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ABSTRACT
Computing and communication devices pervasively surround
our daily life and the presence of embedded systems, includ-
ing tiny sensors, is increasing exponentially. However, the
software and communication mechanisms used to network
these devices are still the ones that we have been devised
30 years ago for standard computer systems. Pervasive sys-
tems are by orders of magnitude more dynamic than tradi-
tional systems and have often less resources (energy, mem-
ory, bandwidth). Different communication and coordination
patterns are emerging for these environments, ranging from
those related to delay tolerant systems [5], where communi-
cation happens asynchronously between devices, to location
based communication, where hosts receive information only
when they are in a specific location. This calls for a radical
change in the communication mechanisms applied. In these
environments, several concepts, not captured by the seman-
tics of the programming interfaces of traditional systems,
such as location or temporal validity of the disseminated
and replicated information, are fundamental. In this paper
we propose a novel set of communication primitives for this
kind of systems that would allow software engineers to bet-
ter exploit the potential of these environments. These prim-
itives combine spatial and temporal concerns to cope with
the dynamics and mobility of pervasive systems. This paper
describes a formalisation of the primitives in Mobile UNITY
and a general middleware framework to support them.

1. INTRODUCTION
The number of mobile phones in Europe is higher than

the number of personal computers. Computing and com-
munication devices pervasively surround our daily life and
the presence of embedded systems, including tiny sensors,
is increasing exponentially. Thanks to the progress in dig-
ital technologies, mobile computers have processing power
and memory comparable to advanced and extremely expen-
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sive workstations of twenty years ago. In general, computer
systems are heterogeneous, since they are often composed
of different types of fixed and mobile devices and (inter-
mittently) connected, as bandwidth may be fluctuating or
absent, depending on location.

New possible scenarios are enabled by the availability of
such technologies and their internetworking. One of the
more promising is that of delay tolerant networks [5]. De-
lay Tolerant Networks are characterised by long delay paths
and frequent (in some cases also unpredictable) disconnec-
tions and network partitioning. Possible examples may be
intermittently connected mobile ad hoc networks [12], inter-
planetary and satellite communications [7] and mobile sys-
tems to provide transitive connectivity to isolated villages
in rural areas [21, 4, 16]. In the Data Mules Project [20],
for instance, the data of the sensor nodes are collected by
a device (the ”mule”) that travels among them. Another
existing solution is DakNet [16], which aims to provide in-
termittent connectivity to the global Internet to rural areas
of India and Cambodia. People in villages access services
such as email in e-kiosks: messages are collected and trans-
ported to (and from) an Internet gateway in the nearest
town by buses. These are equipped with wireless technolo-
gies so that they can download and upload messages from
and to the e-kiosks and the Internet gateways.

Another example is the design of software systems for
space exploration [15, 7]: delays in transmitting information
due to the very long distances are common in this setting.
Moreover, satellites, space probes and rovers may not be di-
rectly reachable from the Earth due to their position since
they may be on the non visible side of a planet or covered
by other celestial bodies.

The concept of delay tolerant networks represents a very
general abstraction that includes existing systems relying on
fixed networks, mobile ad hoc networks and hybrid networks
composed of fixed and mobile nodes. For this reason, it
provides a very general scenario for the design of primitives
for a very large number of systems and deployment settings.

On the other hand, communication mechanisms and al-
gorithms currently used to network modern devices are still
the ones that we have devised 30 years ago for traditional
computer systems. These primitives may be still effective for
a vast class of application scenarios, especially for business
automation and scientific computing, however, they do not
exploit the full potential of the pervasive computing scenar-
ios, such as the one just described. In fact, classic program-
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ming paradigms and, in particular, programming interfaces
defined for traditional middleware systems do not capture
the natural communication paradigms typical of intermit-
tently and location based networks; some examples include
the ability to send a message to a number of hosts in a loca-
tion or send it to hosts currently not connected to the same
portion of the network (also with the possibility of specifying
their location).

The contribution of this paper is the design of novel prim-
itives for communication in delay tolerant mobile systems
that fully exploits the potential of the environments con-
sidered, by combining spatial aspects with temporal ones.
These primitives allow, for example, to specify that a mes-
sage has to be sent (in a synchronous or asynchronous ways)
to a recipient, only when this is in a specific location; or to all
the devices that are in a specific location (i.e., geo-casting).
They also allow to express the fact that the delivery has to
happen only when the sender is located in a specific point of
the geographical space. Simmetrically, similar constraints
and requirements in terms of space and time can be also
specified by the recipients, for instance, by saying that the
recipient will only want to receive a message from a certain
sender, when reaching a specific location.

The primitives are embedded into a middleware frame-
work that supports the dissemination and the persistence
of the information. These aspects are key in delay toler-
ant networking. In fact, if a message cannot be delivered
immediately as the recipient is not in the same connected
portion of the network, the message might have to be stored
in intermediate buffers. For this purpose, intelligent and reli-
able replication and forwarding strategies must be devised.
Clearly, the reliability of the system is strictly dependent
on the use of the available resources, especially in terms of
memory, bandwidth and computational power. These is-
sues are extremely relevant in the case of mobile devices.
Therefore, there is a trade-off between the reliability of the
system and the resource consumption. The primitives de-
scribed in this paper allow the specification of the required
reliability (in terms of probabilistic delivery). The middle-
ware delivers the message by exploiting different dissemina-
tion and message forwarding strategies. These will be tuned
to ensure the expected reliability, given the knowledge of
the network topology that can be assumed. It is outside the
scope of the paper to describe the different dissemination
strategies that can be used to implement specific delivery
probabilities. However, we underline that the middleware
framework allows for the integration of different dissemina-
tion algorithms. The interested reader can find the details
of possible dissemination models in[12, 13].

The research area of delay tolerant networks has recently
received a lot of attention [5]. Existing work in the area has
focussed more on the pure networking aspects rather than
on the analysis and the design of programming paradigm
and interfaces. To our knowledge, there are no works on
these issues. With respect to the general design of spatio-
temporal systems, a novel analysis has been recently pre-
sented in [18]. However, the authors propose a program-
ming interface that is not sufficiently expressive to capture
and specify the spatial and temporal constraints that char-
acterise the interaction in delay tolerant systems, such as
the reciprocal positions of senders and receivers. Moreover,
the authors presents only an analysis of the programming
interface without providing the design of a general software

architecture that implements this API.
We provide a formalisation of the model using Mobile

UNITY [19]. There are many existing formal notation for
mobile computing, such as π-calculus [11], KLAIM [3], Mo-
bile Ambients [1], to name a few. These focus on different
aspects of mobile computing and provides different types
of basic formal abstractions. For example, the Mobile Am-
bients calculus and logic are extremely useful in the defi-
nition of mobile environments with different name scopes,
since they provide simple formalisms to denote the validity
of namespaces in nested locations. For our formalization we
have chosen Mobile UNITY as it provides powerful abstrac-
tions based on a concise set of formal structures to represent
location and data sharing, that are the key concepts at the
basis of our model. In Mobile UNITY location is encapsu-
lated in a variable associated to each software component.
We extended this representation of space by adding the idea
of communication region to represent the fact that a host is
not only in a particular geographical position (i.e., location)
but also in a particular connected portion of the network.

The contribution of this paper can be summarised as fol-
lows:

• we propose a set of primitives that can be used to spec-
ify various spatio-temporal aspects of communication
in settings where these issues are fundamental, such as
in delay tolerant networked systems;

• we discuss an abstract middleware architecture that
gives semantics to this programming interface;

• we propose a formalisation of the architecture by ex-
tending the syntax and the semantics of Mobile UNITY
by adding the definition of communication region;

• we show how different third-part communication and
dissemination protocols can be integrated in the mid-
dleware framework to support the semantics of the pro-
gramming interface.

The paper is organized as follows. In Section 2 we analyse
the challenges and the requirements of the design of com-
munication primitives in delay tolerant mobile networks. In
Section 3 we describe the communication primitives and the
architecture of the middleware offering them as an API. Sec-
tion 4 specifies the semantics of the primitives using Mobile
UNITY. The proposed model is then discussed and related
work is presented in Section 5. Section 6 concludes the pa-
per, outlining our current research directions.

2. COMMUNICATION IN DELAY TOLER-
ANT MOBILE NETWORKS: A SCENARIO

In order to define the design requirements of the prim-
itives for delay tolerant mobile systems, we start from a
realistic example, considering the case of providing commu-
nication to a village in a poor area, distant from the nearest
main town and therefore connected to the global Internet
by means of a bus that acts as message carrier (as in the
DakNet project [16]). We suppose that the village is com-
posed of three main locations covered by a local network
that is disconnected from the Internet1: the residential area,
the local administrative offices and the rural area near the
village. We also assume that all nodes in the village are

1As discussed in [16], considering the user requirements in
these scenarios, the connectivity to the Internet by means
of a satellite link or a wired line is not convenient in most
of the cases.
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connected by a LAN attached to a WiMAX network that
covers the rural area outside the village, providing connec-
tivity to all the farmers. In a sense, the village can be seen
as a connectivity island. When the bus is in proximity of
the main town, it is connected to the Internet by a wireless
gateway, whereas, when it is in the village, it is connected
in a similar way to the local network.

In this setting, the ability to send messages to a location,
to exploit the asynchronous communication through the use
of the bus as a “store and forward” engine for messages,
or to deliver messages to all hosts in a location, are exam-
ples of communication patterns difficult to express by using
the synchronous and asynchronous primitives exploited by
most middleware for traditional systems. The argument of
this paper is that middleware should provide support for,
for instance, sending a message from a host in the global
Internet to a recipient in the isolated (or better, intermit-
tently connected) village and viceversa. A host in the global
Internet should also be able to send a message to all the
hosts that are in a specific geographical region. Messages
may have an expiration time, in order to express the valid-
ity of the information. In fact, a message containing weather
forecast about a certain day, for instance, would not be so
useful if received on the same day (or after).

Let us envisage some more specific scenarios: for example,
the central meteorological office in the near big city should
be able to send a weather alert to all farmers in the ru-
ral area. Let us further assume that the computer system
of the offices is managed by technicians remotely from the
near city: a system administrator should be able to specify
his/her interest in receiving only requests from clerks of the
offices in the villages that he/she manages and supervises.
What is needed in this case is a send() primitive that allows
developers to specify that a message has to be delivered to
a certain recipient, in a certain area of the village, or to all
the recipients that are in that area, or to a certain recipient
only if he/she is in that particular area and so on. A sym-
metric semantics should be made available to indicate the
recipients and/or their locations in the receive() primitive.

As far as the message reliability is concerned, a critical
weather alert should be sent with high reliability, whereas
an ordinary hourly update of the wheather forecast may be
characterised by a lower one. Let us consider again our sce-
nario. Let us suppose that a sensor network is deployed in
the fields in the rural area outside the village, in order to
measure environmental indicators such as humidity, pollu-
tion and so on. We suppose that the data are collected by
means of motorbikes and helicopters. We would also like to
be able to express the fact that the collection of the data will
be performed only in certain locations (i.e., receival should
only happen in these locations). In other words, we would
like to be able to specify not only the locations of the senders
and the receivers of the message, but also where the send()
and the receive() should be fired.

To summarise, there is a need to provide primitives that
enable and combine:

• synchronous/asynchronous communication (i.e., the sen-
der and/or the receiver are or are not blocked awaiting
for the successful execution of the primitives);

• delay tolerant/non delay tolerant communication (i.e.,
it is admissible or not that messages will be delivered
with a delay that may not be negligible);

• spatial/non spatial communication (i.e., there is the
support for geo-casting and location-awareness or not).

In the following sections we will present a set of primitives
that allows developers to specify these dimensions and we
will discuss an abstract middleware architecture that sup-
ports them.

3. SPATIO-TEMPORAL COMMUNICATION
PRIMITIVES

We now present a detailed definition of the communication
primitives. The primitives incorporate spatio-temporal con-
cepts which, for instance, allow the description of the opera-
tions sketched in Section 2. The novelty of these primitives
resides in their expressiveness and their flexibility, since, by
using them, the software engineer can specify a wide range
of requirements and constraints for the communication pro-
cess. More specifically, we define a new set of primitives
for sending and receiving messages. In order to meet the
requirements defined in Section 2, the send() primitive has
the following signature:

send (m, recipient, recipientLocation, senderLocation, tExp,
tBlock, reliability)

By using this primitive, developers are not only able to
define the recipients of the message m (in recipient), but also
to express spatial concepts, such as the location where the
message has to be delivered to (in recipientLocation) and the
location where the effective sending has to be performed (in
senderLocation) (i.e., the sending is performed only when
the host is in the location expressed in senderLocation).

Moreover, the recipient field can assume two values, the
identifier of the receiver, a list of receivers or ∗, to indicate
that the message is sent to every host. Similarly, developers
can specify one recipient location or a generic location (using
the same symbol ∗)2.

In order to clarify these concepts, let us consider some
examples:

• send (m, *, *,...) has to be used to send a message to
all the hosts, independently of their position;

• send (m, 32, *,...) indicates that the messages is to be
sent to host 32; host 32 can receive it independently
of its position;

• send (m, 32, ruralArea,...) indicates that the message
is to be sent to host 32; host 32 can receive the message
only when it is in location ruralArea;

• send (m, *, ruralArea,...) indicates that the message
is to be sent to all hosts in location ruralArea.

By using the tExp field, developers are able to set the expira-
tion time of the message, whereas tBlock defines the interval
of time during which the application is blocked waiting for
the correct delivery of the message. The expiration time
indicates the validity of the message. The corresponding ac-
knowledgment message will have the same expiration time.

2It is clearly possible to extend the syntax and the semantics
of these primitives in order to specify a list of senders and
receivers in different locations, by using a list of tuples with
the format (hostId,LocationId).
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Through these timers it is possible to specify synchronic-
ity and asynchronicity on top of the possible location based
operations specified above; for example, send (m, 32, *,..,
20, 20,...) indicates that the message is to be sent to host
32, independently of its position, but that the message expi-
ration time is set to 20 time units and that the application
is blocked for 20 time units while waiting for this to be de-
livered and acknowledged. On the other hand, send (m, 32,
*,.., 20, 0,...) will be used for the asynchronous delivery of
a message with an expiration time equal to 20 time units.

Finally, the desired reliability of the delivery process can
be specified as a percentage in the reliability field. Since,
in many cases, the evolution of the deployment scenarios
cannot be predicted with accuracy (i.e., it is not determinis-
tic), the reliability value specified in the sending primitives
is evaluated in probabilistic terms. The middleware driven
delivery process associated to the primitives depends on the
dissemination strategy used to replicate or forward the mes-
sages to the other hosts. If messages cannot be delivered
immediately (i.e., when the recipients are not in the same
connected portion of the network), they are stored in in-
termediate buffers that we call Message Buffers. The dis-
semination strategy is composed by set of algorithms and
protocols used to transfer and disseminate the information
in the system in order to deliver the information as close
as possible to the recipient(s) and/or to the the locations
specified in the send() primitive.

The description of the mechanisms to be used to guaran-
tee the specified reliability is outside the scope of this paper
and topic of other papers [13, 12]. However, let us briefly
consider the case of a dissemination process based on a pure
epidemic protocol [22]. If the value specified in the primi-
tives is 100, the message might be replicated on every host,
whereas if it is lower, it might be copied only on a sub-
set of nodes. Given their semantics, epidemic protocols can
be used when the two hosts are not in the same connected
portion of the networks as they permit the storage of infor-
mation that can be kept for a while and then distributed
later. In our example, messages may be replicated on all
the vehicles that acts as information between the Internet
gateway and the village in order to increase the reliability
of the delivery process. On the other hand, if two hosts are
in the same connected portion of the network (that, in the
remainder of the paper, we will call communication regions),
in presence of a standard routing mechanisms, the message
will be directly transferred to the buffer of the recipient. In
our example, this is the case of messages that are exchanged
by two hosts that are inside the village.

We define, in a symmetric way, the receive() primitive as
follows:

m=receive (sender, senderLocation, receiverLocation, tBlock)

Similarly to the send() primitive, developers can specify
the sender (in sender), its location (in senderLocation), the
location where the receiving needs to happen (in receiver-
Location) and the time interval during which the receiving
application is blocked waiting for a message (in tBlock).

We will now formalise the architecture of the middleware
to support these primitives, starting from the definition of
the space where the computation takes place, also discussing
the concepts of physical location and connectivity.

4. SPECIFICATION OF THE ARCHITEC-
TURE

In this section, we will present the semantics of the prim-
itives and we will specify the middleware framework which
supports this programming interface, by using the Mobile
UNITY [19] notation. We now define the concepts of loca-
tion and connectivity then the general architecture of our
middleware; finally, we provide a brief description of Mo-
bile UNITY and of how we use it for the definition of our
semantics.

4.1 Physical Location and Connectivity
The computation happens in a physical space that we in-

dicate with Λ. Λ is subdivided into l locations λ1, λ2, ..., λl.
We make the assumption that locations are not overlapping.
This simplification has a sensible mapping on the physical
world. In fact, real location information can be provided
by a communication infrastructure; in cellular networks, for
instance, the borders of each cell is not well-defined, since,
in the border regions, a mobile phone receives the signals
from multiple base stations. However, mobile phones regis-
ter to just one location, choosing the base station that can
offer the best signal strength and quality. Therefore, even
if, in theory, the locations are overlapping physically, a host
belongs to only one location from a logic point of view. An-
other example may be the Active Badge System [23], that
provides the position of individuals and computers by means
of networked sensors spread across buildings.

More formally, it is possible to write:

Λ = λ1 ∪ λ2 ∪ ... ∪ λl λ1 ∩ λ2 ∩ ... ∩ λl = ∅

For example, as shown in Figure 1, the village area is com-
posed of three locations, λresidential , λoffice, λrural, indi-
cating respectively the residential, the administrative and
the rural areas. A host, however, is not only contained in
a geographical space, it also belongs to a logical computa-
tional space that we call communication region. We have
introduced this concept in Section 2, and we now provide
a precise definition. Communication regions are connected
portions of the entire network at any specific time. More
precisely, we refer to a communication region as the set of
the hosts H1, H2, ..., HN such that for every pair of hosts
Hi,Hj with i 6= j and i, j = 1, ..., N it is possible to transfer
the content of the Message Buffers of Hi to Hj as there is
a communication path among the hosts. There are several
possible examples of communication regions. An example of
communication region in mobile ad hoc systems may be the
set of hosts that are in the same reachability area, defined by
routing mechanisms that enables multi-hop communication.
Please note that if a routing protocol (such as DSDV, DSR,
etc) is not present, the communication region of a host is
represented by the hosts that are in the transmission range.
In fixed networks, a LAN is an example of communication
region. A non partitioned TCP-IP inter-networked system
is another example of communication region. Instead, a net-
work with two partitions is composed of two communication
regions.

As for physical locations, we assume that a host belongs
to a single communication region at a certain instant t.
In general, communication regions are dynamic. In other
words, we have different intermittently connected portions
of the delay tolerant network composed of a continuously
changing set of nodes at any point in time. In order to un-
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Figure 1: Example of delay tolerant networked system.

derstand this concept better, let us consider our example,
once again. When the bus is connected to the Internet, we
have two communication regions, the communication region
γInternet, composed of all the hosts, the Internet and the
bus itself, and the communication region γvillage, composed
of all the hosts that form the isolated local network of the
village. When the bus moves towards the village and it
is disconnected both from the Internet and from the Local
Area Network of the village, we have three communication
regions: γInternet(composed of all the computers in the In-
ternet), γbus (i.e., the bus itself), γvillage (with the same
composition as above). Finally, when the bus will arrive in
the village and gets connected to the local network, we have
two communication regions, γInternet and γvillage, with the
bus inside the latter.

Moreover, communication regions are disjoint and not
overlapping. The union of all the g communication regions
is clearly the global delay tolerant networked system that
we indicate with Γ. More formally, it is possible to write:

Γ = γ1 ∪ γ2 ∪ ...γg γ1 ∩ γ2 ∩ ... ∩ γg = ∅

In order to model the delivery of messages inside a com-
munication region (i.e., without an intermediate storage in
Message Buffers), we introduce the concept of virtual chan-
nels. A virtual channel exists between every pair of hosts
that are in the same communication region. A virtual chan-
nel can be seen as an abstract representation of the idea of
end-to-end communication inside a communication region.

4.2 Definition of the Entities of the System
Our system is composed of M hosts. Every host has a

unique identifier. A host can be fixed (such as a gateway, a
server, a base station, an infostation and so on) or mobile
(such as a mobile phone, a PDA, a laptop equipped with
802.11 capabilities and so on). We assume that a host is
intermittently connected to the other hosts present in the
system by means of heterogeneous networking equipments.
In other words, we consider hybrid systems composed of
mobile and fixed parts and assume that hosts get in reach
of each others by moving. An instance of the middleware
is running on each mobile device. We indicate the instance
of the middleware running on the host k with MW (k). We
refer to a generic application i running on MW (k) with
A(i, k). Hosts have a variable amount of memory that we
call Message Buffer, used to temporarily store messages.

Messages are the fundamental entities of our system. They
are composed of two parts: the data (i.e., the message body)
and the message headers. Let us briefly analyse the message
headers. Every message is characterized by a unique mes-
sageId3. It also contains the identifier of the host and the
3A unique messageId can be derived by the composition

application that has sent the message (defined, respectively,
in the fields senderId and applicationId). Every message
also has a finite expiration time4.

Messages are transferred from the Message Buffer of a host
HA to that of a host HB using forwarding mechanisms (i.e.,
the message is transferred from HA to HB then the message
is deleted from the Message Buffer of HA) or replication
mechanisms (messages are copied from HA to HB and the
copy on HA is maintained).

The mechanisms for the delivery of the messages to a spe-
cific host or location are encapsulated in the framework.
Messages should generally be forwarded (and stored) or repli-
cated as close as possible to the recipients of the messages
and, finally, into their Message Buffer, so that the recipi-
ents are able to extract and process them. The middleware
framework that we are describing allows for the integration
of different algorithms and protocols. There are many pos-
sible ad hoc solutions that suit best depending on the ap-
plication scenarios; the definition of the possible forward-
ing and replication mechanisms and algorithms is outside
the scope of this paper. However, we are currently investi-
gating two possible approaches to the dissemination which
could be plugged into the framework: the first is the design
of gossip-style dissemination algorithms, based on epidemic
techniques [14, 13]; the other is the definition of intelligent
forwarding protocols based on the history of the system [12].
The underlying protocols may only partially support the
general semantics of the primitives presented in Section 3.
For example, it may be the case of protocols that do not
support geocasting. On the other hand, there may be situa-
tions where geographical information are not available (also
temporarily) so that location-aware communication is not
achievable.

The status field determines the phase of the message deliv-
ery (i.e., whether the message is to be delivered, being deliv-
ered, to be acknowledged or acknowledged). The semantics
of the transitions between the different states is presented in
Section 4.4. We now briefly introduce Mobile UNITY, the
notation we will use for the formalization of the semantics
of the primitives.

4.3 Mobile UNITY
Mobile UNITY [19] is an extension of the UNITY nota-

of the identifier of the host and a number generated by a
counter that is incremented when the primitive is invoked.
4In the remainder of the paper, we assume that the clocks
of the systems are synchronised, so the expiration time is
a timestamp obtained by summing the current time when
the message is dispatched and its time validity defined by
programmers. The problem of time synchronisation in delay
tolerant networks is discussed in [5].
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tion proposed by Chandy and Misra for the formal study of
distributed mobile systems. It has been used for the specifi-
cation of different systems and applications (for instance, for
the definition of fine-grained code mobility paradigms [9]).

We now introduce the main concepts of Mobile UNITY
that we will use to formalise the system. A Mobile UNITY
specification is composed of several programs (that are the
basic units of definition), a Components part and an In-
teractions part. A program is associated to a location
variable λ, which indicates the location of the executing
program. The declare section of a program contains the
declaration of the variables used in the program separated
by the symbol []. The initially section initializes the vari-
ables. The assign section contains the program statements.
A statement can be guarded by the clause following the if.
The statements separated by [] are executed in a non de-
terministically sequentially interleaved way. Sequences of
statements that have to be executed atomically are sepa-
rated by || and enclosed between the symbols 〈 and 〉. The
Components section is used to specify the entities of the
system. Every Mobile UNITY program contains indexes
(like i and k in our case) after the name of the program (i.e.,
M(k)). This allows for the creation of multiple instances of
the same program in the Components section. The In-
teractions section contains statements about the commu-
nication between components. In this section we specify the
variables that are shared between different programs (by us-
ing the symbol =). Variables may be transiently shared or,
in other words, they may be shared only when the programs
are running in the same location (using the symbol ≈ in a
guarded instruction with the keyword when to define the
condition). The two clauses engage and disengage are
used to specify the values of the variables respectively after
the co-location and after the subsequent possible separation.
If no engage value is specified, the variable remains in an
inconsistent state. If no disengage value is specified, the
variable retains the value it had before the disconnection.
The semantics of the instructions is rather straightforward,
since it is very similar to classic imperative languages, such
as Pascal5.

In order to model the concept of communication region,
we have extended the notation of Mobile UNITY by asso-
ciating a program not only to λ but also to the variable γ.
Therefore, the structure of a program will be the following:

program P(i) at λ in γ
...
end

γ indicates, as explained, the logical location of the program
in terms of connectivity. We do not explicitly indicate the
dependency on time in γ. However, as for λ, it is time
dependent, since a host may be located in different physical
locations and connected to different logical communication
regions in different instants of time. In other words a host

5However, in Mobile UNITY, the notation:

〈 op quantifiedV ariables : range :: expression〉

is used to indicate that the variables from quantifiedVari-
ables can have all possible values in the range. If range is
missing, the first colon is omitted and the domain of the
variables is restricted by context. Each instantation of the
variables is substituted in the expressions, producing a mul-
tiset of values to which op is applied.

can move from the connectivity island of the village (that
we indicate with γvillage in Figure 1) to the communication
region composed of all the hosts of the Internet (indicated
with γInternet).

4.4 Middleware Architecture
We now give semantics to the communication primitives

indicated in Section 3. We start by specifying the middle-
ware architecture by using Mobile UNITY. The complete
semantics is defined in Figure 3. Given the syntax and the
parallel nature of UNITY [2] the mapping of the formal
specification of our middleware architecture into a multi-
threaded implementation is straightforward. We now anal-
yse the most important and interesting aspects of this for-
malisation.

A generic application is described as one program A(i, k)
and a generic instance of the middleware as another Mobile
UNITY program MW (k), where k is the index of the host
and i the specific index of an application. The communica-
tion between the middleware and the applications running
on top of it is modelled using shared buffers (Figure 2).

The middleware provides the primitives for sending (send())
and receiving (receive()), described in Section 3, to the
applications. The Components section indicates the in-
stances of applications and middleware running. The Inter-
actions section indicates how the communication happens
among the different programs representing the middleware
platforms running on each hosts and the applications. We
now describe the specification in more details.

Let us consider the specification of an application depicted
in Figure 3 by the program A(i, k). As it is possible to ob-
serve in the assign part, the behaviour of each application
is modelled by using four statements. Send and Receive
respectively represent the invocation of the send() and re-
ceive() primitives. Idle models the possible idle states of
the application, whereas Process is used to represent the
execution of other tasks performed between the invocation
of the communication primitives. In these statements, the
send() and receive() have exactly the same signature which
has been described in Section 3. The boolean variable wait
is used for synchronization purposes.

The application communicates with the middleware through
a number of shared variables, which are depicted in Fig-
ure 2. The inBuffer and outBuffer channels are used for
input and output between the middleware and the applica-
tions running of top of it. When an application invokes the
send() primitive, a send request is issued and inserted in
the buffer of the send requests (represented by the variable
sendRequests) at a certain position p (Figure 2) to be picked
up by the middleware; the corresponding message contain-
ing the parameters of the primitive, is inserted in the output
buffer at the same position p. When the application starts,
all the variables are undefined (as specified in the Initially
section). The send requests are used to maintain at middle-
ware level the information specified in the primitives (such
as timeouts) and the delivery status of the messages.

Similarly, the receive requests are issued when a receive()
primitive is invoked. The receive requests (represented by
the variable receiveRequests) contain the information related
to the sender and the location of the sender of the expected
messages. If the blocking time of the receive() is zero and
the host is located where the operation has to be performed,
the middleware checks if there is a message matching that
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          .... 

                   Message Buffer
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outBuffer sendRequests receiveRequests inBuffer outBuffer sendRequests receiveRequests

               MW(k)

inBuffer sendRequests

Virtual Channels

inBufferoutBuffer sendRequests receiveRequestsreceiveRequestsoutBuffer

Figure 2: Abstract model of the architecture.

request. Otherwise, the receive request is valid and stored
in the buffer for the interval of time declared in the tBlock
field of the primitive. These operations are performed by
the function readMessageFromBuffer().

The middleware behaviour is specified in the MW (k) pro-
gram. The program has a number of variables: sendRequests,
receiveRequest, inBuffer, outBuffer are used for the commu-
nication with the applications running on the middleware.
They are represented by matrices, where each row is shared
with the corresponding variables of the applications. As
shown in the Interactions section, the item at position j
of a shared array of an application A(i, k) corresponds to
the row element at position (i, j) of the matrix variable of
the middleware MW (k).

More precisely, the middleware maintains one input and
one output buffer for each application. The input buffer
of an application (indicated with inBuffer) is shared with
one of the output buffers of the middleware (indicated with
outBuffer). Simmetrically, the output buffers of each appli-
cation are shared with one of the input buffer of the middle-
ware. Each row of the sendRequests and the receiveRequests
matrices are shared with the variables with the same name
of the applications, following the specification contained in
the Interactions section.

An array of boolean variables wait is used for the synchro-
nisation (Figure 3). The size of this array is equal to the
number of applications running on the middleware. Each
item of the array corresponds to one application. wait is
true when a blocking send() or a blocking receive() are
invoked by the application.

The assign section of the middleware program performs
a number of operations. The Mobile UNITY semantics im-
poses that each of these operations is chosen non deter-
ministically and fired, when its guards are valid, an infinite
number of times. The operations correspond to three tasks
of the middleware: the MessageChecker, the MessageDis-
patcher and the MessageBufferManager. As shown in Fig-
ure 3, the MessageChecker performs many fundamental op-
erations: it checks the timeouts of the send and receive re-
quests. It handles acknowledgment messages in the Message
Buffer corresponding to a pending send request. Finally, it
checks if there is a message matching any receive request in
the Message Buffer. The MessageDispatcher task puts mes-
sages not yet sent into the Message Buffer. When a message
is sent, the middleware has to dispatch it, in other words,
the message has to be inserted in the Message Buffer (see the
MessageDispatcher section in the specification). The status
of the send request is initially set to TOBEDISPATCHED.

After that, the corresponding message has been dispatched,
in the case of non blocking send(), the send request is
deleted; in the case of a blocking send(), the status field
of the send request is set to TOBEACKNOLEDGED. If the
send request is generated by a blocking send(), it will be
maintained for the blocking interval specified in the prim-
itive call, waiting to be acknowledged. In the meanwhile,
the application is blocked; as you can observe in the spec-
ification of the MessageChecker thread, after the acknowl-
edgment (the status field is set to ACKNOWLEDGED) or,
after the expiration of the message, the control returns to
the application (in this case, the status field will assume
the value EXPIRED and the variable wait will be set to
true). The third task, the MessageBufferManager, applies
the dissemination strategy and deletes the messages from
the Message Buffer, if they are not valid anymore (i.e., they
have reached the expiration time).

The communication between different instances of the mid-
dleware is based on the abstraction of virtual channels. These
are defined by the array variable vInChannels and by the
array variable vOutChannels respectively for the input and
output operations. The symbol ⊥ is used to indicate the
unreachability of a certain host. A virtual channel between
two instances of the middleware exists (i.e., these variables
are shared and hold values different from ⊥) when they are
in the same communication region γ, as defined in the last
four lines of the Interactions section. The engage and
disengage statements are used to define the values that
the channels assumes, respectively before a connection and
after a disconnection (i.e., the value of the variable γ is the
same or not). Let us consider again our example: a virtual
channel between a computer in the village and the bus will
exists (i.e., the values of the variables will not be ⊥) when
the bus will be connected to the wireless network of the vil-
lage. The virtual channels can be implemented by using
different mechanisms, such as sockets.

The operations performed to apply the dissemination strat-
egy will involve the hosts that are in the same γ at a certain
time t by means of the virtual channels. In other words,
the messages are forwarded and exchanged among the hosts
of the same communication region according to the given
dissemination strategy.

We now use an example of a send() operation to show
how the semantics describes the specific behaviour of the
primitives. Let us consider the case of the communication
between a space probe and and a robot, which we briefly
introduce in Section 1, like PathFinder or Spirit [15], roam-
ing on the surface of a planet, for example Mars, by means
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System Delay-Tolerant-Network-Middleware
Program A(i,k) at λ in γ

declare
sendRequests: array of SendRequest ∪ {⊥} [] receiveRequests: array of ReceiveRequest ∪ {⊥} []
messageBuffer : array of Msg ∪ {⊥} [] inBuffer : array of Msg ∪ {⊥} []
outBuffer : array of Msg ∪ {⊥} [] wait: boolean

initially
sendRequests = ⊥ [] receiveRequests = ⊥ [] inBuffer = ⊥ [] outBuffer = ⊥ [] wait = ⊥

assign
Send: send(recipient, recipientLocation, senderLocation, tExp, tBlock, reliability)

if wait = false

[] Receive: 〈receive(sender, senderLocation, receiverLocation, tBlock) ‖
readMessageFromBuffer()〉 if wait = false

[] Idle: 〈randomIdleInterval = random() ‖ sleep(randomIdleInterval)〉 if wait = false
[] Process: doSomething() if wait = false

end
Program MW(k) at λ in γ

declare
sendRequests: matrix of SendRequest ∪ {⊥} [] receiveRequests: matrix of ReceiveRequest ∪ {⊥} []
inBuffer : matrix of Msg ∪ {⊥} [] outBuffer : matrix of Msg ∪ {⊥} []
wait: array of boolean [] inVChannels: array of Integer [] outVChannels: array of Integer

initially
messageBuffer = ⊥ [] inVChannels = ⊥ [] outVChannels = ⊥

assign
MessageChecker :

〈〈[]r, z :: 〈sendRequests(r, z).status := EXPIRED ‖ wait(r) := false
if sendRequests(r, z).tBlock > tCurrent〉

[] 〈[]r, z :: 〈receiveRequests(r, z).status := EXPIRED ‖ wait(r) := false〉
if sendReceive(r, z).tBlock > tCurrent〉

[] 〈[]r, z :: 〈sendRequests(r, z).status := ACKNOWLEDGED ‖ wait(r) = false〉
if ∃v :: sendRequests(r, z).messageId = messageBuffer(v).messageId∧

messageBuffer(v).status = ACK〉
[] 〈[]r, z :: 〈addMessageToOutBuffer(messageBuffer(v), r, z) ‖

receiveRequests(r, z).status := RECEIV ED ‖ wait(r) := false〉
if checkMessage(receiveRequests(r, z), messageBuffer(v)) = true∧

receiveRequests(r, z).status := WAITING〉
[] 〈[]r, z :: 〈〈addMessageToOutBuffer(messageBuffer(v), r, z) ‖

receiveRequests(r, z).status := RECEIV ED〉
if checkMessage(receiveRequests(r, z), messageBuffer(v)) = true

receiveRequests(r, z).status := EXPIRED otherwise〉
if receiveRequests(r, z).status = NOWAIT 〉〉

MessageDispatcher :

〈〈[]v :: 〈addToMsgBuffer(outBuffer(r, z)) ‖ inBuffer(r, z) := ⊥ ‖ sendRequests(r, z) := ⊥〉
if sendRequests(r, z).status = TOBEDISPATCHED∧

sendRequests(r, z).senderLocation = λ ∧ sendRequests(r, z).tBlock = 0〉
[] 〈[]v :: 〈addMessageToMessageBuffer(outBuffer(r, z)) ‖

sendRequests(r, z).status := TOBEACKNOWLEDGED〉
if sendRequests(r, z).status = TOBEDISPATCHED∧

sendRequests(r, z).senderLocation = λ ∧ sendRequests(r, z).tBlock > 0〉〉
MessageBufferManager :

〈applyDisseminationStrategy() [] 〈[]v :: deleteFromMsgBuffer(MessageBuffer(v))
if messageBuffer(v).tExp > tCurrent〉〉

Components
〈[]i, k :: A(i, k), MW (k)〉

Interactions
〈[]j :: MW (k).sendRequests(i, j) := A(i, k).sendRequests(j) ‖
MW (k).receiveRequests(i, j) := A(i, k).receiveRequests(j) ‖
MW (k).inBuffer(i, j) := A(i, k).outBuffer(j) ‖
MW (k).outBuffer(i, j) := A(i, k).inBuffer(j) ‖ MW (k).wait(i) = A(i).wait〉

[] 〈[]z :: MW (k).inV Channels(z) ≈ MW (z).outV Channels(k) ‖
MW (k).inV Channels(z) ≈ MW (z).outV Channels(k) when MW (k).γ = MW (z).γ〉

disengage 〈[]z :: MW (k).inV Channels(z),⊥ ‖ MW (z).outV Channels(k),⊥〉,
engage 〈[]z :: MW (k).inV Channels(z),⊥ ‖ MW (z).outV Channels(k),⊥〉

end
end

Figure 3: Specification of the middleware using Mobile UNITY.
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of an intermediate network of satellites orbiting around it.
Let us suppose that the space probe has to deliver a software
update to the robot (that we call robot1 ), since a direct com-
munication between the Earth and the robot is not possible,
as the robot is roaming on the side of the planet opposite to
the Earth. The software update has to be transmitted when
the space probe is near the planet, otherwise the signal can-
not reach the satellites. Let us also imagine that the space
probe will wait for an acknowledgement from the robot and,
because of the distance, it allows for a delay up to 10 min-
utes. Assuming that the software update is contained in a
message m and the robot is located in area called Gusev
Crater, the send() primitive will have the following form:

send(m, robot1, GusevCrater, MarsSpace, 10m, 10m, 100)

Let us suppose that on the space probe, on the robot
and on all the intermediate satellites are running differ-
ent instances of the middleware: the instance MW (1) and
an application that has to send the software update called
A(1, 1) are running on the space probe, whereas the instance
MW (2) and an application A(1, 2) (listening for software
updates) are running on the robot. When the send() is in-
voked, the message m is inserted in the outBuffer at position
1 of MW (1), that corresponds to the same position of in-
putBuffer of A(1, 1). The corresponding send request is also
inserted in the sendRequest shared variable used as commu-
nication channel. The status of the send request is equal to
TOBEDISPATCHED. Then the message is inserted in the
buffer by the MessageDispatcher task when the space probe
enters the geographical area called MarsSpace. The status of
the corresponding send request is set to TOBEACKNOWL-
EDGED. Assuming, for example, an epidemic algorithm for
the dissemination process, m is then replicated in all the
buffers of the satellites that are in reach of the Message-
BufferManager . The middleware instances that are running
on these intermediate satellites will check if there are receive
requests for this message. The message will be replicated on
all the other hosts in reach transitively and eventually trans-
mitted to the robot and stored in the buffer of MW (2).
Considering a non optimised epidemic protocol, messages
are replicated on all the intermediate hosts, since the de-
sired reliability is equal to 100 [22]. Then the message is
read by A(1, 2) by means of a generic receive(*,*,..). Since
the status of the message is equal to TOBEACKNOWL-
EDGED, an acknowledgement message is then sent back to
the space probe by exploiting the same dissemination proto-
col. This type of messages has the status field set to ACK. A
detailed description and formalisation of the acknowledge-
ment mechanisms have not been included in this paper for
reasons of space. After the acknowledgement message is re-
ceived (i.e., inserted in the buffer of MW (1)), it is then re-
trieved by the MessageChecker task and, if the timeout has
not expired, the corresponding send request status is set to
ACKNOWLEDGED. The expiration time field is used to
delete the buffer after 10 minutes; as shown in Figure 2 this
operation is performed by the MessageBuffer task.

In the example, the information related to the receiver lo-
cation is not used for the delivery of the message, since the
epidemic algorithm does not exploit geographical informa-
tion for routing. The information would be useful in the case
of underlying forwarding mechanisms based on the location
of the hosts, such as [6]. If this was the case, in our exam-
ple, the information contained in the receiver location field

would be useful to decide whether to avoid the replication
of the message on all the satellites, by shipping it directly
to the one covering the area over the Gusev crater.

5. DISCUSSION AND RELATED WORK
In the recent years, the research community has proposed

new paradigms and architectures for communication and
coordination in the general area of pervasive computing.
The proposed solutions have been founded on several dif-
ferent mechanisms and abstractions such as the sharing of
tuple spaces [17] or of more complex data structures [8] and
events [10], which go beyond the traditional synchronous
communication mechanisms imposed by standard middle-
ware systems. However, the pervasive computing scenario
seems to offer more opportunities than those exploited for
more complex communication primitives. This is even more
true if we extend to study delay tolerant networked systems.
The challenges posed by this scenario were firstly discussed
by Fall in [5]. Some examples of existing prototypes of delay
tolerant systems have been presented in Section 1, such as
DakNet [16] and Data Mules [20]. However, in these works,
the authors do not discuss the potential of these systems in
terms of primitives and the set of operations which could be
performed on such systems.

To our knowledge, our work represents the first attempt to
the design and the specification of communication primitives
in delay tolerant networks. An analysis of the requirements
of spatio-temporal primitives have been recently presented
in [18]; however, this work discusses a communication frame-
work that can be applied only to specific scenarios (such as
location-aware communication in sensor ad hoc networks).
Moreover, the proposed primitives are not able to capture
the aspects of the interaction in delay tolerant systems, such
as, for instance, the reliability of the probabilistic delivery
process and the possibility of specifying the position of the
reciprocal positions of senders and receivers. In this paper,
we have presented not only a more general and expressive set
of primitives, but also a middleware framework supporting
the abstract programming interface.

In terms of models, there are many other powerful and
expressive formal notations that focus on the modelling of
different aspects of mobile computing. Many process alge-
bra and calculi have been proposed, such as KLAIM [3],
starting from the π-calculus, the first model of mobile con-
currency proposed by Milner [11]. However, the π-calculus
has no notion of location and space. Instead, these concepts
are at basis of the Mobile Ambients [1] model proposed by
Cardelli and Gordon, that focusses on the definition of hi-
erarchically structured computational domains and naming
scope issues. We have decided to use Mobile UNITY, since
it provides abstractions to model the concept of intermit-
tent connectivity and transient variables sharing in a very
straightforward way.

In general, the current work in delay tolerant networking
propose ad hoc solutions targeting particular problems in
specific deployment scenarios. Moreover, they are more fo-
cussed on networking issues rather than on the definition of
application-level abstractions and programming paradigms.
The contribution and the novelty of our work is that it de-
fines a flexible and expressive set of primitives and high-
level abstractions for this challenging class of networks and
in general for systems for which spatio-temporal aspects are
important.
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6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a set of primitives for

communication in delay tolerant networks. As part of the
framework we have defined a communication middleware
which supports the primitives. We have also provided a
formal specification of the primitives by using the Mobile
UNITY notation. We consider this work as the foundation
and the starting point of our investigation on the design and
the formal definition of middleware for delay tolerant sys-
tems and, in general, for systems where spatial and temporal
aspects are relevant. As part of our future work, we plan
to verify the formal properties of the architecture and, pos-
sibly, of various dissemination strategies by using the proof
logic of Mobile UNITY.

Another interesting issue is the choice of the values of the
blocking time of the primitives and expiration time of the
messages. In some scenarios, it is possible to estimate such
timeouts, as in the Interplanetary Internet Project [7], where
the delays are strictly related to the rotation and revolution
of the planets and the orbits of the satellites. The same
applies for systems where the message delivery is performed
by mobile carries with predefined schedule, as in the case
of a bus with a timetable that can be known in advance.
However, in some systems, it is not possible to make these
estimations a priori. Therefore, we believe that it is neces-
sary to introduce feedback mechanisms in order to provide
developers with some estimation of the average delivery de-
lays (by using mechanisms similar to the Unix command
ping) in order to tune the timeouts of the middleware.

Moreover, the primitives presented in this paper may be
used to design more complex distributed systems. Namely,
the middleware architecture could be extended with the ad-
dition of a layer for publish/subscribe systems for delay tol-
erant networks. Subscriptions and notifications may be de-
livered by means of mechanisms similar to those described
in this paper. We want to investigate this issue further.

We also plan to study in detail the design of intelligent
dissemination and forwarding strategies, in order to enrich
the semantics of replication and dissemination just sketched
in this paper. In this sense, we have started investigating
different epidemic models and how they relate to mobile
network topologies [13].

Another interesting aspect that we would like to investi-
gate is an extension of the idea of location. We believe that
it is possible to replace the definition of location with the
broader concept of context. In fact, in many situations, we
would like to be able to express not only the geographical
position, but also other concepts such as co-location (i.e.,
the message has to sent only if the host is co-located with a
certain host).
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