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Abstract. Tracking people using movie sequences is not straightforward
because of the human body’s articulation and the complexity of a per-
son’s movements. In this paper we show how a person’s 3D pose can
be reconstructed by using corresponding silhouettes of video sequences
from a monocular view. Currently, a virtual avatar is used to train the
model for inferring the pose and a different avatar is used to produce
novel examples not in the training set in order to evaluate the approach.
The approach was subsequently tested using the silhouettes of a walking
person.

1 Introduction

In recent years, computer vision researchers have been interested in tracking
people in video sequences since such a capability may enable a wide variety of
applications in surveillance, entertainment, sports, computer games and even
robotics. However, the task is not easy because of the human body’s articulation
and the complexity of a person’s movements. Some work has been carried out
to track a pedestrian’s shape, for example in 2D [1]. However, instead of only
tracking a person’s 2D shape from the video frames, we aim to track a person’s
pose in 3D, which describes the movement more precisely than the 2D shapes
do.

Bowden et al and Grauman et al have attempted to achieve 2D to 3D map-
ping by combining 2D and 3D data in single or mixture models [2,6] similar to
local linear embeddings. In their approaches, 2D landmarks are labelled on the
person’s silhouette contour in each frame to represent the shape of the moving
person through an image sequence (400 points are used in Bowden’s work and
200 points are used in Grauman’s work). This approach requires an accurate
and reliable method to label each landmark at the same place of the silhouette
contour otherwise the model cannot represent the changes of the moving per-
son’s shape reliably. The landmarks should also be located on important parts of
the object, so that, for example, each anatomically important part (such as the
hands and face) will be labelled with at least one landmark point to ensure that
objects are modelled fully. Using more landmark points or even using the whole
contour can reduce the possibility of missing important parts of the object and
can also lower the requirements on landmark labelling accuracy. However, using



many landmark points is not ideal since it raises the dimension of the 2D data
dramatically and does not provide, from contour data, a concomitant increase
in the information available.

Thus, we have developed an approach based on global features of the silhou-
ette contour such as its moments which, though they might be expected to be
quite sensitive to noise and to details of the silhouette shape give us the benefit
of a compact description and avoid the difficulties of building an accurate and
reliable landmark labelling system. To achieve the goal of tracking 3D pose, we
analyse the correlation between the silhouette’s moments and the corresponding
3D pose of the body. To capture this correlation, we build a combined 2D and
3D statistical model, which can later be used to infer a moving person’s 3D pose
from a single video frame. In principle, the 3D pose may be inferred from 2D
data by calculation of the posterior distribution from the combined 2D and 3D
joint distribution. In practice, this is only straightforward when the distributions
are Gaussian and the posterior may be obtained analytically. However, we also
adjust the inferred 3D pose in order to optimise the reconstruction in case the
distributions are significantly non-Gaussian or the moments unduly sensitive to
noise and details of the silhouette shape, either of which could mean that the
algebraic prediction is not accurate.

Training the model in order to capture the correlation between the 2D image
and 3D pose requires access to both 2D image and 3D pose data. Such data could
be provided by means of a specialised motion tracking system [4]. However, in the
context of ordinary laboratory work and simple movements such as walking, it is
more convenient to use data from an avatar to train the system. Use of an avatar
gives full control over both its movement and of the virtual camera environment
with the result that it is straightforward to obtain 2D image and corresponding
3D pose data. Our aim is thus to show: (i) that an avatar can be used to train such
a system in this manner, (ii) that a few low-order nomalised central moments
may be used to capture sufficient information from the silhouette shape for a first
prediction of the 3D pose from the trained model, (iii) that the pose predicted
in this manner may be refined and corrected by using the avatar model to match
directly to the shape of the silhouette, thereby (iv) overcoming to a large extent
both the potential sensitivity of the moment features and the limitations of the
assumed Gaussian model. The accuracy of the pose reconstruction is evaluated
from simulation experiments and that of the matching from both simulated and
real data. We begin, however, in the next section, with a description of the data
representation used.

2 Data representation and Gaussian model

We represent a person’s 3D pose by the rotation of key joints, such as the root
joint, which determines the balance and the orientation of the person, the knees,
hips, elbows, shoulders etc as in Biovision’s BVH format [5]. This approach,
unlike others that represent 3D pose as a set of 3D joint locations (e.g. [6]),
gives the potential of easily applying the estimated 3D pose to other objects,



which have different physique from the one being tracked. If we suppose there
are L key joints, then the column vector

s = [xlayl,zlv oy Tiy Yiy Ziy 7xL7yvaL}T7 (1)

in which z;,1;, z; stand for the rotations of the i*" joint around the X,Y, Z axes,
will represent a person’s 3D pose. To parameterise the silhouette, instead of
using landmarks as in [2,6], we use normalised central moments 7, [8] which are
invariant to image rotation and approximately invariant to changes in viewing
distance. This is an attractive option as the moments are easily computable in
real-time on an ordinary, up to date, desktop workstation from the bounding
contour of the silhouette, S;, obtained, for example by thresholding of the image
[7]. Moreover, the moments are not dependent on the presence of particular
landmark points which may sometimes be obscured and, by focusing first on
the low-order (e.g. 279, 374 4% and 5'"order) moments, can be introduced in
a way that progressively introduces more detail of an object’s shape. However,
care must be taken in order to combat the known sensitivity of moments, even
of comparatively low order, to noise and to details of the silhouette shape. This
is one reason why, as described in section 3, after using the low-order moments
to infer the 3D pose, we use the silhouette itself to correct and refine the pose
estimates.

By definition, the zero order normalised moment is one and the first order
central moments vanish. We therefore use moments of order 2 < p+ ¢ <[ to
represent the shape of the silhouette in the image by means of the (I4+4)(1—1)/2
dimension column vector

m = [N20, 711,702, " " 777(1—1)77701]T- (2)

The vectors s and m are not in the same space and not of similar scale. Thus,
principal component analysis (PCA) [9] is applied to both data sets:

s=5+Pb,, m=m+Pybnm, (3)

where bs, § and P, are respectively the weight parameters, mean vector and
matrix of principal components of the 3D pose data set, and b,,, m and P,, are
the weight parameters, mean vector and matrix of principal components of the
silhouette moments data set. The matrices Ps and P, are respectively chosen to
contain the first ¢ and ¢, eigenvectors in each space, so as to explain a fraction
f of the variation. Typically, f = 90,95,98 or 99%. Given the weights b, and
by, for each training example, we can balance them by as suggested by Cootes
[3] and use the scaled weights b, and b,, after whitening to represent the 3D
pose and the corresponding silhouette. Training data obtained from animation
of the avatar implicitly enables us to construct the joint distribution p(s,m). In
practice, this is characterised by the means s and m and the covariance, which
is calculated in the combined space of the vectors b, and b, ,.

If we assume the joint distribution of the whitened weights b, and b, is
Gaussian, then the conditional density p(b, | b,,), which defines the distribution



of the b, given b, is also Gaussian. Moreover, the mean 5;|m and covariance
Cym of the conditional density are given by:

bs|m = Cs7mc;zlbm ; Cs\m = Cs - Cs7mcn_110m,s y (4)
where O, ! is the inverse covariance matrix of the b;n and Cj , is the t5 xt,, cross-
covariance matrix. It is important to note that, according to 4, the conditional
mean bs|’m is a function of the b,,. This means that, given a new example of

whitened PCA weights blm, the most likely corresponding 3D pose weights b;
can be estimated as the mean of the conditional density p(b, | b,,,).

3 Adjusting the 3D pose

The system described in the preceding section uses the Gaussian approach to
predict the 3D pose from image data. As we shall see from the results to be
presented in section 4, such a system performs quite well, but owing to the as-
sumption of Gaussian statistics, and the sensitivity of the moments to noise and
details of the silhouette shape, is not always accurate. In this section, the pose
estimates are refined and more accurate results obtained by using a search algo-
rithm to adjust the initial pose estimates obtained from the Gaussian assumption
to fit better to the observed image silhouette. Owing to the fact that the pose
PCA parameter space b; usually has fewer dimensions than the original space of
the joint angles, the search is carried out in the space b;. Furthermore, in PCA,
the eigenvectors of the matrix P, are sorted with respect to the magnitudes of
their variances, so successive weights contribute less to the manipulation of pose
in equation 3. This encourages us to treat each pose PCA weight separately dur-
ing the search process and starting with the most important weights will enable
us to correct the largest errors first. Adjustment of the next weight then corrects
for the next largest contribution to the remaining error and so on.

A one-dimensional golden section search [10] was carried out in this way to
adjust the PCA pose weights. For each b; obtained from the conditional mean
B;lm as described in section 2, a pose is generated using equation 3 and applied
to a virtual avatar that is similar to the moving person or target. The avatar’s
silhouette S,is then obtained by projection onto a virtual plane. The accuracy
of the match between S,, regarded as a binary image with value one inside
the silhouette and zero elsewhere, and the given target silhouette S;, similarly
encoded, was defined as:

D _QX(SGUSt—SamSt)
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The search algorithm is iterative, so when we finish the golden section search
on the last of the pose PCA weights, we return to the first and continue the pose
adjustment until the system converges (i.e. the change in Dg is small enough).
However, because at each point of the search the avatar has to be regenerated,
the computation cost rises with the number of iterations.
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4 Experiments and evaluation

Our approach was tested on a walking movement. An avatar was used to train
the model as described in sections 2. Another avatar, which had a different
physique was used to evaluate the system’s performance. We also tested our
method using the silhouettes of walking persons from the Southampton Human
ID at a Distance database [11].
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Fig. 1. (a) Examples of avatars used for training and evaluation. (b) Examples of avatar
silhouettes with added random noise at a level of 12 pixels. (¢) Examples silhouettes
from the Southampton Human ID at a Distance database.

During the training process, we placed the virtual camera in front of the
training avatar and made the avatar walk from right to left which was the same
as for the real silhouette examples from the image database as shown in figure
1. Walking sequences were collected from different orientations at 60, 70, 80,
90, 100, 110 and 120 degrees from the front view (clockwise). The moments of
the avatar’s silhouettes, together with their corresponding 3D pose information,
were collected as the training data set and were used to calculate the inverse of
the covariance matrix C;LI and the covariance Cj ,, described in section 2. These
matrices were then used in equation 4 for initial estimation of gait pose when
given a new example silhouette. Adjustments to the 3D pose were then made as
described in the section 3 to fine-tune the reconstructed pose by searching for a
better match between the silhouette of the reconstructed avatar and the given
new silhouette.

Because the data from the walking people lacks 3D pose information, eval-
uation of the accuracy of the 3D pose reconstruction was carried out using a
virtual avatar. In order to test the robustness of our method, we used a different
avatar from that used in training. The test avatar was constructed to perform
movements similar to those of the avatar in the training set, while the orienta-
tion was set at different directions from those used in the training process (at
65,75, 85,95,105 and 115 degrees, respectively).

Noise was also introduced on the test silhouettes in order to evaluate the
method’s performance in a noisy situation. Figure 1 shows some examples of
noisy silhouettes. The noise was added randomly to the avatar’s silhouette con-
tour along the normal of each contour pixel. A noise level of 12 pixels, as indicated



in figure 1 means we randomly generated a number between -12 and 12. If the
random number obtained was positive, we added this number of noise pixels
outside the silhouette contour along the direction of the contour’s normal, while
if the random number was negative, we similarly added noise pixels inside the
silhouette.
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Fig. 2. (a) The first row at the top shows the ground truth test examples, the sec-
ond row shows the reconstructed poses in a noise free situation, while the third row
shows the reconstructed poses in a noisy situation. (b) Real silhouettes (first row) and
corresponding reconstructed avatar poses (second row).

Figure 2 shows some examples of ground truth test poses and the recon-
structions obtained as described in sections 2 and 3 in both noise free and noisy
situations. There is little perceptible difference between the ground truth 3D
poses and the reconstructions and it can be seen that adding noise on the test
silhouette contour does not affect the reconstruction performance too adversely.

For each test example, the mean absolute difference (MAD) over 26 key joints
between the angles of these key joints in the reconstructed pose and their ground
truth values were used to assess the pose reconstruction performance. To do so,
we represented the estimated and ground truth orientations of each key joint
i as orthogronal matrices ¢,(i) and ¢.(i) respectively and, by solving ¢.;(i) =
qr () - ge(i) we obtained the matrix g.(¢) that would rotate g¢,(i) into ¢:(¢). The
angular difference (i) between the estimated and ground truth rotations for each
key joint ¢ may then be obtained from the fact that tr(g.(7)) = 1 + 2 cos(6(3)).



As shown in figure 3, for both noisy and noise free situation, an accuracy of
about 3 degrees mean absolute angular difference is achieved, which corresponds
approximately to 2cm if we assume the average distance between key joints is
40 cm. It can also be seen that, although the 3D pose adjustment introduced
extra errors for a few examples, the average performance is improved after the
fine-tuning of the iterative search.

Our approach was also tested on real walking people’s silhouettes provided
by the Southampton Human ID at a Distance database. For testing on the real
data, the virtual camera was set approximately the same as the real camera so
that the real silhouette and the virtual avatar’s silhouette were of the same scale.
Some examples of the test on real silhouettes are shown in figure 2.
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Fig. 3. (a) and (b) are the histograms of the angular MAD for noise free and noisy
experiments respectively. Prior to the 3D pose adjustment the MAD is 3.23 degrees for
noise free experiments and 3.28 for noisy ones, whilst after the 3D adjustment they are
reduced to 2.87 degrees and 2.82 degrees respectively. (c) and (d) are the histograms
of D, for noise free and noisy experiments respectively. The mean of D; is 0.5 in the
noise free experiment and 0.53 in the noisy experiment prior to 3D pose adjustment,
reduced to 0.31 and 0.39 respectively after 3D pose adjustment.

5 Conclusion and future work

As discussed in previous sections, by using the system described in section 2
we can estimate an avatar’s 3D pose by using information from the avatar’s



silhouette. The accuracy of the pose predicted from the conditional mean was
acceptable (i.e to within a few degrees when a test avatar was used) and we were
able to improve it by adjusting the initial estimated 3D pose to fit the silhouette.
This reduces the average reconstruction errors and, as inspection of the sequence
of reconstructed poses shows, the jitter. At present, there is no representation
of temporal coherence in our model. However we intend to introduce temporal
constraints in the future, for example, by use of a Kalman filter to eliminate the
jitter and to make the model more accurate and specific.
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