area-proportional information relation-
ship Venn diagram and robot trajectory for the individual
lifetime that produced the corresponding fitness measure.
Note that the light grey box inside each Venn diagram shows
how big the diagram would be if it were scaled to match the
actual joint entropy of the data used as a proportion of the
maximum possible joint entropy.

Figure 4(a) shows an individual from generation 2. It
moves very slowly a short distance to the wall, its left wheel
activated weakly by part of the output from a default ac-
tive gene, and its right by a gene responding to light from
the robot’s left hand side2. This lack of activity is reflected
in a low overall value for H(X ,Y ), hence the grey scaling
box is very small. There is very little uncertainty regard-
ing motor output given sensor input: H(Y |X) proportional to
H(X ,Y ) is very small. As with all lifetimes in all phases, the
sensor data contains more information than the motor data,
H(X) > H(Y ), a observation which is discussed below.

In generation 3, the relationship with the environment
changes dramatically due to a small genetic network wiring
shift and a small global parameter change that enables the
system to engage with its environment at a basic level. Left
hand side light activates the right wheel while the left turns
at a constant rate such that the robot is able to move parallel

2The YAKS simulator models low height walls, allowing some
light to reach the robot when it is behind a wall

Figure 4: Area-proportional information relationship Venn
diagrams and robot trajectories from individuals at key fit-
ness points in evolutionary phase 1, in environment shown
in figure 1(a). The light-grey box inside each Venn shows
how big the diagram would be if it were scaled to match the
joint entropy present as a proportion of the maximum possi-
ble joint entropy.

to the wall. When it exits the lit area the right wheel slows,
causing the robot to loop to the right, until it re-enters the
light and resumes a trajectory towards the light source.

Generation 4 (figure 4(c)) sees a small alteration to maxi-
mum protein levels resulting in an almost identical trajectory
but at a faster speed, producing a major increase in fitness.
This increase in activity produces a greater amount of infor-
mation, H(X ,Y ), and a slight increase in sensory informa-
tion relative to actuator information.

By generation 18, GRN re-wiring has produced an indi-
vidual sensitive to left hand side proximity data, enabling
it to move much more directly toward the light source by
‘knowingly’ dodging the wall, although the rest of the be-
havioural strategy is similar to generation 4. H(X ,Y ) is fur-
ther increased, whilst the proportions of sensory information
increases relative to motor information.

Generation 34 sees another increase in GRN complexity
in terms of the degree of interconnection between genes,
with both left and right proximity data being used, and mul-
tiple cyclic connections in inter-gene wiring. Despite this,
H(X ,Y ) decreases, perhaps due to the more regular trajec-
tory resulting in more repetitive and hence probable sensor
and motor data . H(Y |X) reaches its probable peak for this
evolutionary phase, possibly reflecting the information gen-
erated by the GRN’s dynamics independently of sensory in-
put. H(Y ) has also increased relative to H(X), perhaps also
due the regularity of the trajectory and hence similar infor-
mation levels in sensor and motor data given this fairly fea-
tureless environment.

The major evolutionary features in phase 2 are shown in
figure 5. Individuals from the final generation of phase 1
were already adapted to this new environment with longer



Figure 5: Area-proportional information relationship Venn
diagrams and robot trajectories from individuals at key fit-
ness points in evolutionary phase 2, in environment shown
in figure 1(b).

Figure 6: Area-proportional information relationship Venn
diagrams and robot trajectories from individuals at key fit-
ness points in evolutionary phase 3, in environment shown
in figure 1(c).

walls (figure 1(b)). However, their behaviour and thus in-
formation profile was altered by this environmental shift,
as illustrated in figure 5(a). The increased time spent nav-
igating past the lengthened wall reduced overall repetition,
and hence H(X ,Y ) increased from the previous phase. This
also shifted the proportion of information towards the sen-
sors, and decreased the independence of motor state, reduc-
ing proportional H(Y |X).

A major change occurred at generation 6 (figure 5(b)),
with a complex network of gene interactions stopping the
robot sharply shortly after it reaches the light. The robot
then spends the rest of its lifetime entirely stationary, which
heavily impacts on the system’s information profile. The
long sequence of repeated identical sensory and motor data
events this generates sees H(X ,Y ) drop sharply, H(X) ends
up close to H(Y ), and the proportion of mutual information
between sensory and motor information is greatly increased.

Figure 6 shows key points from the third evolutionary
phase. Individuals from the final generation of phase 2 per-
form poorly as a seed generation in this environment, get-
ting stuck against the top of the broken wall, as shown in
figure 6(a). Generation 2 sees the genetic network re-wired,
almost entirely re-setting the system to a behaviour simi-
lar to that exhibited at the start of the first phase in figure
4(a), although with a GRN far more sophisticated in terms

of inter-gene connectivity and use of sensory inputs, albeit
producing dysfunctional behaviour at this point in time. This
re-wiring also has a dramatic effect on the information pro-
file. H(X ,Y ) is tiny, as the system spends the vast majority
of its time stationary, stuck against a wall. However, motor
state is almost entirely determined by sensor state—the area
H(Y ) appears inside H(X), although this could be another
feature of extended inactivity.

Generation 4, figure 6(c), breaks out of this behaviour,
further re-wiring the already highly connected network to
incorporate all available sensors. It navigates very rapidly
past the wall, arcs past the light source and finally gets stuck
against the side wall. The increase in activity brings an in-
crease in joint entropy, although as with the rest of the in-
dividuals from this phase, a relatively long time spent sta-
tionary against a wall at the end of the run prevents H(X ,Y )
reaching the levels seen during previous phases. The fact
that H(Y |X) is close to zero indicates that motor state is
still almost entirely predictably mapped from sensor state,
although the GRN is sufficiently complex that this mapping
is difficult to verify.

Despite a noticeable increase in fitness, the GRN wiring
remains unaltered in the transition to generation 6 (figure
6(d)), the only changes being a tiny shift in a single pro-
tein decay rate and a small change to the protein satura-
tion level (maximum possible protein instances). This is a
relatively common theme working with this GRN model:
small changes to parameters that do not directly impact gene
wiring can have a major impact on behaviour and thus fit-
ness. The jump in fitness from 0.19 to 0.3 appears to be
due the robot ending its run stuck at a more advantageous
orientation.

There are then two more considerable gene connectivity
changes in the shifts from generations 6 to 8 (figure 6(e)),
and 8 to 14 (figure 6(f)), producing relatively minor be-
havioural shifts and correspondingly small changes to the
information proportions.

Discussion
There appears to be an association between the degree of
overlap of H(X) and H(Y ), and the complexity of the en-
vironment in terms of the extent to which it presents an
obstacle to the robot. This overlap may be due to the fact
that as we move through phases 1–3, successfully achieving
exposure to light depends increasingly on a tight relation-
ship between sensor input and motor output. In the envi-
ronment used in phase 3, figure 1(c), for example, the robot
has to precisely and extensively alter its motor states based
on fairly small fluctuations in proximity sensor data. Com-
paring all of the information proportional Venn diagrams
across the three evolutionary phases, motor information in-
deed becomes increasingly determined by sensor informa-
tion. Phase 2 may be skewed by the long period of inactivity
exhibited by individuals however.



It would be interesting to increase the potential complex-
ity of the GRN controllers (at least in terms of the number
of genes, and possibly the number of proteins also) and en-
vironment to see if the trend is maintained. It may actu-
ally be that substantially more complex controllers in more
complex task environments necessarily use less linear map-
pings from sensor data to actuator output. We predict that
in such situations we would observe relatively low values
for I(X ;Y )/H(X ,Y ) (proportion of the joint entropy that is
mutual information), because for a given sensor input there
will be uncertainty regarding the actuator output, for exam-
ple if dependent on a temporally extended process of en-
gagement between robot and environment. We would also
expect relatively high values for H(X ,Y ) again as a result
of overall unpredictability. However, we would not expect
to see H(X ,Y ) approach its maximum possible value in any
‘intelligent’ system, as this equates to randomness.

Another fairly consistent if general relationship exists in
the relative areas of H(X) and H(Y ). It seems that in phase
3, again as a result of fit behaviour depending on motor states
being tightly controlled by sensor data, the amount of in-
formation contained in the sensor data is much greater than
that contained in the motor data. This may be enhanced be-
cause the motor data consists of two sets of wheel speeds—
containing less potential for variation than the four sets of
sensor data (light and proximity from the left and right sides
of the robot) that make up H(X). In phase 1 a similar re-
lationship holds, possibly due to the simple and repetitive
nature of the two wheel speeds when in a simple circular
trajectory: contrast for example the less regular trajectory
plots and slightly greater areas of figure 4(a) and (b) with
(c)–(e).

We suspect that the relative areas of H(X) and H(Y ) re-
flect sensor and actuator sophistication (in terms of potential
information content), and the nature of the task environment,
in that we would expect systems with similar degrees of sen-
sor and actuator sophistication to show similar proportions
for H(X) and H(Y ), given a task environment that depends
of extensive use of both. For example, and AIBO dancing to
music should show a greater balance between the two than
one merely tapping a paw, in which case the amount of sen-
sor information would be expected to outweigh actuator in-
formation.

With regard to the results presented, it is difficult to tie
variation in behaviour to variation in information propor-
tion in a very precise way when this variation arises from
controllers operating across identical ‘bodies’ and environ-
ments performing a general task consisting of moving about.
We consider it unlikely that using real Khepera robots in the
same configuration as used here would make much differ-
ence, just because the set-up is so simple that large discrep-
ancies in sensor and motor data between the simulated and
the real are unlikely.

A direction planned for future work is to perform infor-

mation profiling across a range of different systems, as well
as for more complex systems (more sensors, more Degrees
of Freedom, etc.) in more complex environments (more in-
teractive, greater plasticity, etc.), such as Sony AIBO robots
operating in a physical environment.

Conclusions
We have illustrated the evolution of GRN-driven control sys-
tems for a simulated robot, demonstrating the ability of a
simple 5-gene GRN to perform basic sensor integration and
control. We have shown how information-theory based mea-
sures, particularly proportional measures of entropy, mutual
information and conditional entropy can be used to analyse
sensor and actuator data from such a system. We have sug-
gested relationships between these measures and features
of the systems under analysis, while recognising that ad-
ditional work is necessary to prove any general principles.
Our primary goal in the near future is to develop these mea-
sures further with a view to producing measures of system–
environment information exchange as a basis for introduc-
ing quantification to earlier work characterising the notion
of embodiment in just such relational terms (Quick et al.,
1999).
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