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Abstract. We introduce CTLKR, a temporal epistemic logic extending
CTLK with an epistemic operator Ni for n agents, referring to knowledge
regarding future states. This modality is defined in terms of the intersec-
tion of the transitive reflexive closure of a serial temporal relation and
the standard epistemic relation (which is an equivalence relation). We
prove that CTLKR has the finite model property, is decidable, and is
finitely axiomatisable. Further, we investigate an application of CTLKR
to reason about the bit transmission problem.

1 Introduction

Modal logics provide a formal framework to specify computation in distributed
and multi-agent systems. In particular, interpreted systems [6] provide a formal
Kripke-style semantics to reason about different states of knowledge of agents.
On this semantics, different concepts of knowledge have been explored, from
implicit knowledge [9] to more sophisticated ones such as distributed, common,
deductive, algorithmic knowledge, etc. All these logics are normally seen as for-
mal specification languages for representing agents’ knowledge.

A number of works have recently appeared in the literature relating to model
checking techniques [4] for verifying automatically that a multi-agent system
satisfies a particular temporal epistemic specification [11, 13, 8, 14]. While model
checking presents some documented advantages over theorem proving, the core
difficulty of the approach is the “state explosion problem”, i.e. the fact the model
representing the system grows very quickly to a size which is difficult to manage
even when coded symbolically.

Bounded model checking [2] and other SAT-based approaches attempt to
ease this problem by performing aggressive depth-first search on appropriate
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restricted submodels. This technique has been shown to be quite effective in
temporal-epistemic logic as well [13, 15], but a key problem is that an epistemic
modality defined on equality of local states (as in interpreted systems) forces to
consider states reachable from any possible branch from the initial state, thereby
limiting the advantages of the techniques. It is sometimes useful though, to
reason about epistemic properties of agents that result from a “reset” operation,
i.e., to reason about the knowledge regarding the future from the current time, as
if a pruning of the model was performed at that instant and only the submodel
generated by that point (as initial state) were to be considered. This happens,
for instance, when different instances of the same property are checked a number
of times over the same run, such as safe receipt of a stream of bits.

In this paper we introduce an epistemic modality Ni, i ∈ Ag (for “reset”)
that intrinsically incorporates the concept of resetting the model at the point
where the modality is considered. This is equivalent to assuming that the agents
are able to distinguish (i.e., to remove from their epistemically indistinguishable
set of accessible states) the current state from states in the past and from states
belonging to a different computational branch from the one that terminated in
the state under evaluation. Alternatively, one can see this modality as expressing
standard implicit knowledge but under the assumption the system enjoys a par-
ticular form of perfect recall [12], in which an agent would be able to recognise
states with the same prefix of visited states. Representing perfect recall or even
weaker variants of it is particularly costly in terms of model checking as the size
of local states grows rapidly with time. The alternative proposed here is to use
a standard semantics but evaluate the Ni on the intersection of the epistemic
relation for agent i with the reflexive transitive closure of the temporal relation.

The paper is organised as follows. In section 2 we present syntax and seman-
tics. Section 3 is devoted to the construction of the underlying machinery to
prove the main results of the paper. Sections 4 and 5 present this main results,
namely a decidability theorem and a completeness proof for the logic. In Section
6 we apply the formalism to the bit transmission problem. Section 7 contains
conclusions and final remarks.

2 A CTLKR Logic

In this section, we present the syntax and semantics of a new temporal epistemic
logic, called CTLKR.

2.1 Syntax

Assume a set of propositional variables PV, and a set of agents Ag = {1, . . . , n}
for n ∈ {1, 2, 3, . . .}. The set WF of well-formed CTLKR formulas is defined by
the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Niϕ,

where p ∈ PV and i ∈ Ag.
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The above syntax extends CTL [3] with standard epistemic modality Ki

[6] as well as an operator Ni for knowledge following a reset operation. The
formula Niϕ is read as “after a reset agent i knows that ϕ”, the formula Kiϕ,
which represents the standard epistemic modality, is read as “agent i knows
that ϕ”. The remaining operators can be introduced via abbreviations as usual,
i.e., α ∧ β def

= ¬(¬α ∨ ¬β), α ⇒ β
def
= ¬α ∨ β, α ⇔ β

def
= (α ⇒ β) ∧ (β ⇒

α), AXα
def
= ¬EX¬α, EFα

def
= E(>Uα), AFα

def
= A(>Uα), EGα

def
= ¬AF¬α,

AGα
def
= ¬EF¬α, A(αWβ)

def
= ¬E(¬αU¬β), E(αWβ)

def
= ¬A(¬αU¬β), Kiα

def
=

¬Ki(¬α).
Let ϕ and ψ be CTLKR formulas. We say that ψ is a sub-formula of ϕ if

either (a) ψ = ϕ; or (b) ϕ is of the form ¬α, EXα, Kiα, or Niα, and ψ is a
sub-formula of α; or (c) ϕ is of the form α ∨ β, E(αUβ), or A(αUβ) and ψ is a
sub-formula of either α or β. The length of a CTLKR formula ϕ is equal to the
number of symbols appearing in ϕ.

2.2 Semantics

Traditionally, the semantics of temporal epistemic logics is given on interpreted
systems, defined in the following way [6]. Each agent i ∈ Ag is associated with a
set of local states Li; the environment is associated with a set of local states Le.
An interpreted system is a tuple IS = (S, T, (∼i)i∈Ag,V), where S ⊆∏n

i=1 Li ×
Le is a set of global states; T ⊆ S×S is a serial temporal relation on S; ∼i⊆ S×S
is an epistemic relation for each agent i ∈ Ag defined by: s ∼i s′ iff li(s′) = li(s),
where li : S → Li is a function which returns the local state of agent i from a
global state; V : S → 2PV is a valuation function that assigns to each state a set
of proposition variables that are assumed to be true at that state. The relation T
is defined via an evaluation function which applies to states and agents’ actions.
For more details and further explanations of the notation we refer to [6].

In order to give a semantics to CTLKR we extend the above definition by
a adding n relations Ri, one for each agent i ∈ Ag, defined as the intersection
between the transitive and reflexive closure of the temporal relation T (denoted
by T ∗) and the epistemic relation ∼i.

Definition 1 (Model). Let Ag be a set of agents. A model is a tuple M =
(S, T, (∼i)i∈Ag,V, (Ri)i∈Ag), where S, T , ∼i, and V are defined as in the inter-
preted system above, and Ri =∼i ∩ T ∗ for i ∈ Ag.

A path in M is an infinite sequence π = (s0, s1, . . .) of states such that
(si, si+1) ∈ T for each i ∈ {0, 1, . . .}. For a path π = (s0, s1, . . .), we take π(k) =
sk. By Π(s) we denote the set of all the paths starting at s ∈ S.

Definition 2 (Satisfaction). Let M be a model, s a state, and α, β CTLKR
formulas. The satisfaction relation |=, indicating truth of a formula in model M
at state s, is defined inductively as follows:
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(M, s) |= p iff p ∈ V(s),
(M, s) |= ¬α iff (M, s) 6|= α,
(M, s) |= α ∧ β iff (M, s) |= α and (M, s) |= β,
(M, s) |= EXα iff (∃π ∈ Π(s))(M,π(1)) |= α,
(M, s) |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0)[(M,π(m)) |= β

and (∀j < m)(M,π(j)) |= α],
(M, s) |= A(αUβ) iff (∀π ∈ Π(s))(∃m ≥ 0)[(M,π(m)) |= β

and (∀j < m)(M,π(j)) |= α],
(M, s) |= Kiα iff (∀s′ ∈ S) (s ∼i s′ implies (M, s′) |= α),
(M, s) |= Niα iff (∀s′ ∈ S) (sRis′ implies (M, s′) |= α).

Satisfaction for the Boolean and temporal operators as well as the epistemic
modality Ki is standard. The formula Niα holds at state s in a model M if α
holds in all the states that are reachable from s via temporal relation T and they
are in the i− th epistemic relation with s. In other words, (M, s) |= Niα means
that in the state s agent i knows α under assumption that he does not consider
as possible states that do not belong to the future of s.

Let M be a model. We say that a CTLKR formula ϕ is valid in M (written
M |= ϕ), if M, s |= ϕ for all states s ∈ S, and a CTLKR formula ϕ is satisfiable
in M , if M, s |= ϕ for some state s ∈ S. We say that a CTLKR formula ϕ is
valid (written |= ϕ), if ϕ is valid in all the models M , and that ϕ is satisfiable
if it is satisfiable in some model M . In the latter case M is said to be a model
for ϕ.

For another interpretation of Ni, observe that:

Lemma 1. (M, s) |= Niφ iff (M∗s , s) |= Kiφ, where M∗s is the submodel gener-
ated by M at s.

3 Finite Model Property for CTLKR

In this section we prove that CTLKR has the finite model property (FMP). A
logic has the FMP if any satisfiable formula is also satisfiable in a finite model.

In order to establish the FMP for CTLKR, we follow the construction pre-
sented in [5]. Therefore, we begin with providing definitions of two auxiliary
structures: a Hintikka structure for a given CTLKR formula, and the quotient
construction for a given model. To define these structures, the following set of
formulas is needed.

Let ϕ be a CTLKR formula. The Fischer-Ladner closure of ϕ, FL(ϕ), is
defined by: FL(ϕ) = CL(ϕ) ∪ {¬α | α ∈ CL(ϕ)}, where CL(ϕ) is the smallest
set of formulas that contains ϕ and satisfy the following condistions:

– if ¬α ∈ CL(ϕ), then α ∈ CL(ϕ),
– if α ∨ β ∈ CL(ϕ), then α, β ∈ CL(ϕ),
– if E(αUβ) ∈ CL(ϕ), then α, β,EXE(αUβ) ∈ CL(ϕ),
– if A(αUβ) ∈ CL(ϕ), then α, β,AXA(αUβ) ∈ CL(ϕ),
– if EXα ∈ CL(ϕ), then α ∈ CL(ϕ),
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– if Kiα ∈ CL(ϕ), then α ∈ CL(ϕ),
– if Niα ∈ CL(ϕ), then α ∈ CL(ϕ).

Observation. Note that for a given CTLKR formula ϕ, FL(ϕ) is the set of
formulas that are essential to establish the truth of ϕ in a model. Moreover, this
set is finite, and the following lemma holds.

Lemma 2. Given a CTLKR formula ϕ, SizeOf(FL(ϕ)) ≤ 2 · |ϕ|.

Proof. Straightforward by induction on the length of ϕ.

Definition 3 (Hintikka structure). Let ϕ be a CTLKR formula, and Ag a set
of agents. A Hintikka structure for ϕ is a tupleMH = (S, T, (∼i)i∈Ag,L, (Ri)i∈Ag)
such that the elements S, T , ∼i, and Ri, for i ∈ Ag, are defined as in Definition
1, and L : S → 2FL(ϕ) is a labelling function assigning a set of formulas to each
state such that ϕ ∈ L(s) for some s ∈ S, and L satisfies the following conditions:
H.1. if ¬α ∈ L(s), then α 6∈ L(s)
H.2. if ¬¬α ∈ L(s), then α ∈ L(s)
H.3. if (α ∨ β) ∈ L(s), then α ∈ L(s) or β ∈ L(s)
H.4. if ¬(α ∨ β) ∈ L(s), then ¬α ∈ L(s) and ¬β ∈ L(s)
H.5. if E(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ EXE(αUβ) ∈ L(s)
H.6. if ¬E(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ ¬EXE(αUβ) ∈ L(s)
H.7. if A(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ ¬EX(¬A(αUβ)) ∈ L(s)
H.8. if ¬A(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ EX(¬A(αUβ)) ∈ L(s)
H.9. if EXα ∈ L(s), then (∃t ∈ S)((s, t) ∈ T and α ∈ L(t))

H.10. if ¬EXα ∈ L(s), then (∀t ∈ S)((s, t) ∈ T implies ¬α ∈ L(t))
H.11. if E(αUβ) ∈ L(s), then (∃π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))

and (∀j < n)α ∈ L(π(j)))
H.12. if A(αUβ) ∈ L(s), then (∀π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))

and (∀j < n)α ∈ L(π(j)))
H.13. if Kiα ∈ L(s), then α ∈ L(s)
H.14. if Kiα ∈ L(s), then (∀t ∈ S)(s ∼i t implies α ∈ L(t))
H.15. if ¬Kiα ∈ L(s), then (∃t ∈ S)(s ∼i t and ¬α ∈ L(t))
H.16. if Niα ∈ L(s), then α ∈ L(s)
H.17. if Niα ∈ L(s), then (∀t ∈ S)(sRit implies α ∈ L(t))
H.18. if ¬Niα ∈ L(s), then (∃t ∈ S)(sRit and ¬α ∈ L(t))
H.19. if Niα ∈ L(s) and (sRit), then Niα ∈ L(t)
H.20. if s ∼i t and s ∼i u and Kiα ∈ L(t), then Kiα ∈ L(u) and α ∈ L(u)
H.21. if Kiα ∈ L(s), then Niα ∈ L(s)
H.22. if AGα ∈ L(s), then Niα ∈ L(s)

Note that the labelling rules are of the form ”if” and not ”if and only if”.
They provide the requirements that must be satisfied by a valid labelling (i.e.,
consistent with semantics rules), but they do not require that the formulas be-
longing to L(s) form a maximal set of formulas, for any s ∈ S. This means that
there are formulas of FL(ϕ) that are satisfied in a given state but they are not
included in the label of that state. As usually, we call the rules H1-H8, H13,
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H16, H21 and H22 propositional consistency rules, the rules H9, H10, H14,
H15, H17-H20 local consistency rules, and the rules H11 and H12 eventuality
rules.

The following lemma holds.

Lemma 3. Let ϕ be a CTLKR formula. The following holds:
(a). If M = (S, T, (∼i)i∈Ag,V, (Ri)i∈Ag) is a model for ϕ, then MH = (S, T,

(∼i)i∈Ag,L, (Ri)i∈Ag) with L defined by: for all s ∈ S, α ∈ L(s) if α ∈ FL(ϕ)
and (M, s) |= α is a Hintikka structure for ϕ.

(b). If MH = (S, T, (∼i)i∈AgL, (Ri)i∈Ag) is a Hintikka structure for ϕ, then M =
(S, T, (∼i)i∈Ag,V, (Ri)i∈Ag) with V defined by: V(s) = L(s) ∩ PV, for all
s ∈ S, is a model for ϕ.

Proof.

(a). Straightforward by induction on the length of ϕ.
(b). By induction on the length of ϕ. The lemma follows directly for the propo-

sitional variables.
Next, assume that the hypothesis holds for all the proper subformulas of ϕ.
Consider ϕ to be of the following forms:
• ϕ = ¬α. Let ¬α ∈ L(s) for some s ∈ S. By the definition of L (rule H1),

we have that α 6∈ L(s). Therefore, by case (a) of the lemma, and the
contraposition law, we have that (M, s) 6|= α. By the definition of |=, we
conclude that (M, s) |= ¬α.
• ϕ = α ∨ β. Let α ∨ β ∈ L(s) for some s ∈ S. By the definition of L (rule
H3), we have that α ∈ L(s) or β ∈ L(s). By the inductive assumption,
we have that (M, s) |= α or (M, s) |= β. By the definition of |=, we
conclude that (M, s) |= α ∨ β.
• ϕ = EXα. Let EXα ∈ L(s) for some s ∈ S. By the definition of L (rule
H9), we have that (∃t ∈ S) such that (s, t) ∈ T and α ∈ L(t). Thus, by
the inductive assumption, we have that (∃t ∈ S) such that (s, t) ∈ T and
(M, t) |= α. By the definition of |=, we conclude that (M, s) |= EXα.
• ϕ = AXα. Let AXα ∈ L(s) for some s ∈ S. By the definition of AX, we

have that AXα = ¬EX(¬α). So, we have that ¬EX(¬α) ∈ L(s). By the
definition of L (rules H2 and H10), we have that (∀t ∈ S) if (s, t) ∈ T
then α ∈ L(t). Thus, by the inductive assumption, we have that (∀t ∈ S)
if (s, t) ∈ T then (M, t) |= α. By the definition of |=, we conclude that
(M, s) |= AXα.
• ϕ = E(αUβ). Let E(αUβ) ∈ L(s) for some s ∈ S. By the definition of
L (rule H11), we have that (∃π ∈ Π(s)) such that for some n ≥ 0, β ∈
L(π(n)) and (∀j < n) α ∈ L(π(j)). Thus, by the inductive assumption,
we have that (∃π ∈ Π(s)) such that for some n ≥ 0, (M,π(n)) |= β and
(∀j < n)(M,π(j)) |= α. By the definition of |=, we conclude (M, s) |=
E(αUβ).
• ϕ = A(αUβ). Let A(αUβ) ∈ L(s) for some s ∈ S. By the definition

of L (rule H12), we have that (∀π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n)) and
(∀j < n)α ∈ L(π(j))). Thus, by the inductive assumption, we have that
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(∀π ∈ Π(s))(∃n ≥ 0)((M,π(n)) |= β and (∀j < n)(M,π(j)) |= α). By
the definition of |=, we conclude that (M, s) |= A(αUβ).

• ϕ = Kiα. Let Kiα ∈ L(s) for some s ∈ S. By the definition of L (rule
H14), we have that (∀t ∈ S) if s ∼i t then α ∈ L(t). Thus, by the
inductive assumption, we have that (∀t ∈ S) if s ∼i t then (M, t) |= α.
By the definition of |=, we conclude (M, s) |= Kiα.

• ϕ = Niα. Let Niα ∈ L(s) for some s ∈ S. By the definition of L (rule
H17), we have that (∀t ∈ S) if sRit then α ∈ L(t). Thus, by the inductive
assumption, we have that (∀t ∈ S) if sRit then (M, t) |= α. By the
definition of |=, we conclude (M, s) |= Niα.

Definition 4 (Quotient structure). Let ϕ be a CTLKR formula, M = (S, T,
(∼i)i∈Ag,V, (Ri)i∈Ag) a model for ϕ, and↔FL(ϕ) a binary relation on S defined
by s ↔FL(ϕ) s

′ if (∀α ∈ FL(ϕ))((M, s) |= α iff (M, s′) |= α). Moreover, let [s]
denote the set {w ∈ S | w ↔FL(ϕ) s}. The quotient structure of M by ↔FL(ϕ) is
defined as M↔FL(ϕ) = (S′, T ′,(∼′i)i∈Ag, L′, (R′i)i∈Ag), where S′ = {[s] | s ∈ S},
T ′ = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t. (w,w′) ∈ T}, ∼′i=
{([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t. (w,w′) ∈∼i}, L′ : S′ → 2FL(ϕ) is
defined by: L′([s]) = {α ∈ FL(ϕ) | (M, s) |= α}, and R′i = T ′∗∩ ∼′i.

Observation. Note that as in the CTL case, the resulting quotient structure
is finite and it may not be a model. In particular, the following lemma holds;
the proof of Theorem 3.6 in [5] can easily be extended to tackle the proof of
Lemma 4.

Lemma 4. The quotient construction does not preserve satisfiability of formulas
of the form A(αUβ), where α, β ∈ WF . In particular, there is a model M for
A(>Up) with p ∈ PV such that M↔FL(A(>Up)) is not a model for A(>Up).

Proof. Consider a model M for the formula A(>Up) that is shown on Figure 1.
We clearly have that for all 0 ≤ i ≤ n, (M, si) |= A(>Up).

p

s0 s1 snsn−1

Fig. 1. A model M for the formula A(>Up).

The quotient construction of M by ↔FL(A(>Up)), i.e., M↔FL(ϕ) , is shown
on Figure 2. It is easy to see that the path π = π(0), π(1), . . . = (s′0)ω in
M↔FL(A(>Up)) meets the following condition: for all i ≥ 0, M↔FL(A(>Up)) , π(i) |=
¬p. So, M↔FL(A(>Up)) is not a model for A(>Up) .
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p

sns0 s1 sn−1

s′0

Fig. 2. The quotient construction of M by ↔FL(A(>Up)).

Although M↔FL(ϕ) may not be a model, it satisfies another important prop-
erty, which allows us to view it as a pseudo-model; it can be unwound into a
proper model that can be used to show that CTLKR has the FMP property. To
make this idea precise, we introduce the following auxiliary definitions.

A directed acyclic graph is a pair DAG = (S, T ), where S is a set of states
(nodes) and T ⊆ S × S is a set of edges (a transition relation). An interior
(respectively frontier) node of a DAG is one which has (respectively does not
have) a T -successor. The root of a DAG is the node (if it exists) from which all
other nodes are reachable. A fragment M ′ = (S′, T ′, (∼′i)i∈Ag,L′, (R′i)i∈Ag) of a
Hintikka structure MH = (S, T, (∼i)i∈Ag, L, (Ri)i∈Ag) is a structure such that
(S′, T ′) is a finite DAG, in which the interior nodes satisfy H1-H10 and H13-
H22, and the frontier nodes satisfy H1-H8, and H13, H16, H19-H22. Given
M = (S, T, (∼i)i∈Ag,L, (Ri)i∈Ag) and M ′ = (S′, T ′, (∼′i)i∈Ag,L′, (R′i)i∈Ag), we
say that M is contained in M ′, and write M ⊆M ′, if S ⊆ S′, T = T ′ ∩ (S × S),
∼i=∼′i ∩(S × S), L = L′|S, Ri = R′i ∩ (S × S).

The following holds.

Lemma 5. Let ϕ be a CTLKR formula, M a model for ϕ, and M ′ = (S′, T ′,
(∼′i)i∈Ag,L′, (R′i)i∈Ag) the quotient structure of M by↔FL(ϕ). Suppose A(αUβ)
∈ L′([s]) for some [s] ∈ S′. Then there is a fragment (S′′, T ′′, (∼′′i )i∈Ag,L′′,
(R′′i )i∈Ag) ⊆ M ′ such that: (a) (S′′, T ′′) is a DAG with root [s]; (b) for all the
frontier nodes [t] ∈ S′′, β ∈ L′′([t]); (c) for all the interior nodes [u] ∈ S′′,
α ∈ L′′([u]).

Proof. Assume that in M each state has a finite number of successors. Then,
choose t ∈ [s]. It is easy to see that embedded in M there is a fragment rooted
at t of the form claimed by the lemma. Simply take all states on paths that start
at t, finish at state t′ containing β (i.e., M, t′ |= β holds), and for all states u
between t and t′ u contains α. This must be a finite DAG.

If the labels on the states are all distinct (i.e., all the state on the path are
distinct), then this fragment is also contained in M ′ and we are finished. If not,
we will systematically eliminate ”duplicate” states from this fragment until we
finally obtain a fragment which is contained in M ′.

We proceed as follows. Define the depth of a state t, d(t), in a DAG as the
length of the longest path from the root to t. Then suppose that we have two
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distinct states t1 and t2 such that d(t1) ≥ d(t2) and M, t1 |= ψ iff M, t2 |= ψ for
each ψ ∈ FL(ϕ). We let the deeper state t1 replace the state t2 to get a new
fragment, i.e. we replace each arc (u, t2) by the arc (u, t1) and eliminate all states
no longer reachable from the root. Note that t2 itself is no longer reachable from
the root, so it is eliminated.

The resulting graph is easily seen to still be a fragment rooted at s such that
for all frontier nodes t′, M, t′ |= β holds, and for interior nodes u, M,u |= α
holds. We continue this process until the labels (i.e., the formulas that are true
at a given state) on all the states are distinct. This process must terminate after
a finite number of steps since the original fragment was finite. The resulting
fragment is contained in M ′ and meets the conditions of the lemma.

If the original model M had one or more states with an infinite number of
successors, a structure M ′′ with no such states is constructed as follows. For
each state t and each formula of the form AXα (or EXα) that belongs to FL(ϕ)
and M, t |= AXα (M, t |= EXα) holds, an arc (t, u) ∈ T with M,u |= α is
chosen. Then the not chosen edges are eliminated. Let the resulting relation be
T ′′ and let M ′′ = (S, T ′′,∼1, . . . ,∼n,L, V1, . . . , Vn). Each node of M ′′ has a finite
number of successors, and it is easy to check that we can carry out the above
construction using M ′′ instead of M since H12 still holds (although in general
M ′′ is not a model for ϕ since the eliminated arcs may have been necessary for
fulfillment of formulas such as E(αUβ)).

Definition 5 (Pseudo-model). Let ϕ be a CTLKR formula. A pseudo-model
M = (S, T, (∼i)i∈Ag,L, (Ri)i∈Ag) for ϕ is defined in the same manner as a
Hintikka structure for ϕ in Definition 3, except that condition H12 is replaced
by the following condition H ′12: for all s ∈ S, if A(αUβ) ∈ L(s), then there is
a fragment (S′, T ′,(∼′i)i∈Ag, L′, (R′i)i∈Ag) ⊆M such that: (a) (S′, T ′) is a DAG
with root s; (b) for all frontier nodes t ∈ S′, β ∈ L′(t); (c) for all interior nodes
u ∈ S′, α ∈ L′(u).

It can easy be checked that the following lemma holds.

Lemma 6. Let ϕ be a CTLKR formula, FL(ϕ) the Fischer-Ladner closure of ϕ,
M a model for ϕ, and M↔FL(ϕ) the quotient structure of M by ↔FL(ϕ). Then,
M↔FL(ϕ) is a pseudo-model for ϕ.

Proof. Consider ϕ to be of the following forms:

1. ϕ = ¬α. Assume that (M, s) |= ¬α and ¬α ∈ L([s]). Since (M, s) |= ¬α,
we have that (M, s) 6|= α. Thus, by the definitions of ↔FL(ϕ) and L, we
conclude that α 6∈ L([s]). So, condition H1 is fulfilled.

2. ϕ = ¬¬α. Assume that (M, s) |= ¬¬α and ¬¬α ∈ L([s]). Since (M, s) |=
¬¬α, we have that (M, s) |= α. Then, by the definitions of ↔FL(ϕ) and L,
we have that α ∈ L([s]). So, condition H2 is fulfilled.

3. ϕ = α ∨ β. Assume that (M, s) |= α ∨ β and α ∨ β ∈ L([s]). Since (M, s) |=
α ∨ β, we have that (M, s) |= α or (M, s) |= β. Consider the following two
cases.
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– Assume (M, s) |= α. By the definition of ↔FL(ϕ), we have that for all
t ∈ [s], (M, t) |= α hold. Thus, by the definition of L, we obtain that
α ∈ L([s]).

– Assume (M, s) |= β. As above we obtain β ∈ L([s]).

Thus, condition H3 is fulfilled.
4. ϕ = ¬(α ∨ β). Assume that (M, s) |= ¬(α ∨ β) and ¬(α ∨ β) ∈ L([s]).

By the definition of |=, we have that (M, s) |= ¬α and (M, s) |= ¬β. By
the definition of ↔FL(ϕ), we have that (M, t) |= ¬α and (M, t) |= ¬β for
all t ∈ [s]. Thus, by the definition of L, we have that ¬α ∈ L([s]) and
¬β ∈ L([s]). So, condition H4 is fulfilled.

5. ϕ = E(αUβ). Assume that (M, s) |= E(αUβ) and E(αUβ) ∈ L([s]). By
the definition of |=, we have that ∃π ∈ Π(s) such that for some n ≥
0, (M,π(n)) |= β and (∀j < n)(M,π(j)) |= α. This implies that either
(M,π(0)) |= β or ∃n > 0 such that (M,π(n)) |= β and (∀j < n)(M,π(j)) |=
α. Thus, (M, s) |= β or (M, s) |= α ∧ EX(αEUβ). Therefore, by the defini-
tions of↔FL(ϕ) and L, we obtain that β ∈ L([s]) or α∧EX(αEUβ) ∈ L([s]).
So, condition H5 is fulfilled.

6. ϕ = ¬E(αUβ). Assume that (M, s) |= ¬E(αUβ) and ¬E(αUβ) ∈ L([s]). By
the definition of |=, we have that (∀π ∈ Π(s))(∀n ≥ 0)((M,π(n)) |= ¬β
or (∃j < n)(M,π(j)) |= ¬α). This implies that either (M,π(0)) |= ¬α ∧
¬β or (∀π ∈ Π(s))(∀n > 0)((M,π(n)) |= ¬β or (∃j < n)(M,π(j)) |=
¬α). Thus (M, s) |= ¬β ∧ ¬α or (M, s) |= ¬β ∧ ¬EXE(αUβ). Therefore,
by the definitions of ↔FL(ϕ) and L we have that ¬β ∧ ¬α ∈ L([s]) or ¬β ∧
¬EXE(αUβ) ∈ L([s]). So, condition H6 is fulfilled.

7. ϕ = A(αUβ). Assume that (M, s) |= A(αUβ) and A(αUβ) ∈ L([s]). By
the definition of |=, we have that (∀π ∈ Π(s))(∃n ≥ 0)[(M,π(n)) |= β and
(∀j < n) (M,π(j)) |= α]. This implies that either (M, s) |= β or (∀π ∈
Π(s))(∃n > 0) [(M,π(n)) |= β and (∀j < n)(M,π(j)) |= α]. Thus, (M, s) |=
β or (M, s) |= α∧AXA(αUβ), which is equivalent to the fact that (M, s) |= β
or (M, s) |= α ∧ ¬EX(¬A(αUβ)). Therefore, by the definitions of ↔FL(ϕ)

and L, we have that β ∈ L([s]) or α∧¬EX(¬A(αUβ)) ∈ L([s]). So, condition
H7 is fulfilled.

8. ϕ = ¬A(αUβ). Assume that (M, s) |= ¬A(αUβ) and ¬A(αUβ) ∈ L([s]).
By the definition of |=, we have that ∃π ∈ Π(s) such that ∀n ≥ 0 either
(M,π(n)) |= ¬β or ∃j < n such that (M,π(j)) |= ¬α. This implies that
either (M, s) |= ¬α ∧ ¬β or ∃π ∈ Π(s) such that ∀n > 0 either (M,π(n)) |=
¬β or ∃j < n with (M,π(j)) |= ¬α. Thus, (M, s) |= ¬β ∧ ¬α or (M, s) |=
¬β ∧ EX(¬A(αUβ)). By the definitions of ↔FL(ϕ) and L, we have that
¬α ∧ ¬β ∈ L([s]) or ¬β ∧ EX(¬A(αUβ)) ∈ L([s]). So, condition H8 is
fulfilled.

9. ϕ = EXα. Assume that (M, s) |= EXα and EXα ∈ L([s]). By the definition
of |=, we have ∃t ∈ S such that (s, t) ∈ T and (M, t) |= α. Thus by definitions
of ↔FL(ϕ) and L, we have that α ∈ L([t]). Since (s, t) ∈ T , by the definition
of T ′, we have that ([s], [t]) ∈ T ′. Therefore, ∃[t] ∈ S′ such that ([s], [t]) ∈ T ′
and α ∈ L([t]). So, condition H9 is fulfilled.
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10. ϕ = ¬EXα. Assume that (M, s) |= ¬EXα and ¬EXα ∈ L([s]). By the
definition of |=, we have that (∀t ∈ S) if (s, t) ∈ T then (M, t) |= ¬α. Thus,
by the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]) for all t ∈ S
such that (s, t) ∈ T . Since (s, t) ∈ T , by the definition of T ′, we have that
([s], [t]) ∈ T ′. Therefore, we conclude that ∀[t] ∈ S′ if ([s], [t]) ∈ T ′ then
¬α ∈ L([t]). So, condition H10 is fulfilled.

11. ϕ = E(αUβ). Assume that (M, s) |= E(αUβ) and E(αUβ) ∈ L([s]). By the
definition of |=, we have that ∃π ∈ Π(s) and ∃n ≥ 0 such that (M,π(n)) |= β
and (∀j < n), (M,π(j)) |= α. Thus, by the definitions of ↔FL(ϕ) and L, we
have that β ∈ L([π(n)]) and (∀j < n), α ∈ L([π(j)]). Moreover, by the
definition of T ′ we have that the path ([π(0)], [π(1)], . . . , [π(n)], . . .) belongs
to Π([s]). Therefore, ∃π ∈ Π([s]) and ∃n ≥ 0 such that β ∈ L([π(n)]) and
(∀j < n), α ∈ L([π(j)]). So, condition H11 is fulfilled.

12. ϕ = A(αUβ). Assume that (M, s) |= A(αUβ) and A(αUβ) ∈ L([s]). By
Lemma 5, we have that there is a fragment (S′′, T ′′, (∼′′i )i∈Ag,L′′, (R′′i )i∈Ag) ⊆
M↔FL(ϕ) such that: (a) (S′′, T ′′) is a DAG with root [s]; (b) for all the fron-
tier nodes [t] ∈ S′′, β ∈ L′′([t]); (c) for all the interior nodes [u] ∈ S′′,
α ∈ L′′([u]). So, condition H ′12 is fulfilled.

13. ϕ = Kiα. Assume that (M, s) |= Kiα and Kiα ∈ L([s]). By the definition of
|=, we have that (M, t) |= α for all t ∈ S such that s ∼i t. So, in particular
we have that (M, s) |= α. Thus, by the definitions of↔FL(ϕ) and L, we have
that α ∈ L([s]). So, condition H13 is fulfilled.

14. ϕ = Kiα. Assume that (M, s) |= Kiα and Kiα ∈ L([s]). By the definition
of |=, we have that (M, t) |= α for all t ∈ S such that s ∼i t. Thus, by
the definitions of ↔FL(ϕ) and L, we have that α ∈ L([t]) for all t ∈ S such
that s ∼i t. Therefore, by the definition of ∼′i we conclude that ∀[t] ∈ S′ if
[s] ∼′i [t] then α ∈ L([t]). So, condition H14 is fulfilled.

15. ϕ = ¬Kiα. Assume that (M, s) |= ¬Kiα and ¬Kiα ∈ L([s]). By the definition
of |=, we have that ∃t ∈ S such that s ∼i t and (M, t) |= ¬α. Thus, by
the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore, by
the definition of ∼′i we conclude that ∃[t] ∈ S′ such that [s] ∼′i [t] and
¬α ∈ L([t]). So, condition H15 is fulfilled.

16. ϕ = Niα. Assume that (M, s) |= Niα and Niα ∈ L([s]). By the definition of
|=, we have that (M, t) |= α for all t ∈ S such that sRit. Since the relation
Ri is reflexive, we have that (M, s) |= α. Thus, by the definitions of ↔FL(ϕ)

and L, we have that α ∈ L([s]). So, condition H16 is fulfilled.
17. ϕ = Niα. Assume that (M, s) |= Niα and Niα ∈ L([s]). By the definition

of |=, we have that (M, t) |= α for all t ∈ S such that sRit. Thus, by the
definitions of ↔FL(ϕ) and L, we have that α ∈ L([t]) for all t ∈ S such that
sRit. Therefore, by the definition of R′i we conclude that for all [t] ∈ S′ if
[s]R′i[t] then α ∈ L([t]). So, condition H17 is fulfilled.

18. ϕ = ¬Niα. Assume that (M, s) |= ¬Niα and ¬Niα ∈ L([s]). By the definition
of |=, we have that there exists t ∈ S such that sRit and (M, t) |= ¬α. Thus,
by the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore, by
the definition of R′i we conclude that there exists [t] ∈ S′ such that [s]R′i[t]
and ¬α ∈ L([t]). So, condition H18 is fulfilled.
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19. ϕ = Niα. Assume that (M, s) |= Niα and [s]R′i[t] and Niα ∈ L([s]). By the
definition of |=, we have that (M, t) |= α for all t ∈ S such that sRit. Consider
any state t such that sRit and any state u such that tRiu. Since the relation
Ri is transitive, we have that sRiu. Thus since (M, s) |= Niα, it follows that
(M,u) |= α. Thus, for all t such that sRit we have that (M, t) |= Niα. Thus,
by the definitions of↔FL(ϕ) and L, we have that Niα ∈ L([t]) for all [t] such
that [s]R′i[t]. So, condition H19 is fulfilled.

20. Assume that [s] ∼′i [t] and [s] ∼′i [u] and Kiα ∈ L([t]). Since [s] ∼′i [t] and
[s] ∼′i [u] and ∼′i is reflexive and transitive, we have that [t] ∼′i [u]. Thus,
since Kiα ∈ L([t]), by the case 14 of the proof, we have that α ∈ L([u]). In
order to show that Kiα ∈ L([u]), consider [v] ∈ S′ such that [u] ∼′i [v]. Since
[t] ∼′i [u] and ∼′i is transitive, we have that [t] ∼′i [v]. Thus, by the case 14
of the proof, we have that α ∈ L([v]) for each [v] such that [u] ∼′i [v]. This
implies that Kiα ∈ L([u]). Therefore, condition H20 is fulfilled.

21. ϕ = Kiα. Assume (M, s) |= Kiα and Kiα ∈ L([s]). By the definition of |=,
we have that (M, t) |= α for all t ∈ S such that s ∼i t. Consider the following
two sets K(s, i) = {t |(s ∼i t) and (M, t) |= α} and Reach(s) = {t | (sT ∗t)}.
By the definition of K(s, i) and Reach(s), we have that K(s, i)∩Reach(s) =
{t | (sRit) and M, t |= α}. Therefore, by the definition of |= we have that
(M, s) |= Niα. Thus, by the definitions of ↔FL(ϕ) and L, we have that
Niα ∈ L([s]). So, condition H21 is fulfilled.

22. ϕ = AGiα. Assume (M, s) |= AGiα and AGα ∈ L([s]). Moreover, let Π(s)
denote all the paths that start at state s in the model M , and States(Π(s))
denote the set of states that belong to paths in Π(s) (i.e., States(Π(s)) =
{s | (∃π ∈ Π(s))(∃i ≥ 0)π(i) = s}). Then, by the definition of |=, we
have that for all the states t ∈ States(Π(s)), (M, t) |= α holds. Consider
the following set: R(i, s) = {t | t ∈ States(Π(s)) and s ∼i t}. It follows
that R(i, s) defines all the states t ∈ S such that sRit. So, since for all
t ∈ States(Π(s)), (M, t) |= α, it follows that (M, s) |= Niα. Thus, by the
definitions of ↔FL(ϕ) and L, we have that Niα ∈ L([s]). So, condition H22
is fulfilled.

Theorem 1. CTLKR has the finite model property.

Proof (sketch). To prove the theorem it is sufficient to show that for a given
CTLKR formula ϕ the following conditions are equivalent: (1) ϕ is satisfiable;
(2) there is a finite pseudo-model for ϕ; (3) there is a Hintikka structure for ϕ.

(3)⇒ (1) follows from Lemma 3, part (b). (1)⇒ (2) follows from Lemma 6.
To prove (2) ⇒ (3) it is enough to construct a Hintikka structure for ϕ by
“unwinding” the pseudo-model for ϕ. This can be done in the same way as
described in [5] for the proof of Theorem 4.1.

4 Decidability for CTLKR

Let ϕ be a CTLKR formula, and FL(ϕ) the Fischer-Ladner closure of ϕ. We
define ∆ ⊆ FL(ϕ) to be maximal if for every formula α ∈ FL(ϕ), either α ∈ ∆
or ¬α ∈ ∆.
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Theorem 2. There is an algorithm for deciding whether any CTLKR formula
is satisfiable.

Proof. Given a CTLKR formula ϕ, we construct a pseudo-model for ϕ. We
proceed as follows.

1. Build an initial pseudo-model M0 = (S0, T 0, (∼0
i )i∈Ag,L0, (R0

i )i∈Ag) for ϕ
with the following constraints:
– S0 = {∆ | ∆ ⊆ FL(ϕ) and ∆ is maximal and satisfies all the proposi-

tional consistency rules};
– T 0 ⊆ S0 × S0 is the relation such that (∆1,∆2) ∈ T 0 iff ¬EXα ∈ ∆1

implies that ¬α ∈ ∆2;
– for each agent i ∈ Ag, ∼0

i⊆ S0×S0 is the relation such that (∆1,∆2) ∈∼i
iff {α | Kiα ∈ ∆1} ⊆ ∆2;

– L0(∆) = ∆;
– for each agent i ∈ Ag, R0

i ⊆ S0×S0 is the relation such that (∆1, ∆2) ∈
Ri iff {α | Niα ∈ ∆1} ⊆ ∆2

Note that the initial pseudo-model satisfies all the propositional consistency
properties; property H10 (because of the definition of T 0), property H14
(because of the definition of ∼0

i ), and property H17 (because of the definition
of R0

i ).
2. Test the initial pseudo-model for fulfilment of the properties H9, H11, H ′12,
H15, and H18−H20 by repeatedly applying the following deletion rules until
no more states in M0 can be deleted.
(a) Delete any state which has no T 0-successors.
(b) Delete any state ∆1 ∈ S0 such that E(αUβ) ∈ ∆1 (resp. A(αUβ) ∈ ∆1)

and there does not exist a fragment M ′′ ⊆M0 such that: (i) (S′′, T ′′) is
a DAG with root ∆1; (ii) for all frontier nodes ∆2 ∈ S′′, β ∈ ∆2; (iii)
for all interior nodes ∆3 ∈ S′′, α ∈ ∆3.

(c) Delete any state ∆1 ∈ S0 such that ¬Kiα ∈ ∆1, and ∆1 does not have
any ∼i successor ∆2 ∈ S0 with ¬α ∈ ∆2.

(d) Delete any state ∆1 ∈ S0 such that ¬Niα ∈ ∆1, and ∆1 does not have
any Ri successor ∆2 ∈ S0 with ¬α ∈ ∆2.

(e) Delete any two states ∆1,∆2 ∈ S0 such that ∆1Ri∆2 and Niα ∈ ∆1

and ¬Niα ∈ ∆2.
(f) Delete any three states ∆1, ∆2,∆3 ∈ SO such that ∆1 ∼i ∆2 and ∆1 ∼i

∆3 and Kiα ∈ ∆2 and (¬Kiα ∈ ∆3 or ¬α ∈ ∆3 ).
Note that this part of the algorithm must terminate, since there are only a
finite number of states in the pseudo-model.

We call the algorithm above a decidability algorithm for CTLKR, and we can
show that the following lemma holds.

Lemma 7. The decidability algorithm for CTLKR terminates. LetMf = (Sf , T f ,
(∼fi )i∈Ag,Lf , (Rfi )i∈Ag) be the resulting structure of the algorithm. The CTLKR
formula ϕ is satisfiable iff ϕ ∈ s, for some s ∈ Sf .
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Proof (sketch). Termination is obvious given that the initial set is finite. In
order to show the part right-to-left of the satisfaction property, note that either
the resulting structure is a pseudo-model for ϕ, or Sf = ∅ (this can be shown
inductively on the structure of the algorithm). Any pseudo-model for ϕ is a
model for ϕ (see the proof of Theorem 1).

Conversely, if ϕ is satisfiable, then there exists a model M such that M |= ϕ.
Let M↔FL(ϕ) = (S′, T ′, (∼′i)i∈Ag, L′, (R′i)i∈Ag) be the quotient structure of M
by ↔FL(ϕ). M↔FL(ϕ) is a pseudo-model for ϕ (see the proof of Theorem 1). So,
L′ satisfies all the propositional consistency rules, the local consistency rules,
and properties H11 and H ′12. Moreover, by the definition of L′ in the quotient
structure, L′(s) is maximal with respect to FL(ϕ) for all s ∈ S′.

Let us consider the following function f : S′ → S0 that is defined by f(s) =
L′(s). It is easy to check that for T 0, ∼0

i , and R0
i , defined as in step 1 of the

decidability algorithm, the following conditions hold:

1. if (s, t) ∈ T ′, then (f(s), f(t)) ∈ T 0;
Proof (via contradiction): Let (s, t) ∈ T ′ and (f(s), f(t)) 6∈ T 0. Then, by the
definition of T 0 we have that ¬EXα ∈ f(s) and α ∈ f(t). By the definition
of f , we have that ¬EXα ∈ L′(s) and α ∈ L′(t). So, by the definition of L′
in the quotient structure we have that M, s |= ¬EXα and M, t |= α, which
contradict the fact that (s, t) ∈ T ′.

2. if (s, t) ∈∼′i, then (f(s), f(t)) ∈∼0
i ;

Proof (via contradiction): Let (s, t) ∈∼′i and (f(s), f(t)) 6∈∼0
i . Then, by the

definition of ∼0
i we have that Kiα ∈ f(s) and α 6∈ f(t). By the definition

of f , we have that Kiα ∈ L′(s) and α 6∈ L′(t). So, by the definition of L′
in the quotient structure we have that M, s |= Kiα and M, t |= ¬α, which
contradict the fact that (s, t) ∈∼′i.

3. if (s, t) ∈ R′i, then (f(s), f(t)) ∈ R0
i ;

Proof (via contradiction): Let (s, t) ∈∼′i and (f(s), f(t)) 6∈ R0
i . Then, by the

definition of R0
i we have that Niα ∈ f(s) and α 6∈ f(t). By the definition

of f , we have that Niα ∈ L′(s) and α 6∈ L′(t). So, by the definition of L′
in the quotient structure we have that M, s |= Niα and M, t |= ¬α, which
contradict the fact that (s, t) ∈ R′i.

Thus, the image of M ′ under f is contained in Mf , M↔FL(ϕ) ⊆Mf . It also can
be checked that if s ∈ S′, then f(s) ∈ S0 will not be eliminated via the step
2 of the decidability algorithm. So, in fact, f(s) ∈ Sf . This can be checked by
induction on the order in which states of S0 are eliminated. Therefore, it follows
that for some s ∈ Sf we have ϕ ∈ Lf (s).

5 A Complete Axiomatic System for CTLKR

Recall, an axiomatic system consists of a collection of axioms schemes and in-
ference rules. An axiom scheme is a rule for generating an infinite number of
axioms, i.e. formulas that are universally valid. An inference rule has the form
“from formulas ϕ1, . . . , ϕm infer formula ϕ”. We say that ϕ is provable (written
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` ϕ) if there is a sequence of formulas ending with ϕ, such that each formula
is either an instance of an axiom, or follows from other provable formulas by
applying an inference rule. We say that a formula ϕ is consistent if ¬ϕ is not
provable. A finite set {ϕ1, . . . , ϕm} of formulas is consistent exactly if and only
if the conjunction ϕ1∧ . . .∧ϕm of its members is consistent. A set F of formulas
is a maximally consistent set if it is consistent and for all ϕ 6∈ F , the set F ∪{ϕ}
is inconsistent. An axiom system is sound (resp. complete) with respect to the
class of models, if ` ϕ implies |= ϕ (resp. if |= ϕ implies ` ϕ).

Let i ∈ {1, . . . , n}. Consider system CTLKR as defined below:
PC. All substitution instances of classical tautologies.
T1. EX>
T2. EX(α ∨ β)⇔ EXα ∨ EXβ
T3. E(αUβ)⇔ β ∨ (α ∧ EXE(αUβ))
T4. A(αUβ)⇔ β ∨ (α ∧AXA(αUβ))
K1. (Kiα ∧Ki(α⇒ β))⇒ Kiβ
K2. ¬Kiα⇒ Ki¬Kiα
F1. (Niα ∧Ni(α⇒ β))⇒ Niβ
F2. Niα⇒ α
F3. Niα⇒ NiNiα
F4. Kiα⇒ Niα
F5. AGα⇒ Niα
R1. From α and α⇒ β infer β
R2. From α infer Kiα
R3. From α⇒ β infer EXα⇒ EXβ
R4. From γ ⇒ (¬β ∧ EXγ) infer γ ⇒ ¬A(αUβ)
R5. From γ ⇒ (¬β ∧AX(γ ∨ ¬E(αUβ))) infer γ ⇒ ¬E(αUβ)

Theorem 3. The system CTLKR is sound and complete with respect to the
class of models of Definition 1, i.e. |= ϕ iff ` ϕ, for any formula ϕ ∈ WF .

Proof. Soundness can be checked inductively as standard. For completeness, it
is sufficient to show that any consistent formula is satisfiable. To do this, first
we construct a pseudo-model M = (S0, T 0,(∼0

i )i∈Ag,L0, (R0
i )i∈Ag) for ϕ just as

in the decidability algorithm for CTLKR, and for each s ∈ S0 we define the
formula ψs as the conjunction of the formulas in s, i.e., ψs =

∧
α∈s α. Next, we

show that if a state s ∈ S0 is eliminated at step 2 of the decidability algorithm
for CTLKR, then ψs is inconsistent. Once we have shown this, we proceed as
follows. It can be checked by propositional reasoning that for any α ∈ FL(ϕ) we
have ` α⇔ ∨ {s | α ∈ s and

ψs is consistent} ψs. In particular, ` ϕ⇔ ∨ {s | ϕ ∈ s and
ψs is consistent} ψs. Thus, if

ϕ is consistent, then ψs is consistent for some s ∈ S0. This particular s will not
be eliminated at step 2 of the decidability algorithm for CTLKR. Therefore, a
pseudo-model for ϕ is obtained. So, by Theorem 1, ϕ is satisfiable.

Claim (1). Let s ∈ S0 and α ∈ FL(ϕ). Then, α ∈ s iff ` ψs ⇒ α.

Proof. (’if’). Let α ∈ s. By the definition of S0, we have that any s in S0 is
maximal. Thus, ¬α 6∈ s. So, ` ψs ⇒ α.
(’only if’). Let ` ψs ⇒ α. So, since s is maximal we have that α ∈ s.
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Claim (2). Let i ∈ Ag. If (s, t) 6∈∼i as constructed in step 1 of the decidability
algorithm for CTLKR, then ψt ∧ ψs is inconsistent.

Proof. Let (s, t) 6∈∼i. Then, by the definition of ∼i, we have that Kiα ∈ s and
α 6∈ t, for some α. Thus, by maximality ¬α ∈ t. So, we have ` ψs ⇒ Kiα and
` ψt ⇒ ¬α. By axiom F2 and F4 ` ψs ⇒ α. Therefore, ` (ψt ∧ ψs)⇒ ¬α ∧ α.
Hence, ψt ∧ ψs is inconsistent.

Claim (3). If (s, t) 6∈ T as constructed at step 1 of the decidability algorithm for
CTLKR, then ψs ∧ EXψt is inconsistent.

Proof. Let (s, t) 6∈ T . By the definition of T we have that ¬EXα ∈ s and
α ∈ t. Therefore, we have ` ψs ⇒ ¬EXα and ` ψt ⇒ α. By R3 we have
` EXψt ⇒ EXα. This implies that ` (ψs ∧ EXψt) ⇒ (¬EXα ∧ EXα). Thus
` (ψs ∧ EXψt)⇒ ⊥, which means that ψs ∧ EXψt is inconsistent.

Claim (4). Let i ∈ Ag. If (s, t) 6∈ Ri as constructed in step 1 of the decidability
algorithm for CTLKR, then ψt ∧ ψs is inconsistent.

Proof. Let (s, t) 6∈ Ri. Then, by the definition of Ri, we have that Niα ∈ s and
α 6∈ t, for some α. Thus, by maximality ¬α ∈ t. So, we have ` ψs ⇒ Niα and
` ψt ⇒ ¬α. By axiom F2 ` ψs ⇒ α. Therefore, ` (ψt ∧ ψs) ⇒ ¬α ∧ α. Hence,
ψt ∧ ψs is inconsistent.

We now show, by induction on the structure of the decidability algorithm for
CTLKR, that if a state s ∈ S0 is eliminated, then ` ¬ψs.

Claim (5). If ψs is consistent, then s is not eliminated at step 2 of the decidability
algorithm for CTLKR.

Proof. (a). Let EXα ∈ s and ψs be consistent. By the same reasoning as in
the proof of Claim 4(a) in [5], we conclude that s satisfies H9. So s is not
eliminated.

(b). Let E(αUβ) ∈ s (resp. A(αUβ) ∈ s) and suppose s is eliminated at step 2
because H11 (resp. H ′12) is not satisfied. Then ψs is inconsistent. The proof
showing that fact is the same as the proof of Claim 4(c) (resp. Claim 4(d))
in [5].

(c). Let ¬Kiα ∈ s and ψs be consistent. Consider the set S¬α = {¬α}∪{β | Kiβ ∈
s}. We will show that S¬α is consistent. Suppose that S¬α is inconsistent.
Then, ` β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | Kiβ ∈ s} for j ∈ {1, . . . ,m}.
By rule R2 we have ` Ki((β1 ∧ . . . ∧ βm) ⇒ α). By axioms K1 and PC we
have ` (Kiβ1 ∧ . . . ∧Kiβm)⇒ Kiα. Since each Kiβj ∈ s for j ∈ {1, . . . ,m},
we have Kiα ∈ s. This contradicts the fact that ψs is consistent. So, S¬α is
consistent. Now, since each set of formulas can be extended to a maximal
one, we have that S¬α is contained in some maximal set t. Thus ¬α ∈ t, and
moreover, by the definition of ∼0

i in M and the definition of S¬α we have
that s ∼0

i t. Thus, s satisfies H15.
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(d). Let ¬Niα ∈ s and ψs be consistent. Consider the set S¬α = {¬α}∪{β | Niβ ∈
s}. We will show that S¬α is consistent. Suppose that S¬α is inconsistent.
Then, ` β1 ∧ . . .∧ βm ⇒ α, where βj ∈ {β | Niβ ∈ s} for j ∈ {1, . . . ,m}. By
rule R2 we have ` Ki((β1 ∧ . . .∧ βm)⇒ α). By axioms K1 and PC we have
` (Kiβ1 ∧ . . . ∧ Kiβm) ⇒ Kiα. By axiom F4 we have that ` (Niβ1 ∧ . . . ∧
Niβm) ⇒ Niα. Since each Niβj ∈ s for j ∈ {1, . . . ,m}, we have Niα ∈ s.
This contradicts the fact that ψs is consistent. So, S¬α is consistent. Now,
since each set of formulas can be extended to a maximal one, we have that
S¬α is contained in some maximal set t. Thus ¬α ∈ t, and moreover, by the
definition of R0

i in M and the definition of S¬α we have that sR0
i t. Thus, s

satisfies H18.

Claim (6). If ψs ∧ ψt is consistent, then s and t are not eliminated at step 2(e)
of the decidability algorithm for CTLKR.

Proof (By contraposition). We show that if s and t are eliminated at step 2.(e)
(because H19 is not satisfied), then ψs ∧ ψt is inconsistent. Let s and t be
eliminated at step 2.(e). Then, we have that sRit and Niα ∈ s and ¬Niα ∈ t.
By Claim 1 we have that ` ψs ⇒ Niα and ` ψt ⇒ ¬Niα. This implies that
` ψs∧ψt ⇒ Niα∧¬Niα. Therefore, ` ψs∧ψt ⇒ ⊥. Thus, ψs∧ψt is inconsistent.

Claim (7). If ψs ∧ ψt ∧ ψu is consistent, then s, t and u are not eliminated at
step 2(f) of the decidability algorithm for CTLKR.

Proof (By contraposition). We show that if s, t, and u are eliminated at step
2.(f) (because H20 is not satisfied), then ψs ∧ ψt ∧ ψu is inconsistent. Let s, t,
and u be eliminated at step 2.(f). Then, we have that s ∼i t and s ∼i u and
Kiα ∈ t and either ¬Kiα ∈ u, or ¬α ∈ u. Let first assume that s ∼i t and
s ∼i u and Kiα ∈ t and ¬Kiα ∈ u. By Claim 1 we have that ` ψt ⇒ Kiα and
` ψu ⇒ ¬Kiα. It follows that ` ψt ∧ ψu ⇒ Kiα ∧ ¬Kiα holds. This implies
that ` ψt ∧ ψu ⇒ ⊥. So, ` ψs ∧ ψt ∧ ψu ⇒ ⊥ as well. Therefore ψs ∧ ψt ∧ ψu is
inconsistent. The case that s ∼i t and s ∼i u and Kiα ∈ t and ¬α ∈ u can be
proven similarly.

We have now shown that only states s with ψs inconsistent are eliminated. This
ends the completeness proof.

6 The Bit Transmission Problem

Imagine we have two processes, a sender S and a receiver R, which communicate
over a possibly faulty communication line. S wants to send a finite stream of bits
to R. One way of doing this is the following. S immediately starts sending the
bit to R, and continues to do so until it receives an acknowledgement from R. R
does nothing until it receives the bit; from then on it sends acknowledgements of
receipt to S. When S receives an acknowledgement, it stops sending the “old”
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bit to R, and performs a reset operation, thereby giving a sign to R that a new
bit will be sent1. Then, S starts sending the new bit and the cycle repeats.

We apply the CTLKR formalism to model and reason about the above sce-
nario, a variation of the well known bit-transmission problem (BTP) [6]. Let us
begin by building a model M = (S, T,∼S,
∼R,V, RS, RR) for BTP.

There are three active components in the scenario: agents S and R, and a
communication channel represented by an environment E. Each of these can be
modelled by considering their local states. For S, it is enough to consider five
possible local states. They represent the value of the bit that S is attempting
to transmit, and whether or not S has received an acknowledgement or an end
signal from R. We thus have:

LS = {0, 1, 0-ack, 1-ack, end}.
Let n > 0 be the maximal length of the stream of beats to be sent. We consider

LR = {XjY | X ∈ {0-ack, 1-ack}, Y ∈ {ε, 0, 1}, 0 ≤ j ≤ n}.
R’s local state is ε if R has received no bits from S. R’s local state is 0 (resp.
1) if the received bit is 0 (resp. 1). R’s local state is k1-ack. . . kj-ack (resp. k1-
ack. . . kj-ack k) for k1, . . . , kj , k ∈ {0, 1} and j ≤ n, if the stream of bits he
received is k1 . . . kj (resp. k1 . . . kjk) and S has performed j reset actions. It
remains to model the local states of the environment E. For E it is enough to
consider a singleton: LE = {·}.

The following sets of actions are available to the agents: ActS = {sendbit ,
reset, λ}; ActR = {sendack , sendend, λ}, where λ stands for no action. The
actions ActE for the environment correspond to the transmission of messages
between S and R on the unreliable communication channel. We will assume that
the communication channel can transmit messages in both directions simulta-
neously and independently. The set of actions for E is ActE = {↔, →, ←, −},
where ↔ represents the action in which the channel transmits any message suc-
cessfully in both directions, → that it transmits successfully from S to R but
loses any message from R to S, ← that it transmits successfully from R to S
but loses any message from S to R, and − that it loses any messages sent in
either direction.

The protocols the agents are running are defined as follows:

– PS(0) = {sendbit},
– PS(1) = {sendbit},
– PS(0-ack) = {reset},
– PS(1-ack) = {reset},
– PS(end) = {λ},
– PR(ε) = {λ},

1 For simplicity we assume that resets are communicated with no faults; an acknowl-
edgement protocol could be introduced for resets without violating the properties
we show below
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– PR(k1-ack . . . kj-ack) = {λ},
– PR(k1-ack . . . kj−1-ack kj) = {sendack},
– PR(k1-ack . . . kn−1-ack kn) = {sendend},
– PE(·) = {↔, →, ←, −},

where k1, . . . , kj , kn ∈ {0, 1} and j < n.
The evolution of BTP is defined by means of an evolution function t : (LS×

LR×LE)×Act→ 2LS×LR×LE , where Act is a subset of ActS×ActR×ActE. It is
straightforward to infer a definition of this function from the informal description
of the scenario we considered above together with the local states and protocols
defined above; the function t determines not only the set of reachable global
states S ⊆ LS × LR × LE, but also gives us the transition relation T . Namely,
for all the s, s′ ∈ S, (s, s′) ∈ T iff there exists act ∈ Act such that t(s, act) = s′.

To complete the description of M for BTP, we introduce the set of proposi-
tional variables: PV = {ack} ∪ {jBit = 0, jBit = 1, resetj | 0 < j ≤ n}, and we
define the valuation function V : S → 2PV as:

– ack ∈ V(s) if lS(s) = 0-ack or lS(s) = 1-ack,
– jBit = 0 ∈ V(s) if lR(s) = (k1 . . . kj) and (kj = 0 or kj = 0-ack)

and k1, . . . , kj−1 ∈ {0-ack, 1-ack}, for 0 < j ≤ n,
– jBit = 1 ∈ V(s) if lR(s) = (k1 . . . kj) and (kj = 1 or kj = 1-ack)

and k1, . . . , kj−1 ∈ {0-ack, 1-ack}, for 0 < j ≤ n,
– resetj ∈ V(s) if (lR(s) = k1 . . . kj and k1, . . . , kj ∈ {0-ack, 1-ack}

and 0 < j ≤ n) or (lR(s) = ε and j = 0).

Let us consider the following property (?):“whenever a fresh bit has been sent,
S knows that whenever he receives an acknowledgement, R knows the value of
the bit”. One can try to express this property with the following CTLK formula,
for 0 < j ≤ n:

AG[resetj ⇒ AGKS(ack ⇒ (KR(jBit = 0) ∨KR(jBit = 1)))] (1)

But one can check that Formula (1) is not valid in M . The problem is that a
bit received before a reset may account for the receiver’s knowledge about the
current bit. What we need to do is to express explicitly that past states should
not be considered in S’s accessible states, following the reset operation. The
epistemic modality Ni enable us not to include past states, and can be used to
capture this intuition. Indeed, property (?) can be formalised by the following
CTLKR formula:

AG[resetj ⇒ AGNS(ack ⇒ (KR(jBit = 0) ∨KR(jBit = 1)))] (2)

It is easy to check manually that Formula (2) is valid in M .

7 Conclusion and Final Remarks

In the paper we have proposed a new notion of knowledge, called knowledge from
now on, that is interpreted over intersection of the standard epistemic relation for

19



agents and reflexive, transitive closure of the temporal relation. We have shown
that CTLKR in which this notion of knowledge is expressible, is decidable, and
can be axiomatised. In the following we give a short review of existing work on
intersection.

Providing axiomatisations for modalities that are defined on intersections of
relations is non trivial, because the intersection of two relations is not modally
definable. One of the cases, well known in the literature, is the case of distributed
knowledge [7, 10]. Namely, if an epistemic language (say S5Dn) with distributed
knowledge D is considered, then the axiom system for S5Dn is defined by taking
S5n axioms and adding axioms that say that D acts like a knowledge operator
(i.e., all the axioms for Ki replaced with D holds) and adding the following
additional axiom: Kiα ⇒ Dα for i = 1 . . . n. Furthermore, if n = 1, i.e., there
is only one agent, then the following axiom is added Dα ⇒ K1α. The proof
technique used in [7] consists in a reduction to equivalence Kripke trees, and
the authors assume that the relations from which the intersection is taken have
the same properties. So given this, obviously the technique can not be apply to
prove the intersection between T ∗ and ∼i, what it is done in that paper. Other
case is given in [1], where a complete axiomatisation of a relative modal logic
with composition and intersection is given.

Finally, we would like to stress that a logic defined by the same grammar as
the logic CTLKR, but interpreted over the models with the relation Ri defined
by: for any agent i ∈ Ag, sRit if s ∼i t and sT t, is also decidable and complete.
This can be shown via the same technique as the one applied in the paper.
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