
A combination of explicit and deductive
knowledge with branching time: completeness

and decidability results?

Bożena Woźna and Alessio Lomuscio

Department of Computer Science,
University College London

Gower Street, London WC1E 6BT,
United Kingdom

email: {B.Wozna,A.Lomuscio}@cs.ucl.ac.uk

Technical report: RN/05/18
August 2005

Abstract. Logics for knowledge and time comprise logic combinations
between epistemic logic S5n for n agents and temporal logic. In this
paper we examine a logic combination of Computational Tree Logic and
an epistemic logic augmented to include an additional epistemic operator
representing explicit knowledge. We show the resulting system enjoys
the finite model property, decidability and is finitely axiomatisable. It
is further shown that the expressivity of the resulting system allows us
to represent a non-standard notion of deductive knowledge which seems
promising for applications.

1 Introduction

The use of modal logic has a long tradition in the area of epistemic logic .
In its simplest case (dating back to Hintikka [9]) one considers a system of n
agents and associates an S5 modality Ki for every agent i in the system, thereby
obtaining the system S5n. In this system, all agents can be said to be logically
omniscient and enjoy positive and negative introspection with respect to their
knowledge (which will always be true in the real world). While the system S5n

can already be seen as a (trivial) combination, or fusion [14], of S5 with itself
n times, more interesting extensions have been considered. For example one of
the systems presented in [10] is a fusion between systems S5n for knowledge and
system KD45n for belief plus interaction axioms regulating the relationship for
knowledge and belief. The system S5WDn [15] is an extension of S5n obtained
by adding the “interaction axiom”

∧n−1
i=1 ♦i¤i+1α → ¤n♦1α. Other examples

are discussed in the literature, including [16, 1]. The completeness proofs in these
works typically are based on some reasoning on the canonical model [12, 17].

? The authors acknowledge support from the EPSRC (grant GR/S49353) and the
Nuffield Foundation (grant NAL/690/G).

Because of the importance in applications, and in particular in verification,
there has been recent growing interests in combinations of temporal with epis-
temic logic. This allows for the representation of concepts such as knowledge of
one agent about a changing world, the temporal evolution of the knowledge of
agents about the knowledge of others, and other various epistemic properties
typically of interest in applications. Combinations of the epistemic system S5n

with linear logic, and branching time logic have been explored. In particular, a
variety of semantical classes (interpreted systems with perfect recall, synchronic-
ity, asynchronicity, no learning, etc.) have been defined and their axiomatisations
shown with respect to a temporal and epistemic language [18, 19]. This is of par-
ticular relevance for verification of multi-agent systems via model checking, an
area that has received some attention recently [7, 11, 20, 22–25].

While these results as a whole seem to constitute a rather mature area of
investigation, the underlying assumption there is that an S5 modality is an
adequate operator for knowledge. This is indeed the case in a variety of scenarios
(typically in communication protocols) when the properties of interests are best
captured by means of an information-theoretic concept. Of interest in these cases
is not what an agent explicitly knows but what the specifier of the system can
ascribe to the agents given the information they have at their disposal. In other
instances S5 is not a useful modality to consider, at least on its own, and weaker
forms of knowledge are called for.

A variety of weaker variants of the epistemic logic S5n (most of them inspired
by solving what is normally referred to as the “problem of logical omniscience”)
have been developed [13, 6, 4, 8] over the years. The most relevant for this paper
is the logic for implicit knowledge (i.e. modelled by S5), awareness, and explicit
knowledge presented in [4, 5]. In this work two new operators: Ai and Xi are
introduced. The former represents the information an agent has at his disposal;
its semantics is not given as in standard Kripke semantics by considering the ac-
cessible points on the basis of some accessibility relation, but simply by checking
whether the formula of which an agent is aware of is present in his local data-
base, i.e. whether the formula φ is i−local in the state in question. The latter
represents the information an agent explicitly knows, this being interpreted as
standard knowledge and awareness of that fact.

The aim of the present paper is two-fold. First, we aim to axiomatise the
concept of explicit knowledge when combined with branching time CTL on a
standard multi-agent systems semantics, and show the decidability of the result-
ing system. Second, we try and show that combinations of explicit knowledge
with branching time not only give rise to interesting axiomatisation problems,
but seem to allow to express other rather subtle epistemic concepts needed in
applications, one of them being the one of “deductive knowledge”1 formalised
below.

The rest of the paper is organised as follows. In Section 2 we present briefly
the basics of the underlying syntactical and semantical assumptions used in the

1 Our use of the term “deductive knowledge” is inspired by [21], although the focus
in this paper is different.

2

paper. Section 3 is devoted to the construction of the underlying machinery to
prove completeness and decidability, viz Hintikka structures and related con-
cepts. Sections 4 and 5 present the main results of this paper: a decidability
result and a completeness proof for the logic. We conclude in Section 6 with
some observations on alternative definitions.

2 Temporal Deductive Logic

In this section, we present syntax, semantics and some properties of Temporal
Deductive Logic (TDL), a language for branching time, and different epistemic
notions. TDL extends standard combinations of branching time epistemic lan-
guages by introducing three further epistemic modalities: awareness, explicit
knowledge, and deductive knowledge.

2.1 Syntax
Assume a set of propositional variables PV also containing the symbol > stand-
ing for true, and a set of agents AG = {1, . . . , n}, where n ∈ {1, 2, 3, . . .}. The set
WF(TDL) of well-formed TDL formulas is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | E©ϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Aiϕ | Xiϕ,

where p ∈ PV and i ∈ AG.
The above syntax extends CTL [2] with standard epistemic modality Ki as

well as operators for explicit knowledge (Xi) and awareness (Ai) as in [5]. The
formula Xiϕ is read as “agent i knows explicitly that ϕ”, the formula Aiϕ is
read as “agent i is aware of ϕ”, and Kiϕ (the standard epistemic modality) is
read as “agent i knows (implicitly) that ϕ” . We shall further use the shortcut
Diϕ to represent E(KiαUXiα). The formula Diϕ is read as “agent i may deduce
ϕ (by some computational process)”.

The remaining operators can be introduced as abbreviations in the usual
way, i.e. α ∧ β

def
= ¬(¬α ∨ ¬β), α ⇒ β

def
= ¬α ∨ β, α ⇔ β

def
= (α ⇒ β) ∧ (β ⇒ α),

A©α
def
= ¬E©¬α, E♦α

def
= E(>Uα), A♦α

def
= A(>Uα), E¤α

def
= ¬A♦¬α, A¤α

def
=

¬E♦¬α, A(αWβ)
def
= ¬E(¬αU¬β), E(αWβ)

def
= ¬A(¬αU¬β), Kiα

def
= ¬Ki(¬α).

Let ϕ and ψ be TDL formulas. We say that ψ is a sub-formula of ϕ if either
(a) ψ = ϕ; or (b) ϕ is of the form ¬α, E©α, Kiα, Xiα, Aα, or Diα, and ψ is a
sub-formula of α; or (c) ϕ is of the form α ∨ β, E(αUβ),or A(αUβ) and ψ is a
sub-formula of either α or β. The length of a TDL formula ϕ (denoted by |ϕ|) is
equal to the number of symbols appearing in ϕ.

2.2 Semantics

Traditionally, the semantics of temporal logics with epistemic operators is defined
on interpreted systems, defined in the following way [5]. Each agent i ∈ AG is
associated with a set of local states Li; the environment is associated with a set
of local states Le. An interpreted system is a tuple IS = (S, T,∼1, . . . ,∼n,V),
where S ⊆ ∏n

i=1 Li×Le is a set of global states; T ⊆ S×S is a (serial) temporal
relation on S; ∼i⊆ S × S is an (equivalence) epistemic relation for each agent
i ∈ AG defined by: s ∼i s′ iff li(s′) = li(s), where li : S → Li is a function

3

which returns the local state of agent i from a global state; V : S −→ 2PV is a
valuation function such that (∀s ∈ S) > ∈ V(s). V assigns to each state a set of
proposition variables that are assumed to be true at that state. For more details
and further explanations of the notation we refer to [5].

In order to give a semantics to TDL we extend the above definition by means
of local awareness functions, used to indicate the facts that agents are aware of.
As in [5], we do not attach any fixed interpretation to the notion of awareness,
i.e. to be aware can mean “to be able to figure out the truth”, “to be able to
compute the truth within time T”, etc.

Definition 1 (Model). Given a finite set of agents AG = {1, . . . , n}, a model
is a tuple M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An), where S, T , ∼i, and V are
defined as in the interpreted system above, and Ai : Li −→ 2WF(TDL) is an
awareness function assigning a set of formulas to each state, for each i ∈ AG.

Intuitively, Ai(li(s)) is a set of formulas that the agent i is aware of at state
s, i.e. the set of formulas for which the agent can assign a truth value to (un-
connected with the global valuation), but he does not necessarily know them.
Note that the set of formulas that the agent is aware of can be arbitrary and
may not be closed under sub-formulas. Note also that the definition of a model
is an extension of the awareness structure, introduced in [5], by a temporal re-
lation. Moreover, it restricts the standard awareness function to be defined over
local states only. A review of other restrictions, which can be placed on the set
of formulas that an agent may be aware of, and their consequences is given in
Section 6.

A path in M is an infinite sequence π = (s0, s1, . . .) of states such that
(si, si+1) ∈ T for each i ∈ IN. For a path π = (s0, s1, . . .), we take π(k) = sk. By
Π(s) we denote the set of all the paths starting at s ∈ S.

Definition 2 (Satisfaction). Let M be a model, s a state, and α, β TDL for-
mulas. The satisfaction relation |=, indicating truth of a formula in model M at
state s, is defined inductively as follows:
(M, s) |= p iff p ∈ V(s), (M, s) |= α ∧ β iff (M, s) |= α and (M, s) |= β,
(M, s) |= ¬α iff (M, s) 6|= α, (M, s) |= E©α iff (∃π ∈ Π(s))(M, π(1)) |= α,

(M, s) |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and (∀j < m)(M, π(j)) |= α],
(M, s) |= A(αUβ) iff (∀π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and (∀j < m)(M, π(j)) |= α],
(M, s) |= Kiα iff (∀s′ ∈ S) (s ∼i s′ implies (M, s′) |= α),
(M, s) |= Xiα iff (M, s) |= Kiα and (M, s) |= Aiα,
(M, s) |= Aiα iff α ∈ Ai(li(s)).

Note that since Diα is a shortcut for E(KiαUXiα), as defined on page 3, we
have that (M, s) |= Diα iff (M, s) |= E(KiαUXiα). Note also that satisfaction
for Xi can be defined simply on Ki and Ai, but we will find it convenient in
the axiomatisation to have a dedicated operator for Ai. This is in line with
[5]. Satisfaction for the Boolean and temporal operators as well as the epistemic
modalities Ki, Xi, Ai is standard. The formula Diα holds at state s in a model M
if Kiα holds at s and there exists a path starting at state s such that Xiα holds in

4

some state on that path and always earlier Kiα holds. The meaning captured here
is the one of potential deduction by the agent: the agent is able to participate in a
run (path) of the system under consideration, which leads him to the state where
he knows explicitly the fact in question. Moreover, from an external observer
point of view, the agent had enough information from the beginning of such run
to deduce the fact, i.e. he had implicit knowledge of it. The computation along
the path represents, in abstract terms, the deduction performed by the agent to
turn implicit into explicit knowledge. Note that the operator Di is introduced
to account for the process of deduction; other processes resulting in explicit
knowledge (discovery, communication, ...) are possible but are not modelled by
it. Alternative definitions of deductive knowledge are possible, and we discuss
few of them in Section 6.

Let M be a model. We say that a TDL formula ϕ is valid in M (written
M |= ϕ), if M, s |= ϕ for all states s ∈ S, and a TDL formula ϕ is satisfiable in
M , if M, s |= ϕ for some state s ∈ S. We say that a TDL formula ϕ is not valid
in M (written M 6|= ϕ), if ¬ϕ is satisfiable in M . We say that a TDL formula ϕ
is valid (written |= ϕ), if ϕ is valid in all the models M , and that ϕ is satisfiable
if it is satisfiable in some model M . In the latter case M is said to be a model for
ϕ. We say that a TDL formula ϕ is not valid (written 6|= ϕ), if there is a model
M such that M 6|= ϕ.

3 Finite Model Property for TDL

In this section we prove that the TDL language has the finite model property
(FMP). A logic has the FMP if any satisfiable formula is also satisfiable in a
finite model.

In order to establish the FMP for TDL, we follow the construction presented
in [3]. Therefore we begin with providing definitions of two auxiliary structures:
a Hintikka structure for a given TDL formula, and the quotient construction for
a given model.

Definition 3 (Hintikka structure). Let ϕ be a TDL formula, and AG =
{1, . . . , n} a set of agents. A Hintikka structure for ϕ is a tuple HS = (S, T,∼1,
. . . ,∼n,L,A1, . . . ,An) such that the elements S, T , ∼i, and Ai, for i ∈ AG,
are defined as in Definition 1, and L : S → 2WF(TDL) is a labelling function
assigning a set of formulas to each state such that ϕ ∈ L(s) for some s ∈ S.
Moreover L satisfies the following conditions:
H.1. if ¬α ∈ L(s), then α 6∈ L(s)
H.2. if ¬¬α ∈ L(s), then α ∈ L(s)
H.3. if (α ∨ β) ∈ L(s), then α ∈ L(s) or β ∈ L(s)
H.4. if ¬(α ∨ β) ∈ L(s), then ¬α ∈ L(s) and ¬β ∈ L(s)
H.5. if E(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ E©E(αUβ) ∈ L(s)
H.6. if ¬E(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ ¬E©E(αUβ) ∈ L(s)
H.7. if A(αUβ) ∈ L(s), then β ∈ L(s) or α ∧ ¬E©(¬A(αUβ)) ∈ L(s)
H.8. if ¬A(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or ¬β ∧ E©(¬A(αUβ)) ∈ L(s)
H.9. if E©α ∈ L(s), then (∃t ∈ S)((s, t) ∈ T and α ∈ L(t))

H.10. if ¬E©α ∈ L(s), then (∀t ∈ S)((s, t) ∈ T implies ¬α ∈ L(t))

5

H.11. if E(αUβ) ∈ L(s), then (∃π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))
and (∀j < n)α ∈ L(π(j)))

H.12. if A(αUβ) ∈ L(s), then (∀π ∈ Π(s))(∃n ≥ 0)(β ∈ L(π(n))
and (∀j < n)α ∈ L(π(j)))

H.13. if Kiα ∈ L(s), then α ∈ L(s)
H.14. if Kiα ∈ L(s), then (∀t ∈ S)(s ∼i t implies α ∈ L(t))
H.15. if ¬Kiα ∈ L(s), then (∃t ∈ S)(s ∼i t and ¬α ∈ L(t))
H.16. if Xiα ∈ L(s), then Kiα ∈ L(s) and Ai(α) ∈ L(s)
H.17. if ¬Xiα ∈ L(s), then ¬Kiα ∈ L(s) or ¬Aiα ∈ L(s)
H.18. if s ∼i t and s ∼i u and Kiα ∈ L(t), then Kiα ∈ L(u) and α ∈ L(u)
H.19. if Aiα ∈ L(s), then α ∈ Ai(li(s))
H.20. if ¬Aiα ∈ L(s), then α 6∈ Ai(li(s))

Note that the labelling rules are of the form ”if” and not ”if and only if”.
They provide the requirements that must be satisfied by a valid labelling (i.e.
consistent with semantics rules), but they do not require that the formulas be-
longing to L(s) form a maximal set of formulas, for any s ∈ S. This means that
there are formulas that are satisfied in a given state but they are not included in
the label of that state. As usually, we call the rules H1-H8, H13, and H16 propo-
sitional consistency rules, the rules H9, H10, H14, H15, H17, and H18−H20
local consistency rules, and the rules H11 and H12 the eventuality properties.

Let ϕ be a TDL formula, and M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An) a model
for ϕ. In order to define the quotient construction for M , an indexed equivalence
on states of the model M is defined first. Equivalent states are then identi-
fied thereby generating the quotient structure (a finite model). The equivalence
relation is defined with respect to the Fischer-Ladner closure of ϕ (denoted by
FL(ϕ)) that is defined by: FL(ϕ) = CL(ϕ)∪{¬α | α ∈ CL(ϕ)}, where CL(ϕ) is
the smallest set of formulas that contains ϕ and satisfies the following conditions:

(a). if ¬α ∈ CL(ϕ), then α ∈ CL(ϕ),
(b). if α ∨ β ∈ CL(ϕ), then α, β ∈ CL(ϕ),
(c). if E(αUβ) ∈ CL(ϕ), then α, β, E©E(αUβ) ∈ CL(ϕ),
(d). if A(αUβ) ∈ CL(ϕ), then α, β, A©A(αUβ) ∈ CL(ϕ),
(e). if E©α ∈ CL(ϕ), then α ∈ CL(ϕ),
(f). if Kiα ∈ CL(ϕ), then α ∈ CL(ϕ),
(g). if Aiα ∈ CL(ϕ), then α ∈ CL(ϕ),
(h). if Xiα ∈ CL(ϕ), then Kiα ∈ CL(ϕ) and Aiα ∈ CL(ϕ),
Observation. Note that for a given TDL formula ϕ, FL(ϕ) is the set of formulas
that are essential to establish the truth of ϕ in a model. Moreover, this set is
finite since the following lemma holds.

Lemma 1. Given a TDL formula ϕ, FL(ϕ) ≤ 2(|ϕ|+3), where FL(ϕ) denotes
the size of the set FL(ϕ).
Proof. Straightforward by induction on the length of ϕ. ¤

Lemma 2. Let ϕ be a TDL formula. Then the following holds:
(a). If M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An) is a model for ϕ, then HS = (S, T,

∼1, . . . ,∼n,L,A1, . . . ,An) with L defined by: α ∈ L(s) if α ∈ FL(ϕ) and
(M, s) |= α, for all s ∈ S, is a Hintikka structure for ϕ.

6

(b). If HS = (S, T,∼1, . . . ,∼n,L,A1, . . . ,An) is a Hintikka structure for ϕ, then
M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An) with V defined by: V(s) = L(s) ∩ PV,
for all s ∈ S, is a model for ϕ.

Proof. Straightforward by induction on the length of ϕ. ¤
The equivalence relation ↔FL(ϕ) on a set of states S in the model M is

defined as follows:

s ↔FL(ϕ) s′ if (∀α ∈ FL(ϕ))((M, s) |= α iff (M, s′) |= α)

By [s] we denote the set {w ∈ S | w ↔FL(ϕ) s}.

Definition 4 (Quotient structure). Let ϕ be a TDL formula, and M =
(S, T,∼1, . . . ,∼n,V,A1, . . . ,An) a model for ϕ. The quotient structure of M by
↔FL(ϕ) is the structure M↔F L(ϕ) = (S′, T ′,∼′1, . . . ,∼′n,L′,A′1, . . . ,A′n), where
S′ = {[s] | s ∈ S}, T ′ = {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t.
(w, w′) ∈ T}, ∼′i= {([s], [s′]) ∈ S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t. (w,w′) ∈∼i},
L′ : S′ → 2FL(ϕ) is a function defined by: L′([s]) = {α ∈ FL(ϕ) | (M, s) |= α},
A′i : l′i(S

′) → 2WF(TDL) is a function defined by: A′i(l′i([s])) =
⋃

t∈[s] Ai(li(t)),
for each agent i. l′i : S′ → 2Li is a function defined by: l′i([s]) =

⋃
t∈[s] li(t), for

i ∈ AG, returning a set of local states for agent i for a given set of global states.

Observation. Note that the set S′ is finite as it is the result of collapsing
states satisfying formulas that belong to the finite set FL(ϕ). In fact we have

S′ ≤ 2FL(ϕ). Note also that A′i is well defined. Moreover, it is easy to see that
as in the CTL case, the resulting quotient structure may not be a model. In
particular, the following lemma holds.

Lemma 3. The quotient construction does not preserve satisfiability of formulas
of the form A(αUβ), where α, β ∈ WF(TDL). In particular, there is a model M
for A(>Up) with p ∈ PV such that M↔F L(ϕ) is not a model for A(>Up).

The proof of Theorem 3.6 in [3] can easily be extended to the case of TDL.
Although the quotient structure of a given model M by ↔FL(ϕ) may not be

a model, it satisfies another important property, which allows us to view it as a
pseudo-model; it can be unwound into a proper model that can be used to show
that the TDL language has the FMP property. To make this idea precise, we
introduce the following auxiliary definitions.

A directed acyclic graph is a pair DAG = (S, T), where S is a set of states
(nodes) and T ⊆ S×S is a set of edges (a transition relation). An interior (respec-
tively frontier) node of a DAG is one which has (respectively does not have) a T -
successor. The root of a DAG is the node (if it exists) from which all other nodes
are reachable. A fragment M = (S′, T ′,∼′1, . . . ,∼′n,L′,A′1, . . . ,A′n) of a Hin-
tikka structure HS = (S, T,∼1, . . . ,∼n, L,A1, . . . ,An) is a structure such that
(S′, T ′) is a finite DAG, in which the interior nodes satisfy H1-H10 and H13-
H20, and the frontier nodes satisfy H1-H8, and H13, H16-H20. Given M =
(S, T,∼1, . . . ,∼n,L,A1, . . . ,An) and M ′ = (S′, T ′,∼′1, . . . ,∼′n,L′,A′1, . . . ,A′n),

7

we say that M is contained in M ′, and write M ⊆ M ′, if S ⊆ S′, T = T ′∩(S×S),
∼i=∼′i ∩(S × S), L = L′|S, Ai = A′i|Li.

It can be checked that the proof of Lemma 3.8 in [3] can be extended to
establish the following.

Lemma 4. Let ϕ be a TDL formula, M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An) a
model for ϕ, and M ′ = (S′, T ′,∼′1, . . . ∼′n,L′,A′1, . . . ,A′n) the quotient structure
of M by ↔FL(ϕ). Suppose A(αUβ) ∈ L′([s]) for some [s] ∈ S′. Then there is a
fragment (S′′, T ′′,∼′′1 , . . . , ∼′′n,L′′,A′′1 , . . . ,A′′n) ⊆ M ′ such that: (a) (S′′, T ′′) is
a DAG with root [s]; (b) for all the frontier nodes [t] ∈ S′′, β ∈ L′′([t]); (c) for
all the interior nodes [u] ∈ S′′, α ∈ L′′([u]).

Definition 5 (Pseudo-model). Let ϕ be a TDL formula. A pseudo-model
M = (S, T,∼1, . . . ,∼n,L,A1, . . . , Vn) for ϕ is defined in the same manner as a
Hintikka structure for ϕ in Definition 3, except that condition H12 is replaced
by the following condition H ′12: (∀s ∈ S) if A(αUβ) ∈ L(s), then there is a
fragment (S′, T ′,∼′1, . . . ,∼′n,L′,A′1, . . . ,A′n) ⊆ M such that: (a) (S′, T ′) is a
DAG with root s; (b) for all frontier nodes t ∈ S′, β ∈ L′(t); (c) for all interior
nodes u ∈ S′, α ∈ L′(u).

Lemma 5. Let ϕ be a TDL formulas, FL(ϕ) the Fischer-Ladner closure of ϕ,
M = (S, T,∼1, . . . ,∼n,V,A1, . . . ,An) a model for ϕ, and M↔F L(ϕ) =
(S′, T ′,∼′1, . . . ,∼′n,L,A′1, . . . ,A′n) the quotient structure of M by ↔FL(ϕ). Then,
M↔F L(ϕ) is a pseudo-model for ϕ.

Proof. We will consider ϕ to be of the forms A(αUβ), ¬E©α, ¬Kiα, Xiα, and
Aiα. The other cases can be proven in the similar way.
1. ϕ = A(αUβ). Let (M, s) |= A(αUβ), and A(αUβ) ∈ L([s]). By the definition

of |=, we have that (∀π ∈ Π(s))(∃n ≥ 0)[(M,π(n)) |= β and (∀j < n)
(M, π(j)) |= α]. This implies that either (M, s) |= β or (∀π ∈ Π(s))(∃n > 0)
[(M, π(n)) |= β and (∀j < n)(M,π(j)) |= α]. Thus, (M, s) |= β or (M, s) |=
α∧A©A(αUβ), which is equivalent to the fact that (M, s) |= β or (M, s) |=
α∧¬E©(¬A(αUβ)). Therefore, by the definitions of ↔FL(ϕ) and L, we have
that β ∈ L([s]) or α∧¬E©(¬A(αUβ)) ∈ L([s]). So, condition H7 is fulfilled.

2. ϕ = ¬E©α. Let (M, s) |= ¬E©α, and ¬E©α ∈ L([s]). By the definition
of |=, we have that (∀t ∈ S) if (s, t) ∈ T then (M, t) |= ¬α. Thus, by the
definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]) for all t ∈ S such that
(s, t) ∈ T . Since (s, t) ∈ T , by the definition of T ′, we have that ([s], [t]) ∈ T ′.
Therefore, we conclude that (∀[t] ∈ S′) if ([s], [t]) ∈ T ′ then ¬α ∈ L([t]). So,
condition H10 is fulfilled.

3. ϕ = A(αUβ). Let (M, s) |= A(αUβ), and A(αUβ) ∈ L([s]). By Lemma 4,
we have that there is a fragment (S′′, T ′′,∼′′1 , . . . , ∼′′n,L′′, V ′′

1 , . . . , V ′′
n) ⊆

M↔F L(ϕ) such that: (a) (S′′, T ′′) is a DAG with root [s]; (b) for all the
frontier nodes [t] ∈ S′′, β ∈ L′′([t]); (c) for all the interior nodes [u] ∈ S′′,
α ∈ L′′([u]). So, condition H ′12 is fulfilled.

4. ϕ = ¬Kiα. Let (M, s) |= ¬Kiα, and ¬Kiα ∈ L([s]). By the definition of
|=, we have that (∃t ∈ S) such that s ∼i t and (M, t) |= ¬α. Thus, by

8

the definitions of ↔FL(ϕ) and L, we have that ¬α ∈ L([t]). Therefore, by
the definition of ∼′i we conclude that ∃[t] ∈ S′ such that [s] ∼′i [t] and
¬α ∈ L([t]). So, condition H15 is fulfilled.

5. ϕ = Xiα. Let (M, s) |= Xiα, and Xiα ∈ L([s]). By the definition of |=, we
have that (M, s) |= Kiα and (M, s) |= Aiα. By the definition of ↔FL(ϕ)

and L, we have that Kiα ∈ L([s]) and Aiα ∈ L([s]). So, condition H16 is
fulfilled.

6. ϕ = Aiα. Let (M, s) |= Aiα, and Aiα ∈ L([s]). By the definition of |=,
we have that α ∈ Ai(li(s)). Since Ai(li(s)) ⊆ A′i(l′i([s])), we have that α ∈
A′i(l′i([s])). So, condition H19 is fulfilled.

¤

Theorem 1. TDL has the finite model property.

Proof. [sketch] To prove the theorem it is sufficient to show that for a given TDL
formula ϕ the following conditions are equivalent: (1) ϕ is satisfiable; (2) there
is a finite pseudo-model for ϕ; (3) there is a Hintikka structure for ϕ.

(3) ⇒ (1) follows from Lemma 2. (1) ⇒ (2) follows from Lemma 5. To prove
(2) ⇒ (3) it is enough to construct a Hintikka structure for ϕ by “unwinding”
the pseudo-model for ϕ. This can be done in the same way as is described in [3]
for the proof of Theorem 4.1. ¤

4 Decidability for TDL
Let ϕ be a TDL formula, and FL(ϕ) the Fischer-Ladner closure of ϕ. We define
∆ ⊆ FL(ϕ) to be maximal if for every formula α ∈ FL(ϕ), either α ∈ ∆ or
¬α ∈ ∆.

Theorem 2. There is an algorithm for deciding whether any TDL formula is
satisfiable.

Proof. Given a TDL formula ϕ, we construct a pseudo-model for ϕ. We proceed
as follows.
1. Build an initial pseudo-model M0 = (S0, T 0,∼0

i , . . . ,∼0
n,L0,A0

1, . . . ,A0
n) for

ϕ with the following constraints: S0 = {∆ | ∆ ⊆ FL(ϕ) and ∆ is maximal
and satisfies all the propositional consistency rules}; T 0 ⊆ S0 × S0 is the
relation such that (∆1,∆2) ∈ T 0 iff ¬E©α ∈ ∆1 implies that ¬α ∈ ∆2; for
each agent i ∈ AG, ∼0

i⊆ S0 × S0 is the relation such that (∆1, ∆2) ∈∼i iff
{α | Kiα ∈ ∆1} ⊆ ∆2; L0(∆) = ∆. Further, we assume that for each agent
i ∈ AG the set of local states Li is equal to S0. So, A0

i (∆) = {α | Aiα ∈ ∆}
for each agent i ∈ AG.
Note that the initial pseudo-model satisfies all the propositional consistency
properties; property H10 (because of the definition of T 0), property H14
(because of the definition of ∼0

i), and properties H19 and H20 (because of
the definition of A0

i).
2. Test the initial pseudo-model for fulfilment of the properties H9, H11, H ′12,

H15, H17, and H18 by repeatedly applying the following deletion rules until
no more states in the pseudo-model can be deleted.

9

(a) Delete any state which has no T 0-successors.
(b) Delete any state ∆1 ∈ S0 such that E(αUβ) ∈ ∆1 (resp. A(αUβ) ∈ ∆1)

and there does not exist a fragment M ′′ ⊆ M0 such that: (i) (S′′, T ′′) is
a DAG with root ∆1; (ii) for all frontier nodes ∆2 ∈ S′′, β ∈ ∆2; (iii)
for all interior nodes ∆3 ∈ S′′, α ∈ ∆3.

(c) Delete any state ∆1 ∈ S0 such that ¬Kiα ∈ ∆1, and ∆1 does not have
any ∼i successor ∆2 ∈ S0 with ¬α ∈ ∆2.

(d) Delete any state ∆ ∈ S0 such that ¬Xiα ∈ ∆ and Kiα ∈ ∆ and α ∈
A0

i (∆).
(e) Delete any three states ∆1, ∆2,∆3 ∈ SO such that ∆1 ∼i ∆2 and ∆1 ∼i

∆3 and Kiα ∈ ∆2 and (¬Kiα ∈ ∆3 or ¬α ∈ ∆3).
Note that this part of the algorithm must terminate, since there are only a
finite number of states in the pseudo-model.

3. Let Mf = (Sf , T f ,∼f
1 , . . . ,∼f

n,Lf ,Af
1 , . . . ,Af

n) be the final pseudo-model.
If there exists a state s ∈ Sf such that ϕ ∈ Lf (s), then ϕ is satisfiable. If
not, then ϕ is not satisfiable.
We call the algorithm above a decidability algorithm for TDL. ¤

Lemma 6. The decidability algorithm for TDL terminates. Let Mf = (Sf , T f ,

∼f
1 , . . . ,∼f

n,Lf ,Af
1 , . . . ,Af

n) be the resulting structure of the algorithm. The TDL
formula ϕ is satisfiable iff ϕ ∈ s, for some s ∈ Sf .

Proof. [sketch] Termination is obvious given that the initial set is finite. In order
to show the part right-to-left of the satisfaction property, note that either the
resulting structure is a pseudo-model for ϕ, or Sf = ∅ (this can be shown
inductively on the structure of the algorithm). Any pseudo-model for ϕ can be
extended to a model for ϕ (see the proof of Theorem 1).

Conversely, if ϕ is satisfiable, then there exists a model M such that M |= ϕ.
Let M↔F L(ϕ) = (S′, T ′,∼′1, . . . ,∼′n, L′,A′1, . . . ,A′n) be the quotient structure of
M by ↔FL(ϕ). M↔F L(ϕ) is a pseudo-model for ϕ (see the proof of Theorem 1).
So, L′ satisfies all the propositional consistency rules, the local consistency rules,
and properties H11 and H ′12. Moreover, by the definition of L′ in the quotient
structure, L′(s) is maximal with respect to FL(ϕ) for all s ∈ S′.

Let us consider the following function f : S′ → S0 that is defined by
f(s) = L′(s). It is easy to check that for T 0, and ∼0

i , defined as in step 1 of
the decidability algorithm, the following conditions hold:

1. if (s, t) ∈ T ′, then (f(s), f(t)) ∈ T 0;
Proof (via contradiction): Let (s, t) ∈ T ′ and (f(s), f(t)) 6∈ T 0. Then, by the
definition of T 0 we have that ¬E©α ∈ f(s) and α ∈ f(t). By the definition
of f , we have that ¬E©α ∈ L′(s) and α ∈ L′(t). So, by the definition of L′
in the quotient structure we have that M, s |= ¬E©α and M, t |= α, which
contradict the fact that (s, t) ∈ T ′.

2. if (s, t) ∈∼′i, then (f(s), f(t)) ∈∼0
i ;

Proof (via contradiction): Let (s, t) ∈∼′i and (f(s), f(t)) 6∈∼0
i . Then, by the

definition of ∼0
i we have that Kiα ∈ f(s) and α 6∈ f(t). By the definition

of f , we have that Kiα ∈ L′(s) and α 6∈ L′(t). So, by the definition of L′

10

in the quotient structure we have that M, s |= Kiα and M, t |= ¬α, which
contradict the fact that (s, t) ∈∼′i.

Thus, the image of M↔F L(ϕ) under f is contained in Mf , i.e. M↔F L(ϕ) ⊆ Mf . It
also can be checked that if s ∈ S′, then f(s) ∈ S0 will not be eliminated via the
step 2 of the decidability algorithm. So, in fact, f(s) ∈ Sf . This can be checked
by induction on the order in which states of S0 are eliminated. Therefore, it
follows that for some s ∈ Sf we have ϕ ∈ Lf (s).

¤

5 A Complete Axiomatic System for TDL

An axiomatic system consists of a collection of axioms and inference rules. An
axiom is a formula, and an inference rule has the form “from formulas ϕ1, . . . , ϕm

infer formula ϕ”. We say that ϕ is provable (written ` ϕ) if there is a sequence of
formulas ending with ϕ, such that each formula is either an instance of an axiom,
or follows from other provable formulas by applying an inference rule. We say
that a formula ϕ is consistent if ¬ϕ is not provable. A finite set {ϕ1, . . . , ϕm} of
formulas is consistent exactly if and only if the conjunction ϕ1 ∧ . . . ∧ ϕm of its
members is consistent, and an infinite set of formulas is consistent exactly if all
of its finite subsets are consistent. A set F of formulas is a maximal consistent
set if it is consistent and for all ϕ 6∈ F , the set F ∪{ϕ} is inconsistent. An axiom
system is said to be sound, if ` ϕ then |= ϕ. An axiom system is said to be
complete, if |= ϕ then ` ϕ.

Let i ∈ {1, . . . , n}. Consider system TDL as defined below:
PC. All substitution instances of classical tautologies.
T1. E©> T2. E©(α ∨ β) ⇔ E©α ∨ E©β
T3. E(αUβ) ⇔ β ∨ (α∧E©E(αUβ)) T4. A(αUβ) ⇔ β ∨ (α∧A©A(αUβ))
K1. (Kiα ∧ Ki(α ⇒ β)) ⇒ Kiβ K2. Kiα ⇒ α
K3. ¬Kiα ⇒ Ki¬Kiα X1. Xiα ⇔ Kiα ∧ Aiα
A1. Aiα ⇒ KiAiα A2. ¬Aiα ⇒ Ki¬Aiα
R1. From α and α ⇒ β infer β (Modus Ponens)
R2. From α infer Kiα, i = 1, . . . , n (Knowledge Generalisation)
R3. From α ⇒ β infer E©α ⇒ E©β
R4. From γ ⇒ (¬β ∧ E©γ) infer γ ⇒ ¬A(αUβ)
R5. From γ ⇒ (¬β ∧A©(γ ∨ ¬E(αUβ))) infer γ ⇒ ¬E(αUβ)

Theorem 3. The system TDL is sound and complete, i.e. |= ϕ iff ` ϕ, for any
formula ϕ ∈ WF(TDL).

Proof. Soundness can be checked inductively as standard. For completeness, it is
sufficient to show that any consistent formula is satisfiable. To do this, first we
construct a pseudo-model M = (S0, T 0,∼0

1, . . . , ∼0
n,L0,A0

1, . . . ,A0
n) for ϕ just as

in the decidability algorithm for TDL, and for each s ∈ S0 we define the formula
ψs as the conjunction of the formulas in s, i.e. ψs =

∧
α∈s α. Next, we show

that if a state s ∈ S0 is eliminated at step 2 of the decidability algorithm for
TDL, then ψs is inconsistent. Once we have shown this, we proceed as follows.

11

It can be checked by propositional reasoning that for any α ∈ FL(ϕ) we have
` α ⇔ ∨ {s | α ∈ s and

ψs is consistent} ψs. In particular, ` ϕ ⇔ ∨ {s | ϕ ∈ s and
ψs is consistent} ψs. Thus, if ϕ

is consistent, then some ψs is consistent as well. This particular s will not be
eliminated at step 2 of the decidability algorithm for TDL. Therefore, a pseudo-
model for ϕ is obtained. So, by Theorem 1, ϕ is satisfiable.

Claim (1). Let s ∈ S0 and α ∈ FL(ϕ). Then, α ∈ s iff ` ψs ⇒ α.

Proof. (’if’). Let α ∈ s. By the definition of S0, we have that any s in S0 is
maximal. Thus, ¬α 6∈ s. So, ` ψs ⇒ α.

(’only if’). Let ` ψs ⇒ α. So, since s is maximal we have that α ∈ s. ¤
Claim (2). Let i ∈ AG. If (s, t) 6∈∼i as constructed in step 1 of the decidability
algorithm for TDL, then ψt ∧ ψs is inconsistent.

Proof. Let (s, t) 6∈∼i. Then, by the definition of ∼i, we have that Kiα ∈ s and
α 6∈ t, for some α. Thus, by maximality ¬α ∈ t. So, we have ` ψs ⇒ Kiα and
` ψt ⇒ ¬α. By axiom K2 ` ψs ⇒ α. Therefore, ` (ψt ∧ ψs) ⇒ ¬α ∧ α. Hence,
ψt ∧ ψs is inconsistent. ¤
Claim (3). If (s, t) 6∈ T as constructed at step 1 of the decidability algorithm for
TDL, then ψs ∧ E©ψt is inconsistent.

Proof. Let (s, t) 6∈ T . By the definition of T we have that ¬E©α ∈ s and
α ∈ t. Therefore, we have ` ψs ⇒ ¬E©α and ` ψt ⇒ α. By R3 we have
` E©ψt ⇒ E©α. This implies that ` (ψs ∧ E©ψt) ⇒ (¬E©α ∧ E©α). Thus
` (ψs ∧ E©ψt) ⇒ ⊥, which means that ψs ∧ E©ψt is inconsistent. ¤

We now show, by induction on the structure of the decidability algorithm for
TDL, that if a state s ∈ S0 is eliminated, then ` ¬ψs.

Claim (4). If ψs is consistent, then s is not eliminated at step 2 of the decidability
algorithm for TDL.

Proof.

(a). Let E©α ∈ s and ψs be consistent. By the same reasoning as in the proof of
Claim 4(a) in [3], we conclude that s satisfies H9. So s is not eliminated.

(b). Let E(αUβ) ∈ s (resp. A(αUβ) ∈ s) and suppose s is eliminated at step 2
because H11 (resp. H ′12) is not satisfied. Then ψs is inconsistent. The proof
showing that fact is the same as the proof of Claim 4(c) (resp. Claim 4(d))
in [3].

(c). Let ¬Kiα ∈ s and ψs be consistent. Consider the set S¬α = {¬α}∪{β | Kiβ ∈
s}. We will show that S¬α is consistent. Suppose that S¬α is inconsistent.
Then, ` β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | Kiβ ∈ s} for j ∈ {1, . . . ,m}.
By rule R2 we have ` Ki((β1 ∧ . . . ∧ βm) ⇒ α). By axioms K1 and PC we
have ` (Kiβ1 ∧ . . . ∧ Kiβm) ⇒ Kiα. Since each Kiβj ∈ s for j ∈ {1, . . . ,m},
we have Kiα ∈ s. This contradicts the fact that ψs is consistent. So, S¬α is
consistent. Now, since each set of formulas can be extended to a maximal
one, we have that S¬α is contained in some maximal set t. Thus ¬α ∈ t, and
moreover, by the definition of ∼0

i in M and the definition of S¬α we have
that s ∼0

i t. Thus, s satisfies H15.

12

(d). By contradiction, let ¬Xiα ∈ s and s be eliminated at step 2.(d) (because
H17 is not satisfied). We will show that ψs is inconsistent. Since ¬Xiα ∈ s,
by Claim 1 we have that ` ψs ⇒ ¬Xiα. Since H17 fails, again by Claim 1 we
have ` ψs ⇒ Kiα ∧ Aiα. So, by axiom X1 we have ` ψs ⇒ Xiα. Therefore,
we have that ` ψs ⇒ ¬Xiα and ` ψs ⇒ Xiα. This implies that ` ψs ⇒ ⊥.
Thus, ψs is inconsistent.

¤

Claim (5). If ψs ∧ ψt ∧ ψu is consistent, then s, t and u are not eliminated at
step 2(e) of the decidability algorithm for TDL.

Proof.[By contraposition] We show that if s, t, and u are eliminated at step 2.(e)
(because H20 is not satisfied), then ψs ∧ ψt ∧ ψu is inconsistent. Let s, t, and u
be eliminated at step 2.(e). Then, we have that s ∼i t and s ∼i u and Kiα ∈ t
and either ¬Kiα ∈ u, or ¬α ∈ u. Let first assume that s ∼i t and s ∼i u and
Kiα ∈ t and ¬Kiα ∈ u. By Claim 1 we have that ` ψt ⇒ Kiα and ` ψu ⇒ ¬Kiα.
It follows that ` ψt ∧ψu ⇒ Kiα∧¬Kiα holds. This implies that ` ψt ∧ψu ⇒ ⊥.
So, ` ψs ∧ ψt ∧ ψu ⇒ ⊥ as well. Therefore ψs ∧ ψt ∧ ψu is inconsistent. The
case that s ∼i t and s ∼i u and Kiα ∈ t and ¬α ∈ u can be proven similarly.
¤
We have now shown that only states s with ψs inconsistent are eliminated. This
ends the completeness proof. ¤

6 Discussion

In the paper we have shown that the logic TDL is decidable, and can be axioma-
tised. TDL permits to express different concepts of knowledge as well as time.
In the following we briefly discuss alternative definitions of the notions defined
in TDL.

Let us first note that the semantics of explicit knowledge in TDL is defined as
in [5], with the difference that we assume the awareness function to be defined on
local states (as opposed to global states as in [5]). In other words we have that: if
s ∼i t, then Ai(li(s)) = Ai(li(t)). Although this is a special case of the definition
used in [5] we find this natural for the tasks we have in mind (communication,
security, fault-tolerance, ...), given that all the information of the agents will in
these cases be represented in their local states. Note that defining awareness on
local states forces the following two axiom schemas to be valid on TDL models:
Aiα ⇒ KiAiα and ¬Aiα ⇒ Ki¬Aiα.

Further restrictions can be imposed on the awareness function. One consists
in insisting that the function Ai maps consistent sets. If this is the case, the
formula Aiα ⇒ ¬Ai(¬α) becomes valid on TDL models. While this is a perfectly
sound assumption in some applications (for instance in the case Ai models a
consistent database), for the aims of our work it seems more natural not to
insist on this condition.

An even more crucial point is whether the local awareness functions should
be consistent among one another, whether a “hierarchy of awareness” should

13

be modelled, and whether they should at least agree with the global valuation
function. In this paper we have made no assumption about the power of different
agents; insisting this is the case is again reasonable in some scenarios but not
considered here. It should be noted that forcing consistency between any Ai and
V would make awareness and explicit knowledge collapse to the same modality.
Further, knowledge about negative facts would be impaired given that Ai would
only return propositions.

The interested reader should refer to [5] for more details. We have found
that the decidability and completeness proofs presented here can be adapted to
account for different choices on the awareness function, provided that appropriate
conditions are included in the construction of Hintikka structures.

The notion presented here of deductive knowledge is directly inspired by the
notion of algorithmic knowledge of [8, 21]. Typically, formalisms for algorithmic
knowledge are interested in the notion of the derivation algorithm used to obtain
a formula, and whether these derivations are correct and complete. The work
presented here, on the other hand, focuses on the meta-logical properties of these
notions, something not discussed, to our knowledge, in the literature.

It should be pointed out that alternative definitions of deductive knowledge
can be considered. For example: (M, s) |= D′iα iff (M, s) |= A(KiαUXiα), and
(M, s) |= D′′i α iff (M, s) |= Kiα and (M, s) |= E(>UXiα).

Both of them enjoy the same logical properties as the one proposed here.
However, the first one describes a notion of “inevitability” in the deductions
carried out by the agent. This does not seem as appropriate as the one we used,
as typically one intends to model the capability, not the certainty, of deducing
some information. The second definition does not insist on implicit knowledge
remaining true over the run while the deduction is taking place. Obviously in
this case any explicit knowledge deduced could well be unsound (in the sense of
[21]), something that cannot happen in the formalism of this paper.

We are keen to stress that all logics discussed above remain decidable. This
allows us to explore model checking methods for them. We leave this for further
work.

References

1. L. Catach. Normal multimodal logics. In T. M. Smith and G. R. Mitchell, editor,
Proc. of AAAI’88, pages 491–495, St. Paul, MN, 1988. Morgan Kaufmann.

2. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons for
branching-time temporal logic. In Proceedings of Workshop on Logic of Programs,
volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

3. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in
the temporal logic of branching time. Journal of Computer and System Sciences,
30(1):1–24, 1985.

4. R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34(1):39–76, 1988.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

14

6. R. Fagin, J. Y. Halpern, and M. Vardi. A nonstandard approach to the logical
omniscience problem. Artificial Intelligence, 79, 1995.

7. P. Gammie and R. van der Meyden. Mck: Model checking the logic of knowledge.
In Proc. of CAV’04, volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

8. J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic knowledge. In Proc. of
TARK’94, pages 255–66. Morgan Kaufmann Publishers, 1994.

9. J. Hintikka. Knowledge and Belief, An Introduction to the Logic of the Two No-
tions. Cornell University Press, Ithaca (NY) and London, 1962.

10. W. van der Hoek. Sytems for knowledge and belief. Journal of Logic and Compu-
tation, 3(2):173–195, 1993.

11. W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
Proc. of SPIN’02, 2002.

12. D. Kaplan. Review of “A semantical analysis of modal logic I: normal modal
propositional calculi”. Journal of Symbolic Logic, 31:120–122, 1966.

13. K. Konolige. A Deduction Model of Belief. Brown University Press, 1986.
14. M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal

logics. Journal of Symbolic Logic, 56(4):1469–1485, 1991.
15. A. Lomuscio, R. van der Meyden, and M. Ryan. Knowledge in multi-agent systems:

Initial configurations and broadcast. ACM Transactions of Computational Logic,
1(2), 2000.

16. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–
92, 2003.

17. D. Makinson. On some completeness theorems in modal logic. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 12:379–384, 1966.

18. R. van der Meyden. Axioms for knowledge and time in distributed systems with
perfect recall. In Proc. of LICS, pages 448–457, 1994. IEEE Computer Society
Press.

19. R. van der Meyden and K. Wong. Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica, 75(1):93–123, 2003.

20. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2003.

21. R. Pucella. Deductive Algorithmic Knowledge. In Proc. of SAIM’04, Online Pro-
ceedings: AI&M 22-2004, 2004.

22. F. Raimondi and A. Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: an algorithm and its implementation. In Proc. of AA-
MAS’04, volume II. ACM, July 2004.

23. R. van der Meyden and H. Shilov. Model checking knowledge and time in systems
with perfect recall. In Proc. of FST&TCS’99, volume 1738 of LNCS, pages 432–
445. Springer-Verlag, 1999.

24. R. van der Meyden and Kaile Su. Symbolic model checking the knowledge of the
dining cryptographers. In Proc. of CSFW ’04, pages 280 – 291. IEEE Computer
Society, 2004.

25. B. Woźna, A. Lomuscio, and W. Penczek. Bounded model checking for knowledge
over real time. In Proc. of AAMAS’05, volume I, pages 165-172. ACM, July 2005.

15

