
Bounded Model Checking for the Existential
Fragment of TCTL and Diagonal Timed Automata

Bożena Woźna1 and Andrzej Zbrzezny2

1 Department of Computer Science,
University College London

Gower Street, London WC1E 6BT, UK
email: B.Wozna@cs.ucl.ac.uk

2 Institute of Mathematics and Computer Science,
Jan Długosz University of Czȩstochowa

Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland
email: a.zbrzezny@ajd.czest.pl

Technical report: RN/05/19
August 2005

Abstract. Bounded Model Checking (BMC) is one of the well known SAT based
symbolic model checking techniques. It consists in searching for a counterexam-
ple of a particular length, and generating a propositional formula that is satisfi-
able iff such a counterexample exists. The BMC method is feasible for the various
classes of temporal logic; in particular it is feasible for TECTL (the existential
fragment of Time Computation Tree Logic) and Diagonal-free Timed Automata.
The main contribution of the paper is to show that the concept of Bounded Model
Checking can be extended to deal with TECTL properties of Diagonal Timed
Automata. We have implemented our new BMC algorithm, and we present pre-
liminary experimental results, which demonstrate the efficiency of the method.

1 Introduction

Model checking is a verification technique that was originally developed for (untimed)
temporal logics [8]. Its main idea is to represent a finite state system, often deriving
from a hardware or software design, as a labelled transition system (model), represent
a specification (property) by a modal formula, and check automatically whether the
formula holds in the model.

Over the past few years, the interest in automated verification has been moved to-
wards concurrent real-time systems, and now verification of such systems is an active
area of research. Various classes of models for real time systems have been proposed
in the literature, but Timed Automata [2] and Timed Petri Nets [20] are the best known
ones. The properties to be verified are usually expressed either in a standard temporal
logic like LTL [8] and CTL [14], or in their timed versions like MITL [3] and TCTL [1].

The practical applicability of the model checking method is strongly restricted by
the so-called state explosion problem. Therefore, different reduction techniques were
proposed to minimise models. The major methods include application of partial order

reductions [4, 9, 17, 21, 22, 30], symmetry reductions [15], abstraction techniques [10,
11], BDD-based symbolic storage methods [7, 18], and SAT-related algorithms [5, 19,
12, 28, 24–26, 32, 31].

Bounded model checking (BMC) is one of the SAT-based (satisfiability checking)
methods, and it was introduced as a technique complementary to the BDD-based sym-
bolic model checking for LTL [5]. The main idea of BMC is to search for an execution
(or a set of executions) of the system of some length k that constitutes a counterexample
for a tested property. If no counterexample of length k can be found, then k is increased
by one until it reaches the size of the model. The efficiency of this method is based upon
the observation that if a system is faulty, then often examining only a (small) fragment
of its state space is sufficient for finding an error. Obviously, when testing large models
and complex formulae the efficiency of the BMC method is dependent on the speed of
the chosen SAT solver, with which the test is carried out. As SAT checkers have pro-
gressively become more effective, the efficiency of BMC has improved, an observation
experimentally demonstrated in, among others, [5, 25, 26].

The main contribution of the paper consists in showing that the concept of Bounded
Model Checking can be extended to deal with TECTL (the existential fragment of
TCTL) properties of Diagonal Timed Automata [29]. In particular we show that the
discretisation method [33] can be applied to model check an arbitrary TCTL formula
over Diagonal Timed Automata. Moreover, we have implemented the new BMC algo-
rithm, and we provide some preliminary experimental results that seem to be promising.

The rest of the paper is organised as follows. In Section 2 we present briefly the basic
definitions and notations used through the paper. In Section 3 we present the bounded
model checking for TECTL, and provide some preliminary experimental results for a
modified Fischer mutual exclusion protocol. The last section contains a discussion of
related work and final remarks.

2 Preliminaries

2.1 Diagonal timed automata

Let X be a finite set of variables, called clocks, and � = {0, 1, . . .} a set of natural num-
bers. The set of clock constraints over X, denoted by C(X), is defined by the following
grammar:

ϕ ::= true | x ∼ c | x − y ∼ c | ϕ ∧ ϕ

where x, y ∈ X, c ∈ � and ∼ ∈ { <, ≤, =, >, ≥ }.
A clock valuation v of X is a total function from X into the set of nonnegative real

numbers �. �X denotes the set of all clock valuations of X. For a clock constraint
ϕ ∈ C(X), ~ϕ� denotes the set of all clock valuations of X that satisfy ϕ. The clock
valuation that assigns the value 0 to all clocks is denoted by v0. For v ∈ �X and δ ∈ �,
v + δ is the clock valuation of X that assigns the value v(x) + δ to each clock x. For
v ∈ �X and Y ⊆ X, v[Y] denotes the clock valuation of X that assigns the value 0 to
each clock in Y and leaves the values of the other clocks unchanged.

Definition 1 (Diagonal Timed Automaton). Let PV be a set of propositional vari-
ables. A diagonal timed automaton A is a tuple (Σ, L, l0,V, X, Inv,R), where Σ is a

nonempty finite set of actions, L is a nonempty finite set of locations, l0 ∈ L is an ini-
tial location, V : L −→ 2PV is a function assigning to each location a set of atomic
propositions true in that location, X is a finite set of clocks, Inv : L −→ C(X) is a state
invariant function, and R ⊆ L × Σ ×C(X) × 2X × L is a transition relation.

Hereafter by Timed Automata we will mean Diagonal Timed Automata.
An element (l, σ, ϕ, Y, l′) ∈ R represents a transition from the location l to the

location l′ labelled with the action σ. The invariant condition allows the automaton to
stay at the location l as long only as the constraint Inv(l) is satisfied. The guard ϕ has
to be satisfied to enable the transition. The transition resets all clocks in the set Y to the
value 0.

2.2 Transition systems for timed automata

The semantics of a timed automaton A is defined by associating with it a labelled
transition system G(A) = (Σ ∪ �,Q, q0, Ṽ,−→), where Σ ∪ � is the set of labels,
Q = L × �X is the set of states, q0 = (l0, v0) is the initial state, Ṽ : Q −→ 2AP is a
function such that Ṽ((l, v)) = V(l), and −→ ⊆ Q × (Σ ∪ �) × Q is a transition relation
of G(A) defined by:

– Time transitions: (l, v)
δ
−→ (l, v + δ) iff (∀0 ≤ δ′ ≤ δ) v + δ′ ∈ ~Inv(l)�

– Action transitions: (l, v)
σ
−→ (l′, v′) iff (∃ϕ ∈ C(X))(∃Y ⊆ X) such that v′ = v[Y],

(l, σ, ϕ, Y, l′) ∈ R, v ∈ ~ϕ�, and v′ ∈ ~Inv(l′)�.
Hereafter, the labelled transition system G(A) is called a model.
For (l, v) ∈ Q, let (l, v) + δ denote (l, v + δ). A q0-run ρ of A is a sequence of

states: q0
δ0
−→ q0 + δ0

σ0
−→ q1

δ1
−→ q1 + δ1

σ1
−→ q2

δ2
−→ . . ., where qi ∈ Q, σi ∈

Σ and δi ∈ IR \ {0} for each i ∈ IN. A run ρ is said to be progressive iff Σi∈INδi is
unbounded.A is progressive iff all its runs are progressive. Hereafter, we consider only
progressive timed automata. The reason of such restriction comes from the fact that the
translation described in Section 2.7 works for progressive timed automata only. Note
that progressiveness can be checked as in [29].

Lemma 1. Let ϕ ∈ C(X), v ∈ �X , and δ ∈ �. If v ∈ ~ϕ� and v + δ ∈ ~ϕ�, then for each
(0 ≤ δ′ ≤ δ) v + δ′ ∈ ~ϕ�.

Proof. Straightforward by induction on clock constraints.

As the above lemma shows, for the considered set of clock constraints C(X), in the
semantics of timed automata the condition of a time transition (l, v)

δ
−→ (l, v+ δ) can be

replaced by the following: v ∈ ~ϕ� and v + δ ∈ ~ϕ�.

2.3 Time Computation Tree Logic

In this section, we formally present a syntax and semantics of Time Computation Tree
Logic (TCTL) [1], which is a branching time temporal logic with bounded operators,
and interpreted over a dense domain.

Syntax. Let PV be a set of propositional variables containing the symbol > (denoting
the constant “true”), and I an interval in IR with integer bounds of the form [n, n′],
[n, n′), (n, n′], (n, n′), (n,∞), and [n,∞), for n, n′ ∈ IN. For p ∈ PV, the set of TCTL
formulae F (TCT L) is defined by the following grammar:

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | E(ϕUIϕ) | E(ϕRIϕ) | A(ϕUIϕ) | A(ϕRIϕ)

The other basic operators are defined as usual: ⊥
de f
= ¬>, α → β

def
= ¬α ∨ β,

α ↔ β
def
= (α → β) ∧ (β → α), EGIϕ

de f
= E(⊥RIϕ), AGIϕ

de f
= A(⊥RIϕ), EFIϕ

de f
=

E(>UIϕ), AFIϕ
de f
= A(>UIϕ).

TECTL is a fragment of TCTL such that the temporal formulae are restricted to the
Boolean combination of E(αUIβ) and E(αRIβ) only. Similarly, TACTL is a fragment
of TCTL such that the temporal formulae are restricted to the Boolean combination of
A(αUIβ) and A(αRIβ) only.

Semantics. LetA = (Σ, L, l0,V, X, Inv,R) be a timed automaton, and G(A) = (Σ ∪�,

Q, q0, Ṽ,−→) a model forA. Moreover, let ρ = q0
δ0
−→ q0 + δ0

a0
−→ q1

δ1
−→ q1 + δ1

a1
−→

q2
δ2
−→ . . . be a run of A such that δi ∈ IR \ {0} for i ∈ IN, and let fA(q0) denote the

set of all such q0-runs of A. In order to give a semantics for TCTL, we introduce the
notation of a dense path πρ corresponding to run ρ. A dense path πρ corresponding to
ρ is a mapping from IR to a set of states Q1, such that πρ(r) = qi + δ for r = Σ i

j=0δ j + δ

with i ∈ IN and 0 ≤ δ < δi.

Definition 2 (Satisfaction). Let G(A) = (Σ ∪ �,Q, q0, Ṽ,−→) be a model, q a state,
and α a TCTL formula. The satisfaction relation |=, which indicates truth of a formula
in model G(A) at state q, is defined inductively as follows:
q |= p iff p ∈ Ṽ(q), q |= ϕ ∨ ψ iff q |= ϕ or q |= ψ,
q |= ¬p iff p < Ṽ(q), q |= ϕ ∧ ψ iff q |= ϕ and q |= ψ,
q |= E(ϕUIψ) iff (∃ ρ ∈ fA(q))(∃r ∈ I)[πρ(r) |= ψ and (∀r′ < r) πρ(r′) |= ϕ],
q |= E(ϕRIψ) iff (∃ ρ ∈ fA(q))(∀r ∈ I)[πρ(r) |= ψ or (∃r′ < r) πρ(r′) |= ϕ],
q |= A(ϕUIψ) iff (∀ ρ ∈ fA(q))(∃r ∈ I)[πρ(r) |= ψ and (∀r′ < r) πρ(r′) |= ϕ],
q |= A(ϕRIψ) iff (∀ ρ ∈ fA(q))(∀r ∈ I)[πρ(r) |= ψ or (∃r′ < r) πρ(r′) |= ϕ].

A TCTL formula ϕ is satisfiable iff there exists a model G(A) = (Σ ∪�,Q, q0, Ṽ,

−→) and a state q of G(A), such that G(A), q |= ϕ. A TCTL formula ϕ is valid in
G(A) (denoted by G(A) |= ϕ) iff G(A), q0 |= ϕ, i.e. ϕ is true at the initial state of
the model G(A); checking validity for given G(A) and ϕ is called the model checking
problem.

2.4 Bounded transition systems for timed automata

Let c be a nonnegative integer constant. By G(A, c) = (Σ ∪ [0, c],Q, q0, Ṽ,−→) we
denote the transition system for a timed automaton A which differs from the system

1 This can be done because of the assumption that δi ∈ IR \ {0}.

G(A) in the set of labels only. We shall call it the bounded transition system, or shortly
bounded model.

It can be checked that the following lemma holds.

Lemma 2. Let A be a timed automaton, ϕ a TCTL formula, and cmax the largest con-
stant appearing in ϕ and in the invariants and the guards of A. Moreover, let G(A)
be a model for A, G(A, cmax + 1) a bounded model for A, and q ∈ Q a state. Then,
G(A), q |= ϕ iff G(A, cmax + 1), q |= ϕ

In view of Lemma 2 our further considerations can be restricted to transition sys-
tems with bounded sets of time labels.

2.5 Weak region equivalence

For any t ∈ �, 〈t〉 denotes the fractional part of t and btc denotes its integral part; note
that t = btc + 〈t〉. Then, the equivalence relation �, called the weak region equivalence,
is defined over the set of all clock valuations for X. For two clock valuations u and v in
�X , u � v iff the following conditions hold:
E1. bu(x)c = bv(x)c, for all x ∈ X,
E2. 〈u(x)〉 = 0 iff 〈v(x)〉 = 0, for all x ∈ X,
E3. 〈u(x)〉 < 〈u(y)〉 iff 〈v(x)〉 < 〈v(y)〉, for all x, y ∈ X.

Notice, that the condition E3 implies the following condition:

E4. 〈u(x)〉 = 〈u(y)〉 iff 〈v(x)〉 = 〈v(y)〉, for all x, y ∈ X

Lemma 3 ([33]). Let X be a set of clocks, and u, v ∈ �X be clock valuations such that
u � v. Then for any clock constraint ϕ ∈ C(X), u ∈ ~ϕ� iff v ∈ ~ϕ�.

Lemma 4 ([33]). Let X be a set of clocks, and u, v ∈ �X be clock valuations such that
for any clock constraint ϕ ∈ C(X), u ∈ ~ϕ� iff v ∈ ~ϕ�. Then u � v.

Lemma 5. Let X be a set of clocks, and u, v ∈ �X be clock valuations such that u � v.
Then for any Y ⊆ X, u[Y] � v[Y].

Proof. Straightforward from the definitions of the involved notions.

2.6 Discretisation

Let � be a set of rational numbers, and G(A, c) a bounded model for a timed automaton
A = (Σ, L, l0,V, X, Inv,R) with n clocks. For every m ∈ �, we define Dm = {d ∈ � |
(∃k ∈ �) d · 2m = k} and Em = {e ∈ � | (∃k ∈ �) e · 2m = k ∧ e ≤ c}. Then, we choose
D =
⋃∞

m=0 Dm as the set of the discretised clock values, and E =
⋃∞

m=1 Em as the set of
labels.

Lemma 6 ([33]). For every v ∈ �X there exist u ∈ DX such that u � v.

Lemma 7 ([33]). Let v ∈ �X be a clock valuation, δ ∈ [0, c], and m ∈ �. Then for
each u ∈ DX

m such that u � v there exists δ′ ∈ Em+1 such that v + δ � u + δ′. Moreover,
u + δ′ ∈ DX

m+1.

We can now define a discretised bounded model for G(A, c). Namely, a discretised
bounded model for G(A, c) is the tuple D(A, c) = (Σ ∪ E, L × DX , (l0, v0), Ṽ,−→),
where the transition relation −→ is defined as follows:

– Time transitions: (l, v)
δ
−→ (l, v + δ) iff v ∈ ~Inv(l)� and v + δ ∈ ~Inv(l)�.

– Action transitions: (l, v)
σ
−→ (l′, v′) iff (l, v)

σ
−→ (l′, v′) in G(A, c)

It is easy to check that the following lemma holds:

Lemma 8. Let A be a timed automaton, ϕ a TCTL formula, and cmax the largest
constant appearing in ϕ and in the invariants and the guards of A. Moreover, let
G(A, cmax + 1) be a bounded model for A, D(A, cmax + 1) its discretised version, and
q ∈ Q a state. Then, G(A, cmax + 1), q |= ϕ iffD(A, cmax + 1), q |= ϕ.

2.7 Translation from TCTL to CTLy
It is well known that the model checking problem for TCTL can be translated into the
model checking problem for a fair version of CTL [1]; however, since we have assumed
that we deal with progressive timed automata only, we can define that translation to the
slightly different logic CTLy, as presented below. The main idea of that translation
consists in encoding all the time intervals appearing in the TCTL formula under con-
sideration by propositional variables.

Formally, let A = (Σ, L, l0,V, X, Inv,R) be a timed automaton, and ϕ a TCTL for-
mula. First, a new timed automaton Aϕ = (Σ′, L, l0,V′, X′, Inv,R′) is constructed by
extendingAwith: (1) a new clock y that corresponds to all the time intervals {I1, . . . , Ir}

appearing in ϕ, i.e. X′ = X∪{y}2; (2) an action σy, i.e. Σ′ = Σ∪{σy}; and (3) transitions
that are used to reset the new clock y. Namely, R′ = R ∪ {(l, σy, true, {y}, l) | l ∈ L}.
These transitions are used to start the runs over which subformulae of ϕ are checked.
Then, the set of propositional variables PV is extended to the set PV′ that is defined
as follows: PV′ = PV ∪ PVϕ ∪ {pb}, where pb is a proposition variable representing
the fact that a state is boundary, i.e. the value of at least one clock is equal to zero,
and PVϕ = {py∈Ii | Ii is a time interval in ϕ}. Next, the discretised bounded model
D(Aϕ, cmax + 1) = (Σ ∪ E, L × DX , (l0, v0), Ṽ,−→) for Aϕ and cmax (i.e. the largest
constant appearing in ϕ and in the invariants and the guards of A) is constructed,
where Ṽ : L × DX → 2PV

′

, and D(Aϕ, cmax + 1), (l, v) |= py∈Ii iff v(y) ∈ Ii, and
D(Aϕ, cmax + 1), (l, v) |= pb iff there exists x ∈ X′ such that v(x) = 0. Finally, the
TCTL formula ϕ is translated into a CTLy formula ψ = cr(ϕ) in such a way that the
model checking of ϕ over the discretised bounded model for A can be reduced to the
model checking of ψ over the discretised bounded model forAϕ.

In order to translate a TCTL formula ϕ into the corresponding CTL formula ψ we
need to modify the CTL language into CTLy by reinterpreting the next-time operator,
denoted now by Xy. This language is interpreted over discretised bounded model for
Aϕ. The modality Xy is interpreted only over the new transitions that reset the new clock
y, whereas the other operators are interpreted over all other old transitions. Formally,
for p ∈ PV′, the set of CTLy formulae F (CT Ly) is defined by the grammar:

2 One clock is sufficient to perform the bounded model checking algorithm that is proposed in
the next section; however, other model checking methods can require one clock per one time
interval appearing in the TCTL formula under consideration.

α := p | ¬p | α ∧ α | α ∨ α | Xyα | E(αUα) | E(αRα) | A(αUα) | A(αRα)

The satisfaction relation |= for CTLy formulae is defined as the corresponding satisfac-
tion relation for CTL formulae [8]. It only differs in the operator Xy, which is defined
as follows:D(Aϕ, cmax + 1), (l, v) |= Xyα iffD(Aϕ, cmax + 1), (l, v[{y}]) |= α.
The TCTL formula ϕ is translated inductively into the CTLy formula cr(ϕ) as follows:
• cr(p) = p for p ∈ PV′, • cr(¬p) = ¬cr(p) for p ∈ PV′,
• cr(α ∨ β) = cr(α) ∨ cr(β), • cr(α ∧ β) = cr(α) ∧ cr(β),
• cr(E(αUIiβ)) = Xy(E(cr(α)U(cr(β) ∧ py∈Ii ∧ (pb ∨ cr(α))))),
• cr(E(αRIiβ)) = Xy(E(cr(α)R(¬py∈Ii ∨ (cr(β) ∧ (pb ∨ cr(α)))))),
• cr(A(αUIiβ)) = Xy(A(cr(α)U(cr(β) ∧ py∈Ii ∧ (pb ∨ cr(α))))),
• cr(A(αRIiβ)) = Xy(A(cr(α)R(¬py∈Ii ∨ (cr(β) ∧ (pb ∨ cr(α)))))).

The following lemma shows that validity of the TCTL formula ϕ over the model
for A is equivalent to the validity of the corresponding CTLy formula cr(ϕ) over the
discretised bounded model forAϕ with the extended valuation function.

Lemma 9. G(A) |= ϕ iffD(Aϕ, cmax + 1) |= cr(ϕ), for each TCTL formula ϕ.

Proof. The proof follows directly from Lemma on Correctness of the labelling algo-
rithm of [1], Theorem 3.1 of [33], and Lemma 2.

3 Bounded Model Checking for TECTL

LetA be a time automaton, ϕ a TECTL formula, and cmax the largest constant appearing
in ϕ, in the invariants and in the guards. In order to perform bounded model checking for
TECTL we proceed by extending the technique employed for TCTL and diagonal-free
automata [26, 23]. Namely, we first translate the model checking problem from TECTL
into that problem for ECTLy as in Section 2.7, and then we define BMC for ECTLy.

3.1 BMC for ECTLy.

Consider an ECTLy formula ψ = cr(ϕ), where ϕ is a TECTL formula, a discretised
bounded model D(Aϕ, cmax + 1) = (Σ ∪ E, L × DX , (l0, v0), Ṽ,−→), and a bound k ∈
IN+. The main idea of BMC for ECTLy consists in translating the model checking
problem of an ECTLy formula into the problem of satisfiability of a propositional
formula [D(Aϕ, cmax + 1), ψ]k = [D(Aϕ, cmax + 1)ψ,(l

0,v0)]k ∧ [ψ]0,0
k . The translation is

based on k−bounded semantics for ECTLy, which is defined as follows.
Let us denote by→A the part of −→, where transitions are labelled with elements of

Σ∪E, and by→y the transitions that reset the clock y. Then, a path π inD(Aϕ, cmax + 1)
is a sequence (s0, s1, . . .) of states such that si →A si+1 for each i ∈ IN. A path of length k
is called k−path, and the set of all the k-paths starting at s inD(Aϕ, cmax + 1) is denoted
by Πk(s). Furthermore, let α, β be ECTLy subformulae of ψ, k ∈ IN+ be a bound.
Then, (D(Aϕ, cmax + 1), k), s |= α denotes that α is true at the state s ofD(Aϕ, cmax + 1)
with the bound k. (D(Aϕ, cmax + 1), k) is omitted if it is clear from the context. The
satisfaction relation |= is defined inductively as follows:

s |= p iff p ∈ Ṽ(s), s |= α ∨ β iff s |= α or s |= β,
s |= ¬p iff p < Ṽ(s), s |= α ∧ β iff s |= α and s |= β,

s |= Xyα iff ∃s′ ∈ L × DX (s→y s′ and s′ |= α),
s |= E(αUβ) iff (∃π ∈ Πk(s))(∃0 ≤ j ≤ k)(π(j) |= β and (∀0 ≤ i < j)π(i) |= α),
s |= E(αRβ) iff (∃π ∈ Πk(s))(∃0≤ j≤k)(π(j) |= α and (∀0 ≤ i ≤ j) π(i) |= β)

or (∀0 ≤ j ≤ k) π(j) |= β and (∃0 ≤ i ≤ k)(π(k)→A π(i)).
The first conjunct of [D(Aϕ, cmax + 1), ψ]k represents all the possible submodels of

D(Aϕ, cmax + 1) that consist of fk(ψ) k−paths ofD(Aϕ, cmax + 1). The function fk gives
a bound for the number of k-paths in the submodel Mk ofD(Aϕ, cmax + 1) such that the
validity of ψ in Mk (i.e. validity in D(Aϕ, cmax + 1) with the bound k) is equivalent to
the validity of ψ inD(Aϕ, cmax + 1). The function fk : F (ECT Ly)→ IN is defined by:
• fk(p) = fk(¬p) = 0, where p ∈ PV, • fk(Xyα) = fk(α),
• fk(α ∨ β) = max{ fk(α), fk(β)}, • fk(α ∧ β) = fk(α) + fk(β),
• fk(E(αUβ)) = k · fk(α) + fk(β) + 1, • fk(E(αRβ)) = k · fk(β) + fk(α) + 1,

The second conjunct of [D(Aϕ, cmax + 1), ψ]k encodes a number of constraints that
must be satisfied on the submodel Mk of D(Aϕ, cmax + 1), which consists of all the k-
paths ofD(Aϕ, cmax + 1), for ψ to be satisfied. Once this translation is defined, checking
satisfiability of an ECTLy formula can be done by means of a SAT-checker.

Let us assume that each state s of the discretised bounded model D(Aϕ, cmax + 1)
is encoded by a bit-vector whose length, say b, depends on the number of locations, the
number of clocks, the discretisation step, and cmax. So, each state s of D(Aϕ, cmax + 1)
can be represented by a vector w = (w[1], . . . , w[b]) (called a global state variable),
where each w[i] is a propositional variable for i = 1, . . . , b. A finite sequence (w0, . . . , wk)
of global state variables is called a symbolic k-path3. Moreover, we assume familiarity
with basic BMC contributions; namely the definitions of propositional formulae Is(w),
p(w), H(w, w′), R(w, w′), and Ry(w, w′) as defined in [26, 23].

The propositional formula [D(Aϕ, cmax + 1), ψ]k is defined over a global state vari-
able wn,m, for 0 ≤ m ≤ k and 1 ≤ n ≤ fk(ψ) + r4; note that the index n denotes the
number of a symbolic path, whereas the index m the position at that path. The formal
definition of its first conjunct is the following:

[D(Aϕ, cmax + 1)ψ,(l
0,v0)]k := I(l0,v0)(w0, fk(ψ)+1) ∧

fk(ψ)∧

n=1

k−1∧

m=0

R(wm,n, wm+1,n)

The second conjunct of [D(Aϕ, cmax + 1), ψ]k, i.e. the formula [ψ][0,0]
k is defined as fol-

lows:
[p][m,n]

k := p(wm,n), [α ∧ β][m,n]
k := [α][m,n]

k ∧ [β][m,n]
k ,

[¬p][m,n]
k := ¬p(wm,n), [α ∨ β][m,n]

k := [α][m,n]
k ∨ [β][m,n]

k ,

3 In general we shall need to consider not just one but a number of symbolic k-paths. This
number depends on the formula ψ under investigation, and it is returned as the value fk(ψ) of
the function fk.

4 Recall that r is the number of the non-trivial intervals in ϕ, where ψ = cr(ϕ).

[E(αUβ)][m,n]
k :=

∨ fk(ψ)
i=1 (H(wm,n, w0,i) ∧

∨k
j=0([β][j,i]

k ∧
∧ j−1

l=0 [α][l,i]
k)),

[E(αRβ)][m,n]
k :=

∨ fk(ψ)
i=1 (H(wm,n, w0,i) ∧ (

∨k
j=0([α][j,i]

k ∧
∧ j

l=0[β][l,i]
k)

∨
∧k

j=0[β][j,i]
k ∧

∨k
l=0 R(wk,i, wl,i))),

[Xyα][m,n]
k :=

∨r
j=1(Ry(wm,n, w0, fk(ψ)+ j) ∧ [α][0, fk(ψ)+ j]

k).

Theorem 1. LetD(Aϕ, cmax + 1) be a discretised bounded model, and ψ an
ECTLy formula. Then,D(Aϕ, cmax + 1) |= ψ iff there exists k ∈ IN+ such that
[ψ]0,0

k ∧ [D(Aϕ, cmax + 1)ψ,(l
0,v0)]k is satisfiable.

3.2 Experimental results

0

idle1

1

trying1

2

waiting1

3

critical1

start1, {x1, x2} setx1, {x2} enter1, x1 − x2 < A ∧ x2 > B

setx01

0

idle2

1

trying2

2

waiting2

3

critical2

start2, {x3, x4} setx2, {x4} enter2, x3 − x4 < A ∧ x4 > B

setx02

1

enter1

setx1

0

start1

start2

2

enter2

setx2
setx1

setx01

setx2

setx02

setx2

setx1

Fig. 1. A network of timed automata for a modified Fischer mutual exclusion protocol for n = 2

The new BMC algorithm presented in the paper has been implemented in the pro-
gramming language C++, and some preliminary experiments has been performed. We
have done this on the computer equipped with the processor AMD Athlon XP 1800
(1544 MHz), 768 MB main memory, and the operating system Linux.

As a real time system to be model checked we have taken a modified Fischer
mutual-exclusion protocol (MUTEX) [33] that provides the network of timed automata
with diagonal constraints. That protocol behaves in the same way as the Fischer mutual-
exclusion protocol described in [29], and it is modelled by a net that is shown in Fig-
ure 1 and consists of n timed automata, each one modelling a process, together with
one timed automaton modelling the global variable X, used to coordinate the processes’

access to the protocol. The global system is obtained as the parallel composition of the
components.

The preservation of mutual exclusion depends on the time-delay constants A and
B, i.e. on their relative values; in particular, the following holds: “The Fischer protocol
ensures mutual exclusion iff B < A”. So, we decided to test that protocol for satisfying of
the following utility property: “if A ≤ B, then the mutual exclusion property is violated”.
This property is given by the following TECTL formula:

ψ = EF[A,inf](
∨

1≤i, j≤n

(ci ∧ c j))

where the propositions ci and c j state that the process i (respectively j) is in its ”critical
section”.

It is easy to see that for each k > 0 the value of the function fk for the formula ψ is
equal to 1. It follows that the counterexample, if exists, can be found on one symbolic
k−path.

In Table 1 we give experimental results for the “violated” mutual exclusion property
on one symbolic k−path, and in Table 2 we show 12−path that is a witness for the
property and it was automatically generated by our tool.

BMC BerkMin
NoP variables clauses sec MB sec MB

2 21741 57704 1.1 4.1 0.4 22.5
10 96351 274136 5.8 19.0 3.4 25.3
20 201612 580772 14.3 41.4 8.7 34.3
50 597297 1740520 53.7 123.7 55.6 100.9

100 1524990 4478132 176.4 324.6 308.5 232.2
150 2789219 8225352 379.0 372.4 1447.8 257.2
200 4385319 12968252 682.2 809.9 4659.7 634.5

Table 1. Mutual exclusion violated. k = 12, A = 2 and B = 1.

4 Final Remarks

Our paper extends and improves the results of [26] and [23], where a general BMC ap-
proach for the existential fragment of TCTL and diagonal-free automata was described.
The idea of BMC is taken from the paper [5]. Timed Automata have been defined and
investigated in many papers [1, 29], but we adopt the definition given in [29]. Model
checking for TCTL was considered by several authors using different approaches: over
clock region models [1], on-the-fly [6], space-efficient [16], over minimal models [29,
13], and using SAT-methods [26, 27]. Our approach is closely related to [2] and [29],
from which we draw the idea of translating of the model checking problem for TCTL
to the model checking problem for fair-CTL.

The paper presents preliminary experimental results only, but they show that the
proposed verification method is quite efficient and worth exploring. Since the literature
for the formal verification of diagonal timed automata, does not provide any other TCTL
model checking method that works on the fragments of models under consideration, we
cannot compare our results with others.

locations clock valuations
depth P1 P2 Var x1 x2 x3 x4 y

0 0 0 0 0 0
256 0 0

256 0 0
256 0 0

256 0 0
256

1 0 0 0 3 0
256 3 0

256 3 0
256 3 0

256 3 0
256

2 1 0 0 0 0
256 0 0

256 3 0
256 3 0

256 3 0
256

3 1 0 0 2 0
256 2 0

256 5 0
256 5 0

256 5 0
256

4 1 1 0 2 0
256 2 0

256 0 0
256 0 0

256 5 0
256

5 1 1 0 2 9
256 2 9

256 0 9
256 0 9

256 5 9
256

6 2 1 1 2 18
256 0 0

256 0 18
256 0 18

256 5 18
256

7 2 1 1 4 25
256 2 7

256 2 25
256 2 25

256 7 25
256

8 3 1 1 4 50
256 2 14

256 2 50
256 2 50

256 7 50
256

9 3 1 1 4 53
256 2 17

256 2 53
256 2 53

256 7 53
256

10 3 2 2 4 106
256 2 34

256 2 106
256 0 0

256 7 106
256

11 3 2 2 7 121
256 5 49

256 5 121
256 3 15

256 10 121
256

12 3 3 2 7 242
256 5 98

256 5 242
256 3 30

256 10 242
256

Table 2. Witness

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

2. R. Alur and D. Dill. A theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal of the
ACM, 43(1):116–146, 1996.

4. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems. In
Proc. of CONCUR’98, volume 1466 of LNCS, pages 485–500. Springer-Verlag, 1998.

5. A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In Proc. of DAC’99, pages 317–320, 1999.

6. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for real-time
systems. In Proc. of RTSS’97, pages 232–243. IEEE Computer Society, 1997.

7. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers, 35(8):677–691, 1986.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

9. D. Dams, R. Gerth, B. Knaack, and R. Kuiper. Partial-order reduction techniques for real-
time model checking. In Proc. of FMICS’98, pages 157 – 169, 1998.

10. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems: Abstrac-
tions preserving ACTL∗, ECTL∗ and CTL∗. In Proc. of PROCOMET’94. Elsevier Science
Publishers, 1994.

11. C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstrac-
tions. In Proc. of TACAS’98, volume 1384 of LNCS, pages 313–329. Springer-Verlag, 1998.

12. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model check-
ing over infinite domains. In Proc. of CADE-18, volume 2392 of LNCS, pages 438–455.
Springer-Verlag, 2002.

13. P. Dembiński, W. Penczek, and A. Półrola. Automated verification of infinite state concurrent
systems: an improvement in model generation. In Proc. of PPAM’01, volume 2328 of LNCS,
pages 247–255. Springer-Verlag, 2002.

14. E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science,
chapter 16, pages 996 – 1071. Elsevier Science Publishers, 1990.

15. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System
Design, 9:105–131, 1995.

16. O. Kupferman, T. A. Henzinger, and M. Y. Vardi. A space-efficient on-the-fly algorithm for
real-time model checking. In Proc. of CONCUR’96, volume 1119 of LNCS, pages 514–529.
Springer-Verlag, 1996.

17. J. Lilius. Efficient state space search for Time Petri Nets. In Proc. of MFCS’98, volume 18
of ENTCS. Elsevier Science Publishers, 1999.

18. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
19. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In Proc.

of CAV’02, volume 2404 of LNCS, pages 250–264. Springer-Verlag, 2002.
20. P. Merlin and D. J. Farber. Recoverability of communication protocols – implication of a

theoretical study. IEEE Trans. on Communications, 24(9)(9):1036–1043, 1976.
21. F. Pagani. Partial orders and verification of real-time systems. In Proc. of FTRTFT’96,

volume 1135 of LNCS, pages 327–346. Springer-Verlag, 1996.
22. D. Peled. Partial order reduction: Linear and branching temporal logics and process algebras.

In Proc. of POMIV’96, volume 29 of ACM/AMS DIMACS Series, pages 79–88. Amer. Math.
Soc., 1996.

23. W. Penczek and A. Półrola. Specification and model checking of temporal properties in time
Petri nets and timed automata. In Proc. of ATPN’04, volume 3099 of LNCS, pages 37–76.
Springer-Verlag, 2004.

24. W. Penczek, A. Półrola, B. Woźna, and A. Zbrzezny. Bounded model checking for reach-
ability testing in time Petri nets. In Proc. of CS&P’04, volume 170 of Informatik-Berichte,
pages 124–135. Humboldt University, 2004.

25. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal frag-
ment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

26. W. Penczek, B. Woźna, and A. Zbrzezny. Towards bounded model checking for the uni-
versal fragment of TCTL. In Proc. of FTRTFT’02, volume 2469 of LNCS, pages 265–288.
Springer-Verlag, 2002.

27. S. Seshia and R. Bryant. Unbounded, fully symbolic model checking of timed automata us-
ing boolean methods. In Proc. of CAV’03, volume 2725 of LNCS, pages 154–166. Springer-
Verlag, 2003.

28. M. Sorea. Bounded model checking for Timed Automata. In Proc. of MTCS’02, volume
68(5) of ENTCS. Elsevier Science Publishers, 2002.

29. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68, 2001.

30. P. Wolper and P. Godefroid. Partial order methods for temporal verification. In Proc. of
CONCUR’93, volume 715 of LNCS, pages 233–246. Springer-Verlag, 1993.

31. B. Woźna and A. Zbrzezny. Checking ACTL∗ properties of discrete timed automata via
bounded model checking. In Proc. of FORMATS’03, volume 2791 of LNCS, pages 18–33.
Springer-Verlag, 2004.

32. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for Timed Au-
tomata via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

33. A. Zbrzezny. Sat-based reachability checking for timed automata with diagonal constraints.
Fundamenta Informaticae, 67(1-3):303–322, 2005.

