
Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 1 of 9

Technical Report Number

RN/05/13

An Efficient Octree For Interactive Large Model Visualization

João Fradinho Oliveira and Bernard Francis Buxton

June 17, 2005

University College London
Gower Street
London WC1E 6BT UK

Tel: +44 (0)20 7679 3687
Fax: +44 (0)20 7387 1397
Email: Joao.Oliveira@cs.ucl.ac.uk

Department of Computer Science

João Oliveira

Research Student

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 2 of 9

An Efficient Octree For Interactive Large Model Visualization

João Fradinho Oliveira Bernard Francis Buxton

University College London

Figure 1. This image shows an extensively edited model of the

human brain using our system. The interactive editing task

was carried out over several sessions of approximately 40

minutes to one hour each, without using secondary memory

or specialized graphics cards features. This was possible

because of our system’s novel compact data structures that

kept the model in-core, and because of its automatic

adaptation to the model’s size for a comfortable synchronous

rendering of 20-40 fps on a G4 500MGhz with an ATI 128

graphics card. The final model of 1.1 million triangles is

shown being rendered progressively with the idle function.

ABSTRACT

As main memory continues to increase in size, larger 3D

models can be loaded into memory. As these models grow in size,

in spite of continuing improvements in graphics pipelines, they
continue to present new challenges for the rendering hardware.

Solutions for decreasing the load on graphics hardware, such as

level of detail and vertex hierarchies, work well if enough main
memory is present for the model at hand.

We present a new data structure (RenderArray) that allows load
balancing with little memory overhead. The RenderArray allows

fast display of any size model that fits in main memory, by only

rendering the parts of the model that are near to the foremost
intersection point of the line of sight with the model. An octree is

used for this calculation, but in order to accommodate models near

the main memory limit, without causing the system to page, we
introduce a novel memory-friendly way of building a compact

octree that does not store triangles at leaf nodes.

The RenderArray is computed to adapt to the size complexity of

the models in order to meet a target frame rate for rendering. The

frame rate may be re-set by the user and the RenderArray
recomputed during use. Additionally, we use a standard level of

detail technique to create a low-resolution version of the model

(navigation skin), to assist navigation around the large model.

CR Categories and Subject Descriptors: E.1 [Data

Structures]: Trees; I.3.6 [Computer Graphics]: Methodology and

Techniques --- Graphics data structures and data types; I.3.8

[Computer Graphics]: Applications

Additional Keywords: mesh simplification

1 INTRODUCTION

Several algorithms have been designed to address/solve some of

the technical issues raised by massive models that inherently don’t

fit in main memory [see e.g. Lindstrom [1], Cignoni et. al [2]].

Such methods have been successful in simplifying massive

models, often by moving intermediate data structures out of core

as well [Lindstrom and Silva [3]]. More recently asynchronous

pre-fetching and caching of pre-calculated levels of detail/strips of

surface clusters/parts, has allowed fast out-of-core, view

dependent inspection of massive models [Quick-VDR; Yoon et. al

[5], TetraPuzzles; Cignoni et. al [4]].

However, as RAM increases and new random access memory

technologies are developed, there is a wealth of models1, each of

which fits in core memory that would benefit from direct raw

visualization for inspection and editing, without using secondary

memory. The balance of RAM capacity and rendering capability

on many platforms is such that these models, though they are

wholly resident in core memory, cannot be rendered at useful

frame rates for interactive use. This is particularly important if one

is carrying out an extensive edit of a model, say, over a period of

hours, or in a museum setting, with several visitors using the same

system throughout the day. Furthermore, accessing the model

from disk in order to free computational resources for rendering

frequently does not solve the problem as, until recently, out of

core view dependent systems imposed a direct refinement cost on

the rendering throughput [XFastMesh; DeCoro et. al [20]].

Asynchronous rendering and pre-fetching have now indirectly

allowed high frame rates, making visualization GPU bound

[Cignoni et. al [4]], by trading speed for visual quality. However,

it is not clear what long periods of read/write operations derived

from high quality refinement updates might do to a mechanical

hard disk in the context of intensive applications. Reliable Raid

hard disks can address this problem, but with a considerable price

tag, limiting their widespread use.

The motivation for development of the system described here

came from a request by colleagues interested in medical imaging

to carry out a significant edit (25 000 triangles had to be user

chosen and deleted) to create a mirror right hemisphere from the

left hemisphere of a human brain. The resulting model is

comprised of 1.1million triangles (Figure 1). For such an edit, we

required interactive, stable rendering rates of at least 10-20 frames

per second and surface connectivity data structures, such as edge,

1 The 8 million triangle statue model of David, previously

regarded as needing to be stored out-of-core on most platforms,

currently fits in 1.5 GB of core memory (basic flat shaded

geometry, no connectivity), with desktop machines such as Apple

Computer’s G5, and PC P4 shipping with 4 GB of main memory.

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 3 of 9

vertex-face relationships, that ultimately left no room in memory

for fast rendering data structures such as vertex hierarchies and

level of detail load balancing strategies.

Main Contribution: We present a new rendering algorithm for

interactive display of large models of millions of triangles that fit

in core memory. In the absence of main memory space for

traditional rendering acceleration data structures such as vertex

hierarchies, and more recent out of core structures such as

clustered hierarchy of progressive meshes (CHPM, [5]), or

hierarchical surface patches (TetraPuzzles, [4]), we achieve

interactive rendering rates by directly accessing the original

maximum resolution model via a compact RenderArray. This

RenderArray is a one-dimensional array of pointers to nodes at

different levels of an octree. This collection of pointers may be

regarded as the active front of a vertex hierarchy of a view

dependent system that spans the whole extent of the model. One

of the key aspects that makes CHPM and TetraPuzzles successful

is that the original scene/surface is represented as smaller

manageable clusters/surfaces, and the hierarchies are built on

these smaller structures, rather than being built at the fine

granularity of the vertex level. Like the CHPM scene

representation and the hierarchical tetrahedral volumes, our octree

represents the entire model/scene in a spatially hierarchical

manner, but our hierarchy accesses the same original resolution

geometry at all levels.

Our system is view independent in that the pointers in the

RenderArray remain the same for every frame. However, we are

interested in rendering first the triangles, which are closest to the

foremost intersection point of the line of sight with the model. To

accommodate this rendering priority, in every frame, distances to

all the octnodes to which the RenderArray points are computed

and sorted accordingly. Since sorting and computing distances for

all pointers may take appreciable computation time, an

appropriate number of pointers that can be sorted in the frame

time is created for the RenderArray.

Theoretically any large model that fits in core may be sorted in a

coarse way by means of 8 octnode pointers from the root although

in such a case, triangles from the first octnode would be rendered,

and not necessarily those closest to the foremost intersection point

of the line of sight with the model. However, our observation,

illustrated in Figure 2, 3rd column from left, is that very quickly

the octnodes start to have a spatial size granularity that allows an

approximate rendering of the closest bucket of triangles to the

foremost intersection point of the line of the sight with the centre

of the model. Furthermore, with large models, we have found that

it is feasible to use more than 8 pointers at a level in the tree

deeper than the first to allow direct access to the triangles that are

most relevant, i.e. close to the point of interest on the model, for

example, for editing. At run time the RenderArray can be

destroyed at the user’s request and be recomputed using higher or

lower octnodes in order to adjust the balance between the sorting

and rendering frame rate.

Our system does not impose any computational burden for

refinement updates because, when a user is editing a model up

close, a few thousand of the original triangles fill the entire screen,

making it unnecessary to consult a hierarchy. For assisting

navigation of the model, we can render the octnode bounding

boxes in wire frame as in previous systems [2], at the desired level

of the tree, where more depth in the tree indicates the presence of

more detailed geometry. Additionally we can render high-

resolution geometry, together with a navigation skin, that is

comprised of a very coarse level of detail of the model in

wireframe mode. Surprisingly, we have found this two level of

detail rendering methaphor to be quite useful in editing and

navigating a model.

Other Contributions: Our second contribution is the compact

octree that is generated in place, without extra temporary memory

and without storing triangles at leaf nodes. Finally, our third

contribution is that, as a side effect of the octree’s in place sorting

of the triangle order, we generate a mesh that is typically more

coherent than the original which in turn is good for mesh

streaming and compression [6]. This happens because we change

the triangle order of a mesh according to successive sorts of finer

grain regular lexicographical order of the octnodes rather than

according to the longest diagonal of the bounding box. For

example, as the first column of Figure 2 shows, the first 16128

triangles of the final octree’s root node are locally coherent and

their mutual proximity is apparent.

Advantages: Whilst we do not address massive models that

currently only fit out of core, we believe that our system has some

characteristics that make it very convenient for today and the

future, as larger models migrate in-core.

1. Large Models: We show that our visualization system

with a navigation skin, allows practical interactive

visualization of large models that fit in core (e.g 1.7-8.8

million triangles) without using traditional rendering

acceleration data structures that would not fit in core.

We tested our system with a volumetric derived surface

model of the brain, and both scanned and CAD models.

2. Runtime performance: We make no assumptions on

the graphics card used. We achieved 8 fps by

synchronous rendering in software of the 1.7 million

triangle turbine blade model, at full screen (1152x768)

without a graphics card on a G4 500.

3. Compact octree: Our in-place octree creation does not

use extra temporary memory that could cause a system

to page with large models. This can be useful in several

other applications.

4. Easy implemention: The pseudo code in Figure 3

reveals the simplicity of our in-place octree.

Paper overview: We briefly review data structures that are
related to our system in section 2 and present our system in

section 3. In section 4, we describe an extension to our system that

uses a navigation skin. Results are shown at the end of each of the
corresponding sections. In section 5, we describe the application

that motivated the design and implementation of our system.

Finally we conclude in section 6.

2 RELATED WORK

Our system addresses the need for the interactive visualization of

large models when the computational platform does not have the

memory required for traditional rendering acceleration data

structures. Whilst our non-photo realistic rendering system may be

regarded as an inspection and editing tool, it builds on existing

real-time rendering techniques.

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 4 of 9

2.1 Level of detail

Mesh simplification has been an active area of research

([7],[8],[9],[10],[11],[12]) for providing alternative, simpler

representations of complex meshes, by optimizing a range of cost

functions. Edge collapse operations are performed with increasing

cost to produce either a discrete lower resolution mesh, or a

history of collapses that can be used to transmit, or refine a mesh

at run time. In section 4, we show how a single coarse mesh (the

‘Navigation skin’) rendered in wire-frame, combined with high

resolution geometry can be an extremely useful metaphor for

navigating and editing a complex object, without the memory

overheads associated with other levels of detail or refinements.

We believe that such a metaphor is not only useful for

inspection/editing of large models, but for inspection and editing

of more complex scenes, for example, for planning off-line CG

rendering for film applications.

2.2 View dependent methods

The linear sequence of edge collapses in a level of detail

simplification can be re-organized spatially into a vertex hierarchy

(Xia et al. [13], Hoppe [14]) suitable for local

refinement/coarsening updates ideal for view dependent

rendering. Since querying individual vertex normals for view-

dependent mesh refinement could be prohibitive, Luebke et. al

[15] used view cones that represented the normal of a group of

local vertices to reduce the number of queries at each frame.

QSplat uses a hierarchy of normals stored in spheres as a more

flexible way to tackle the view query load [16]. Recently view

dependent out of core methods ([4],[5]) switch the resolution of

entire sub-surfaces or clusters, by comparing the view parameters

and stored pixel error at each element of the hierarchies. As noted

above, this aspect of managing larger blocks of data has proved

useful in our load balancing of larger or smaller octree nodes.

Correspondences and dependencies in a hierarchy can often take

significant computational time to resolve. One variant of our

system thus uses two octrees, one for the original object and the

other for the navigation skin. In this setting, one does not wish to

render parts of the navigation skin that would obstruct the high-

resolution geometry of interest that, for example, is being edited.

For this purpose, we developed a way of implicitly inferring the

correspondences between the two octrees so as to not render

obstructing parts of the navigation skin at no extra cost.

We implemented view frustum culling, but found that the user’s

changes of viewpoint were unpredictable when editing a model

and consequently caused discomforting frame rate variations.

Instead, we render only those triangles closest to the foremost

intersection point of the line of sight with the model, until we have

exhausted the rendering budget. This has the advantage that the

rendered load may be assigned a constant budget for every frame.

2.3 Out of core methods

Lindstrom used out of core quadrics with a regular grid to cluster

massive models of any size [1], Fei et. al [17] used curvature

information derived from the quadric error [18], to adaptively re-

sample the out-of-core mesh in the directions of highest curvature.

Garland and Schafer [19] used quadric information to non-

uniformly adapt a BSP tree and improve the quality of the reduced

mesh. Lindstrom and Silva [3] moved temporary data structures

out of core to make the output mesh memory insensitive, whilst

Cignoni et. al [2] used wireframe octree bounding boxes to allow

a user to select the part of the mesh to load in core. We similarly

allow the user to preview and adjust the level of the scene’s wire-

frame bounding boxes so as to enable him/her to zoom to areas of

more interest or detail. In their work, Cignoni et. al [2] also re-

label vertex indices so that they belong to a range of indices

defined in the octnode in which the vertices are contained. In

contrast, our octree reorders only the triangles and keeps track of

the number of sorted triangles within each octnode. This

reordering of the triangles can lead to a more compact mesh

suitable, for example, for streaming and compression, as

illustrated in Figure 2. Quantitatively, it compares well with the

spectral sequencing, or single axis vertex sorting of Isenberg et al.

[6]. For example, the Stanford dragon initially has a front width of

1.05%, and after our triangle re-ordering it drops to 0.58% and

compares to 0.18% (of spectral sequencing). It is fair to say that

the original dragon had some coherence already, unlike models

that are largely incoherent from the start such as the stanford

bunny at 26.22% (1.9% after our triangle re-ordering and 0.78%

with spectral sequencing). We plan to re-label our vertices, within

octnodes, for example as in Cignoni et al.[2], to improve also on

the front span of our re-ordered models.

DeCoro and Pajarola [20], presented a solution for out of core

view dependent refinement. Recently ([4],[5]) decouple rendering

from out of core fetching, a strategy which allows the graphics

card to render at full speed always what is stored in the graphics

card cache and prevents the graphics pipeline from stalling. Out of

core updates are either inserted in a priority queue and phased-in,

or are limited in scope and thus allow the rendering to be GPU

bound. Our method does not assume graphics card capabilities, so

switching the rendering context of our navigation skin to wire-

frame typically incurs a 50% frame-rate reduction. However,

since the navigation mesh is typically comprised of not much

more than a thousand triangles and the rendering budget that fills

the screen is roughly 4000 triangles, we can, for example, render

the turbine blade model in software at 1152x768 pixels on a G4

500MGhz at 8 fps. Using the graphics card at 800x600 pixels

allows rendering of the same model at an average of 35-40 fps

without the navigation skin, and half that speed with the wire-

frame skin.

2.4 Octrees

Spatial data structures such as the octree have long been useful for

tasks such as fast distance queries (see Samet [21]). The way in

which they are built, however, can affect their application and

robustness. One widely used method of octree construction in out

of core methods is first to scan all the vertices of a model one by

one to find the dimensions of the model, and then either create

files of leaf node triangles [2], or perform several external

memory sorts on vertices or on fundamental quadrics of each

octnode [3].

The classical way of creating an Octree in main memory, and

indeed of creating other space division trees such as a BSP tree,

involves creating and deleting temporary memory to reassign

triangles to child nodes. This can easily cause a system to page

when sub-dividing the root of a large scene.

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 5 of 9

Figure 2. The first column shows that the final octree root’s first 16128 triangles are locally coherent, ideal for mesh streaming (Isenberg [6]).

Bottom: 16128 rendered triangle budget of RenderArray at depths (from left: 0-5, 5, 5); top: visualization of associated octree of depth 0

to 7, left to right.

We present a new octree that does not create temporary memory

for the triangles, and does not store triangles at leaf nodes. We use

the fact that octnodes are defined uniquely in 3D space to allow

in-place sorting of the local, 1-8, lexicographical partial id-tags,

and recorded only the start and end of the triangle indices in each

octnode. Provided the partitions uniquely bound space, this idea is

easily extended to other space partition trees such as the KD-tree.

3 BASE SYSTEM

The central idea in our system is that our octree is not just used for

distance queries, but also represents the entire scene in a

hierarchical way of increasing size manageable blocks, which

become fewer in number at larger scale. In this section, we start

by describing our new way of building an octree in-place without

temporary memory, and without storing triangles at leaf nodes.

We then describe the RenderArray that, in essence, is like the

Active front across a vertex tree. The RenderArray is an array of

pointers to octnodes in the tree. At run time, the tree is queried to

find the foremost intersection point of the line of sight with the

model. For every frame, this intersection point is calculated and

the distance to all the RenderArray’s octnode corners and centres

are computed and stored. The RenderArray is sorted according to

the smallest of these distances and the rendering triangle budget is

spent on the first encountered octnodes in the RenderArray.

Finally, we describe how the RenderArray is initialized

automatically to adapt to the size complexity of the input, in-core

model, and how it can be adjusted at run time for display. We

present results obtained from the base system at the end of this

section.

3.1 Octree construction

Several octree implementations start by creating a duplicate array

or list of the chosen geometric primitive of the original model.

This array is then either reset, or destroyed as the geometry is

passed to new lists in child nodes. Unfortunately, this

characteristic can undermine algorithms that would otherwise be

robust. Our approach starts by using directly the object’s global

array of pointers to individual geometric primitives. Our root node

of the octree has two triangle index numbers, one that records the

first position of the first triangle pointer of the global array, and

the second the last position. We then proceed to find the

maximum extent of the object and to subdivide space regularly at

half distances. At each subdivision step there are three phases, a

counting phase (O(N)), a sorting phase (O(N*log(N))), and a node

creation phase (O(N)) (see Figure 3).

Phase one – counting: The first phase of the subdivision process

is to make one pass on the array of triangle pointers in the range

defined by the node’s two index numbers, and test in which of the

8 subspaces each individual triangle is contained. When we have

determined where a triangle is contained, we mark the triangle

with a number tag from 1-8 corresponding to the lexicographical

order of the subspaces. Note that Cignoni et al [2] tag vertices and

write them to leaf addresses, whereas we tag triangles and perform

in memory sorting of one-dimensional tags. At the same time, we

also keep a counter for each of the 8 subspaces and increment

them according to how many triangles were contained in each

subspace after the pass. We use the centroid of each triangle to

determine if a triangle is contained in a subspace. The subspaces

are thus unique in space.

Phase two - in place sorting of partial id: The next phase is to

sort the face pointers in the range of the node, directly in their

original data structure according to the tag given. It is important to

note that, since the child nodes are mutually exclusively contained

within the parent octnode’s 3D volume, sorting within the child

nodes does not affect the global order of the triangles with respect

to higher nodes. This triangle reordering makes the mesh more

compact and coherent [6] (Figure 2, first columns) than that of the

original maximum resolution model.

Phase three - sub node creation: In the third and final phase, we

check each counter in turn, creating new sub-nodes if the counters

were non-zero, and recursively subdividing them until either

MAXTRI, a threshold determining the maximum number of

triangles the child nodes may contain, or MAXL a maximum

depth threshold, is reached. The starting index of the first node, if

there were triangles contained in it, is the same as the starting

index of the root node, whilst the ending index of the node is the

starting index plus the number of triangles encountered in that

node. The starting index of the second node is therefore the same

as the number of triangles contained in the first node, whilst the

last index adds the number of triangles contained in the second

node to the starting index of the sub-node. The other sub-nodes

are created with the same procedure as outlined in pseudo-code in

Figure 3 below.

Subdivide(thenode)

if((level<MAXL)&(thenode->end-thenode->start>=MAXTRI))

o1count=0 o2count=0 o3count=0 o4count=0

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 6 of 9

o5count=0 o6count=0 o7count=0 o8count=0

//PHASE ONE - COUNTING

for i=thenode->start i<=thenode->end i++

onode=0

face=atFaceArray(i)

p=face->calculate_cenrtroid()

if((p.X()>=thenode->X())&(p.Y()>=thenode-

>Y())&(p.Z()<=thenode->Z()) {o1count++ onode=1}

elseif((p.X()>=thenode->X())&(p.Y()>=thenode-

>Y())&(p.Z()>thenode->Z()) {o2count++ onode=2}

elseif((p.X()<thenode->X())&(p.Y()>=thenode-

>Y())&(p.Z()<=thenode->Z()) {o3count++ onode=3}

elseif((p.X()<thenode->X())&(p.Y()>=thenode-

>Y())&(p.Z()>thenode->Z()) {o4count++ onode=4}

elseif((p.X()>=thenode->X())&(p.Y()<thenode-

>Y())&(p.Z()<=thenode->Z()) {o5count++ onode=5}

elseif((p.X()>=thenode->X())&(p.Y()<thenode-

>Y())&(p.Z()>thenode->Z()) {o6count++ onode=6}

elseif((p.X()<thenode->X())&(p.Y()<thenode-

>Y())&(p.Z()<=thenode->Z()) {o7count++ onode=7}

else/*((p.X()<thenode->X())&(p.Y()<thenode-

>Y())&(p.Z()>thenode->Z())*/{o8count++ onode=8}

if(onode!=0)

{//face->set_groupid(face->get_groupid()*10+onode)

 face->set_groupid(onode) //use above for global index

}

//PHASE TWO - SORTING

st=thenode->get_startf()

numFaces=thenode->get_endf()-thenode->get_startf()+1

sort(st, st+numFaces, groupid_compare())

//PHASE THREE - SUB NODE CREATION

tmpstart=thenode->get_startf()

if(o1count>0) {

tmp=newNODE(thenode,1,tmpstart,tmpstart+o1count-1)

thenode->set_o1(temp)

tmpstartt=tmpstart+o1count}

if(o2count>0) {

tmp=newNODE(thenode,2,tmpstart,tmpstart+o2count-1)

thenode->set_o2(temp)

tmpstartt=tempstart+o2count}

- - -

// subdivide further

if(thenode->get_o1()!=0)

{level++ subdivide(thenode->get_o1() level--}

if(thenode->get_o2()!=0)

{level++ subdivide(thenode->get_o2() level--}

- - -

end for

end if

end

Figure 3. Pseudo code for the octree construction step.

3.2 RenderArray

Once the scene has been represented hierarchically in the octree,

we can build an analogous structure for the active front of a vertex

tree, with the appropriate number of nodes that we can sort and to

which we can compute distances within a preset time. The default

for this time has been set to 0.1s.

The RenderArray essentially consists of an array of pointers to

octnodes with a variable RMAXTRI, similar to the threshold

MAXTRI used in the octree construction phase described in the

previous subsection. The RenderArray is created by checking the

triangle index range of the rootnode. If there are more triangles

than RMAXTRI, then we don’t store this node pointer in our

RenderArray, we access the sub-nodes instead and insert a node in

the array only when the range is less than or equal to RMAXTRI.

Initially, RMAXTRI is set to the same value as MAXTRI so that

the resulting RenderArray will have as many elements as there are

leaf nodes.

3.3 Initialization

As mentioned above, the system initially defaults RMAXTRI to

the threshold MAXTRI used in the octree at start-up time. It then

times how long it takes to complete one pass of computing

distances of the RenderArray node corners and centres to a 3D

point, and to sort the RenderArray according to the smallest of

these distances. If the system takes more than a default time of

0.1s, the system destroys the RenderArray and creates a new one

by repeating the process described in section 3.2 with RMAXTRI

increased by a factor of ten so as to have fewer nodes to which to

compute distances and to sort. The effect of this adjustment may

be seen from Table 1, where it corresponds to moving one row

down the Table.

An interesting observation can also be made from Figure 2. In the

first left image in the upper row, the RenderArray depth is 0 and

the number of nodes to be sorted and for which we have to

compute distances is just 1, so the triangle budget is spent on the

first triangles of the RenderArray (in this case the rootnode).

These triangles are clearly far away from the foremost intersection

point of the line of sight with the model, and rendering them is

like rendering the first triangles of any un-organized triangle soup,

although our mesh gains coherence through the triangle reordering

during the octree construction phase. As we increase the depth of

the RenderArray, by dividing RMAXTRI by ten, we have more

nodes to sort and for which we have to compute distances, but the

triangle budget is spent on nodes that are closer to the line of sight

intersection point, as may be seen in the second image from left in

the upper row of Figure 2. Increasing the depth of the

RenderArray from depth 4 to 5 adds little visual benefit, whilst

adding more computation. At depth 4, the triangle budget is

already spent mostly near the foremost intersection point of the

line of sight with the model.

3.4 Display

Once this RenderArray has been created, it is retained and used

for rendering all frames, unless the user chooses to make a smaller

or larger RenderArray, by changing RMAXTRI by multiples of

ten. For each frame being rendered, we first determine the

foremost intersection point of the line of sight with the model

using the octree. Whilst traversing the octree, we use the fast ray

rejection test defined by Xu et al. [22] to quickly reject finding an

intersection point with an irrelevant octnode. A ray is likely to

intersect more than one octnode, and more than one triangle in the

model, so we keep track of the smallest positive distance from the

viewer’s position defining the start of the ray and each of the

planes defined by the bounding box of the octnodes. This allows

one to navigate within a volume. Once the relevant octnode is

found, we intersect the ray with the geometry at that node, to find

the intersection point.

Once we have determined the foremost intersection point of the

line sight, we compute the distance of this point to the 8 corners of

each nodes pointed to in the RenderArray. In addition, we also

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 7 of 9

compute the distance to the centres of these nodes, and store the

smallest of these 9 distances in each node of the RenderArray.

Finally, we sort the RenderArray according to the distances stored

and render a triangle budget set by the user, by first rendering

every triangle in the first RenderArray node, and so on for sub-

nodes. Finally, to help the user have an idea where the un-

rendered parts of the model are, the system can render the

bounding boxes of the octree nodes, at the depth set by the user.

3.5 Results

All the results from this paper were obtained using a 500MHz

PowerBookG4, with 1 GB of main memory.

We note that frequently when editing a model the user does not

move around the model very much. The distance calculations and

sorting order thus remain almost constant, which is ideal for

constant frame-rate editing. This constant property is also useful

to enable us to compare different fill-rate capabilities of different

graphics cards, as the only variable is then the number of pixels to

be rasterized according to the distance from the viewer to the

model. In contrast, if the user pulls-back from a model and a

visibility culling algorithm were used, this would very likely

affect the number of elements to be processed. We also note that

in our experiments, in which we achieved high frame rates (48fps)

by consistently rendering a budget of 4500 triangles, this number

of triangles filled a considerable viewing area as illustrated in

Figure 4 (left image).

We also found that the bounding boxes or contours of the nodes

can help the user navigate to regions of interest by moving to

areas in the model that look more subdivided. These additional

boxes do not need to be rendered to great depths in the octree

whilst the user is changing viewpoint. We found this feature quite

useful in the context of navigating the hierarchical model of a

power plant (see Figure 5).

Finally we implemented an idle function that can be switched on

or off at the user’s discretion. This function increases the triangle

rendering budget gradually if the viewpoint is not changing. This

was again, very useful, for example, when we were navigating the

brain model (see Figure 1).

Figure 4. left: Editing the turbine blade model. 4694 triangles out

of 1.7x10
6
triangles are being rendered at render depth 3. The

RenderArray is sorting 485 nodes in 0.0015seconds at 48 fps.

right: Navigation skin rendering of the created 1.1 million

triangle brain model. ~5000 triangles are being rendered at

render depth 3, with the OpenGL wireframe context switch

approximately halving the rendering speed to 22 fps.

Figure 5. Inspection of a power plant model. 28874 triangles out

of 556,374

triangles are being rendered at render depth 3, the

RenderArray is sorting 1755 nodes in 0.0058 seconds, and

the wire frame bounding boxes have been temporarily

rendered at a greater depth to locate detailed geometry that

may be of interest. The bounding-box rendering depth is

reduced prior to changing the viewpoint.

Model brain

(left)

turbine

blade

power

plant

Budd

ha

#triangles 596872 1.7x106 556374 1x106

octree depth 7 8 15 10

Octree mem. 1.4Mb 3.8Mb 1.4Mb 2.4Mb

Construct time 11.4 43.2 14.5 24.8

RMAXTRI 100

#nodes

memory

time

20814

83k

0.11538

51734

206k

0.296

18464

73k

0.09

32518

130k

0.16

1000 2708

10k

0.0114

5961

23k

0.0265

1755

7k

0.0058

3596

14k

0.001

10000 251

1k

0.00073

485

1.9k

0.0015

240

0.9k

0.0007

347

1.3k

0.001

100000 8

32bytes

4.8e-5

65

260byt.

0.0001

8

32byt.

4.7e-5

15

60byt.

5.7e-5

1000000 1

4bytes

2.8e-5

8

32bytes

4.5e-5

1

4bytes

2.7e-5

8

32byt.

4.4e-5

10000000

-

1

4bytes

2.5e-5

-

1

4bytes

2.5e-5

Table 1. Memory and timings (s) for the octree and different

Renderarrays (rows) at depth 0 (bottom) to 5 (top). An RMAXTRI

of 100 is equal to the MAXTRI used in the octree construction. At

this value, the Renderarray has the same number of elements as

leaf nodes and, for the larger models, takes longer to sort than the

default target of 0.1s. This is detected at start-up and a new

Renderarray at depth 4 with RMAXTRI = 1000 is built. At run-time

the user can chose to destroy and create a new Renderarray, for

example at depth 3, in order to obtain a faster rendering time as

shown in Figure 4.

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 8 of 9

4 NAVIGATION SKIN

In the previous section, we presented the simple solution of

drawing the contours of the octree nodes, at different depths of the

octree, as a way of giving the user an idea of the extent of the

object, and to help him/her navigate to areas of detailed geometry.

In order to give the user a more faithful impression of the extent

of the object in space, we have created an extension of the

previous octree, by creating a dual octree that keeps track of an

approximate, discrete low-level of detail ‘skin’. To create this

skin, we used a standard high quality level of detail technique

[12]. Whilst we note that keeping track of the correspondence

between the maximum resolution model and the navigation skin

could be potentially useful, for example, as one way of ensuring

that the navigation skin does not obscure the high resolution

model, in practice we found that a coarse wire-frame does not get

in the way of the editing, because of the different rendering style.

Thus, we just render the one RenderArray of the high-resolution

model and render the coarse mesh over it in wireframe.

4.1 Dual Octree construction

In this case, we use the strategy described in Section 3.1 to create

two octrees, one for the high-resolution model, the other only for

the coarse skin. Since the skins have only approximately 1000

triangles, we create the skin octree with MAXTRI set to 1.

4.2 Dual RenderArray

We construct two Renderarrays, one for each octree, as described

in Section 3.2.. Table 2 shows the additional computer resources

needed in this approach.

4.3 Display

The rendering is slightly different when the navigation skin is

used. Since both models are in the same space, we infer a

correspondence between the low level of detail skin and the high-

resolution model from the relationship between the two octrees

and thus do not render from the first node of the sorted

RenderArray associated with the skin. The user can, if desired,

adjust the depth of the RenderArray associated with the skin so as

to have control of the granularity of overlapping areas. The default

depth is 0. However, in practice we chose to just render the

navigation skin as one display list.

4.4 Results

If we use the dual octree, and dual RenderArray, sorting the extra

small RenderArray for the skin adds a small cost in computation.

In practice, we use just one octree and RenderArray by rendering

the navigation skin over it in wire-frame as described above. In

this setting, switching the mode to wireframe slows the rendering

by ~50% when compared to the speed of the base system which

does not display the navigation skin. Thus, we achieved 8 fps by

synchronous rendering in software of the 1.7 million triangle

turbine blade model with a navigation skin, at full screen

(1152x768) without a graphics card on a G4 500 (Figure 6).

Figure 6. Navigation skin rendering of large models, from left:

turbine blade, Buddha statue, Stanford Dragon.

Model turbine Buddha

#triangles 1351 1480

RMAXTRI 1

#nodes

time (s)

1351

0.005576

1480

0.0059

RMAXTRI

10

406

0.0016

391

0.049

RMAXTRI

100

55

0.0002

40

0.0002

RMAXTRI

1000

8

0.00013

8

6.9e-5

RMAXTRI

10000

1

8.6e-5

1

4.4e-5

Table 2. Additional memory and times to those shown in Table 1

associated with the navigation skin for different Renderarrays,

from depth 0 (bottom) to 4 (top).

5 APPLICATION OF OUR SYSTEM: EDITING THE BRAIN

The model of the brain whose editing led to development of the

system described in this paper was created using a surface

reconstruction tool called FreeSurfer (see Fischl et. al [25]) on an

MRI scan. The scan was acquired using 2 MP-RAGE scans (8.5

minutes/scan) motion corrected and averaged, collected on a

Siemens 1.5T Sonata.

Figure 7. Topological constraints

The model of the brain presented to us consisted of a left

hemisphere, with a white matter surface together with a grey

matter surface closely following the white matter, but exterior to it

(see Figure 7, left). A full, symmetrical model of the brain was

required as a triangulated surface as the starting point for several

other parameterised and smoother representations to be utilised in

an optical tomography system (Zacharoupoulos et. al [24]). The

grey and white matter surfaces had together 596872 triangles. In

Tech Report - RN/05/13 - An Efficient Octree For Interactive Large Model Visualization - © João Oliveira and Bernard Buxton

Department of Computer Science, University College London, page 9 of 9

order to build a symmetrical right hemisphere, whilst keeping the

same topological genus, the following steps were taken: a) Images

such as the one in Figure 7 (middle) were used to plan the

perimeter of the area to be removed from the side of the grey

matter. b) The resulting hole boundary was extruded into the yz

plane of the mirror (see red triangles, Figure 7, right), and the

model mirrored on this plane.c) The vertices on the yz plane were

re-used on the right hand side, keeping the mesh connected. In

practice, these steps were more easily performed first on the white

matter (see extruded triangles in blue passing through the grey

matter, Figure 7, right). Then, on the grey matter, we selected red

triangles around the dark blue extrusion. In total 25,781 triangles

had to be selected and removed, subject to the constraints of non-

self intersection, nor intersection between the two surfaces. In

addition, features such as deep chasms on either individual surface

required careful 3D inspection planning (Figure 7, right). The end

result can be seen in Figure 1, & Figure 4 right).

5.1 Editing

The algorithm we used to select triangles for editing represents a

ray as two non-parallel planes passing through the origin as

defined by Xu et al. [22]. Although the triangle picking algorithm

is fast, selecting thousands of triangles by hand would be quite

time consuming and prone to error. To assist the user, we created

the following tools i) a selection tool that allows the user to define

a radius threshold which is used to tag and show as highlighted all

triangles connected to a selected triangle to the depth set in a

breadth first traversal of the connected geometry, ii) a purge

button that enables the user to de-select small triangle groups and

to retain only the largest connected group of tagged triangles, iii)

an undo select button. We found these tools very useful. In

particular, i) was used with large radius thresholds to select

triangles that were otherwise difficult to access, and a radius

threshold of 10000 was used to select all the triangles inside the

perimeter of the areas to be removed from the side of the model.

6 CONCLUSIONS

We have introduced a memory-friendly octree generated in place
and without storing triangles at leaf nodes. This representation

proves to be very useful for representing a scene in hierarchically

manageable parts and has been incorporated in a system that
automatically adjusts to the size complexity of the input mesh in

order to display at a regular frame-rate the part of the model of

interest, for example in an interactive editing task. Like other
hierarchical scene representations that use graph-partitioning

algorithms [5], to create equal triangle size parts, we can’t always

guarantee that our octnodes are at the same depth for the line of
sight intersection. In practice, the observed frame rate variation

was no more than 5-8 fps, at frame rates above 20. Such a

variation does not disturb the user’s performance of a task such as
editing [23]. The way we created the octree changes the triangle

ordering with the beneficial side effect of making the mesh more

coherent. To further improve mesh coherence, we plan to use the
octnode ids to re-label the vertex indices as in [2]. Rendering one

coarse level of detail in wire-frame together with a shaded high-

resolution, variable size portion of a model, has proved to be an
invaluable metaphor for navigating a mesh where multiple levels

of detail can’t be stored, even though the resulting display-mode

context switches reduce the achievable frame-rate by about 50%.

Acknowledgements: We would like to acknowledge Matti

Hämäläinen & Bruce Fischl for providing the brain model. Simon

Arridge & Athanasios Zacharopoulos for originating this project.

Stanford University for the happy Buddha statue & dragon model.

As-Built Solutions, for the power plant model. GE Aircraft

Engines for the turbine blade model. In addition, we would like to

thank Fundação Calouste Gulbenkian, Ministério da Ciência e

Tecnologia JNICT/PRAXIS XXI, & ALFAMICRO for financial

support. Peter Lindstrom and Martin Isenberg for stream data.

REFERERNCE

[1] Peter Lindstrom. Out-of-Core Simplification of Large Polygonal

Models. In SIGGRAPH 00 Proc., 259-262, 2000.

[2] Paolo Cignoni and Claudio Rocchini and Claudio Montani and

Roberto Scopigno. External Memory Management and

Simplification of Huge Meshes. In IEEE Transactions on

Visualization and Computer Graphics, 9(4), 525-537, 2003.

[3] Peter Lindstrom, and Claudio Silva. A memory insensitive technique

for large model simplification. In IEEE Visualization '01, 121-126.

[4] Paolo Cignoni and Fabio Ganovelli and Enrico Gobbetti and Fabio

Marton and Federico Ponchio and Roberto Scopigno. Adaptive

TetraPuzzles: Efficient Out-of-core Construction and Visualization

of Gigantic Polygonal Models. In SIGGRAPH 04 Proc., 2004.

[5] Sung-Eui Yoon and Brian Saloman and Russel Gayle and Dinesh

Manocha. Quick-VDR: Interactive View Dependent Rendering of

Massive Models. In IEEE Visualization '04, 2004.

[6] Martin Isenberg and Peter Lindstrom. Streaming Meshes, 2004.

[7] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.

Decimation of triangle meshes. In SIGGRAPH 92, 65-70.

[8] André Guéziec. Surface simplification inside a tolerance volume.

Technical report, IBM Research Report RC 20440, 1996.

[9] Hugues Hoppe. Progressive Meshes. In SIGGRAPH 96, 99-108.

[10] Jonathan Cohen and Amitabh Varshney and Dinesh Manocha and

Greg Turk and Hans Weber and Pankaj Agarwal and Frederick

Brooks and William Wright. Simplification Envelopes. In

SIGGRAPH 96 Proc., 119-128, 1996.

[11] Michael Garland and Paul S. Heckbert. Surface simplification using

quadric error metrics. In SIGGRAPH 97 Proc., 209-216, 1997.

[12] Peter Lindstrom and Greg Turk. Fast and Memory Efficient

Polygonal Simplification. In IEEE Visualization 98, 279-286.

[13] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent

simplification for polygonal models.IEEE Visualization '96, 327-334

[14] Hugues Hoppe. View-dependent refinement of progressive meshes.

In SIGGRAPH 97 Proc., 189-198, 1997.

[15] David Luebke and Carl Erikson. View-dependent simplification of

arbitrary polygonal environments. In SIGGRAPH 97, 99-208.

[16] Szymon Rusinkiewicz and Marc Levoy. QSplat: A Multiresolution

Point Rendering System for Large Meshes. SIGGRAPH 00,343-352.

[17] Guangzheng Fei and Kangying Cai and Baining Guo and Enhua Wu.

An Adaptive Sampling Scheme for Out-of-Core Simplification. In

Computer Graphics Forum, (21):2, 11-119, 2002.

[18] Michael Garland. CS PhD thesis. Carnegie Mellon University, 1998.

[19] Eric Shaffer and Michael Garland. Efficient adaptive simplification

of massive meshes. In IEEE Visualization '01, 127-134, 2001.

[20] Christopher DeCoro, and Renato Pajarola. XFastMesh: Fast View-

dependent Meshing from External Memory. IEEE Visualization’02.

[21] Hanan Samet. The Design and Analysis of Spatial Data Structures.

Addison-Wesley, ISBN 0-201-50255-0, 1990.

[22] ZY Xu and ZS Tang and L Tang. An efficient rejection test for

ray/triangle mesh intersection. Journal of Software, (14):10,1787-95.

[23] Benjamin Watson and Neff Walker and Victoria Spaulding and

William Ribarsky. Evaluation of the Effects of Frame Time

Variation on VR Task Performance. In IEEE VRAIS 96, 38-52.

[24] Athanasios Zacharopoulos and Jan Sikora and Simon Arridge.

Parametric surface models in medical imaging. In Proc. Institute of

Physics and Engineering in Medecine ‘04, 10th Annual Sci, Meeting.

[25] Bruce Fischl and Martin I. Sereno and Anders Dale. Cortical

Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based

Coordinate System. NeuroImage, (9):2, 195-207, 1999.

