
Model Checking ATL and its epistemic
extensions

Franco Raimondi, Alessio Lomuscio
Department of Computer Science
University College London, UK

{f.raimondi, a.lomuscio}@cs.ucl.ac.uk

March 1, 2005

Abstract

We present an OBDD-based methodology for verifying multi-agent systems
specified by the logic ATL. We present an implementation, discuss traditional
multi-agent systems examples, and report experimental results by comparing the
implementation to MOCHA, a state-of-the-art model checker for ATL.

1 Introduction

Model checking is a formal verification technique that allows for the automatic verifi-
cation of large, distributed systems. The key idea of model checking is to represent a
system by means of a semantical model, and a property of the system by means of a
logical formula. Model checking is the process of verifying (possibly automatically)
that a system complies with a required property; this is done by verifying that a formula
is true in a model.

Model checking was traditionally put forward to verify specifications given in tem-
poral logics [7]. Recently, however, researchers have extended model checking tech-
niques to other modal logics, including some typical multi-agent systems (MAS) log-
ics, thereby allowing to verify formally a range of multi-agent systems. Examples of
efforts on this line include [27, 4, 9, 21, 23, 18]. These works share the model check-
ing approach but differ in the logic specification language, and in the specific model
checking technique.

We aim to make further progress in this line by analysing the formal verification
of epistemic extensions of the standard Alternating-time Temporal Logic (ATL). ATL
was introduced by Alur et al [2] to reason about strategies in multi-player games. A
model checker for this logic has been developed [1]. As noticed in [10], the logical
models for ATL share many similarities with logical models for MAS and, following
this intuition, van der Hoek and Wooldridge proposed the logic ATEL [11]. ATEL is an
extension of ATL with epistemic operators, whose semantics is based on multi-agent
systems and not on game structures. However, it has been argued [14, 17, 15, 16] that



ATEL semantics differs from the original ATL semantics. In particular, [17, 15, 16]
have proposed a different semantics for ATL operators in MAS, henceforth referred
to as ATOL, while [26] has clarified the original ATEL proposal. Without wishing to
continue this debate, it seems to us that both logics are worth exploring, as they seem to
express different properties. ATEL stresses what agents may bring about by guessing
moves; in this sense, ATEL is more suitable to reason about unwanted states of affairs
(see Section 5.2). On the other hand, ATOL seems more appropriate when reasoning
about feasible plans (see Section 5.1). Against this background, and in parallel with this
discussion, [11, 10, 22] suggested different techniques to reduce the problem of ATEL
model checking to standard ATL model checking, with the idea of using MOCHA, the
only existing model checker for ATL, for model checking MAS.

In this paper we consider model checking algorithms for ATEL and ATOL based on
ordered binary decision diagrams (OBDD’s), and we present MCMAS, a model checker
for the automatic verification of ATEL and ATOL formulae The tool is available for
download, together with the examples presented below, under the terms of the GPL
license. MCMAS has a dedicated programming language (ISPL), that allows for the
efficient specification of MAS in a natural way. Differently from previous approaches,
our tool does not involve the translation or the reduction of the problem of model
checking to plain ATL, and it allows for the automatic verification of ATOL formulae
which, to our knowledge, is not supported by any implementation.

The rest of the paper is organised as follows. In Section 2 we review the logic ATL,
some basic model checking methodologies, and the formalism of interpreted systems
upon which our tool is based. In Section 3 we discuss ATEL and ATOL, and we
introduce two algorithms for model checking these logics. In Section 4 we present the
tool that implements these algorithms. In Section 5 we verify two examples by means
of our tool, and we discuss again the properties of ATEL and ATOL. In Section 6 we
compare the performance of our tool against MOCHA, and we conclude in Section 7.

2 Preliminaries

In this section we review the main formalisms that we shall use in the remainder of
this paper. We first introduce the logic ATL, and then we present the main concepts of
OBDD-based model checking; finally, we describe the formalism of interpreted systems
to model multi-agent systems. We will consider extensions of ATL to multi-agent
systems in Section 3.1, where our choices for the chosen model checking algorithm
will be argued.

2.1 ATL

The syntax of the temporal logic ATL (Alternating-time Temporal Logic) [2] is defined
as follows. Let AP be a finite set of atomic propositions, let Σ = {1, . . . , n} be a set
of players, and let Γ ⊆ N be a subset of the set of players. Well-formed ATL formulae
are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉Gϕ | 〈〈Γ〉〉(ϕUψ)

2



In [2], the formula 〈〈Γ〉〉ϕ is read as “the set of agents Γ can enforce ϕ”. ATL can thus
be seen as a refinement of the temporal logic CTL [7] where the path quantifiersE and
A are replaced with quantification over a set of players. Indeed, quantification over the
set of all players is read as the existential quantifier of CTL, while quantification over
the empty set of agent is read as the universal quantifier of CTL.

The semantics of ATL formulae is given in terms of concurrent game structures
(CGS). A CGS is a tuple < Σ, S, AP, h, d, δ > where Σ is a set of players, S is a
finite set of states, AP is a set of atomic propositions, h : AP → 2S is a labelling
function, di : Σ × S → IN is the number of moves available to a player i in a state
(moves are labelled with natural numbers), and δ : S × d1 × . . . × dN → S is an
evolution function that associates a state to a (current) state and a set of moves, one
for each player. A strategy for player i is a function fi that maps sequences of states
to a natural number, corresponding to a move available to player i at the end of the
sequence: fi : S+ → IN , such that fi(s) < di(s) for all states in the sequence. Given
a state s ∈ S, a set of players Γ, and a set of strategies FΓ = {fi|i ∈ Γ}, the set
out(s, FΓ) ⊆ S+ is the set of sequences that the group Γ can enforce in s. A sequence
of states s0, s1, . . . is denoted with π, and π(i) = si denotes the state at place i in the
sequence. Satisfaction of an ATL formula in a state s ∈ S of a given CGS is defined as
follows:

s |= p iff s ∈ h(p),
s |= ¬ϕ iff s 6|= ϕ,
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,
s |= 〈〈Γ〉〉Xϕ iff there exists a set of strategies FΓ s.t. for

all computations π ∈ out(s, FΓ), π(1) |= ϕ.
s |= 〈〈Γ〉〉Gϕ iff there exists a set of strategies FΓ s.t. for

all computations π ∈ out(s, FΓ) and
∀i ≥ 0, π(i) |= ϕ.

s |= 〈〈Γ〉〉(ϕUψ) iff there exists a set of strategies FΓ s.t. for
all computations π ∈ out(s, FΓ), ∃i ≥ 0
s.t. π(i) |= ψ and ∀0 ≤ j < i, π(j) |= ϕ

It is worth noticing here that the definitions above assume that every player has
complete information about the system. Under this assumption, it has been proven
in [2] that the model checking problem for ATL is PTIME-complete. If a player has
incomplete information, then his strategy can depend only on the observable part of the
history of the game; in this case, the model checking problem for ATL is undecidable
(see [2], p.708).

2.2 OBDD-based model checking

The problem of model checking can be defined as establishing whether or not a model
M satisfies a formula ϕ (M |= ϕ). Though M could be a model for any logic, tra-
ditionally the problem of building tools to perform model checking automatically has
been investigated for temporal logics [7, 13], and more recently for ATL [1]. The
model M is usually represented by means of a dedicated programming language, such
as PROMELA[12], SMV [20], and REACTIVEMODULES [1]. In many approaches, the
model for the program is not built explicitly, but symbolically. Techniques to achieve
this are based on ordered binary decision diagrams, SAT translations [3], or other al-
gebraic structures. These approaches are often referred to as symbolic model checking
techniques; other approaches exist, notably with automata [12]. For the purposes of
this paper, we review briefly symbolic model checking using OBDD’s.

3



OBDD’s are an efficient representation for the manipulation of boolean functions.
OBDD’s of different functions can be composed efficiently: in [5] algorithms are pro-
vided for the manipulation and the composition of OBDD’s.

The key idea of model checking a logic by using OBDD’s is to represent states
and relations in a model by means of boolean formulae. Any formula of the logic is
then identified with a set of states, i.e. the states of the model satisfying the formula.
As set of states can be represented as a boolean formula, each formula of the logic
can be characterised by a boolean formula. Thus, the problem of model checking can
be reduced to the construction of boolean formulae. This is achieved by composing
OBDD’s, or by computing fix-points of operators on OBDD’s; we refer to [2, 13] for
more details. Using this technique, systems with a state space in the region of 1040

have been verified for the temporal logic CTL.

2.3 Interpreted systems

In this section we introduce the formalism of interpreted systems. We will sometimes
overload the notation used in Section 2.1, to underline the similarities between CGS
and interpreted systems.

An interpreted system [8] is a semantic structure representing a set of agents Σ =
{1, . . . , n}. Each agent i ∈ Σ is characterised by a finite set of local states Li and by a
finite set of actions Acti that may be performed. Actions are performed in compliance
with a protocolPi : Li → 2Acti . Notice that this definition of protocols allows for non-
determinism in the system. The environment in which agents “live” may be modelled
by means of a special agent E, modelled by a set of local states LE, a set of actions
ActE , and a protocolPE . A tuple g = (l1, . . . , ln, le) ∈ L1×. . .×Ln×LE, where li ∈
Li for each i, is called a global state and gives a description of the system at a particular
instance of time. The evolution of the agents’ local states is described by a function
ti : Li×LE×Act1× . . .×Actn → Li which gives the “next” local state as a function
of the current local state of the agent, the environment, and all the other agents’ actions.
We assume that, in every state, agents evolve simultaneously (such a system is usually
referred to as lock-step system). The evolution of the (global states of the) system may
be described by a function t : G × Act → G, where G ⊆ (L1 × . . . × Ln × LE)
denotes the set of reachable global states, and Act = Act1 × . . . × Actn × ActE
denotes the set of joint actions. The function t is the composition of all the functions
ti, and it is defined by t(g, a) = g′ iff ∀i, ti(li(g), a) = li(g

′), where li(g) denotes the
local state of agent i in global state g. The set G of reachable global states is obtained
by considering all the possible evolutions of the system from a set of initial global
states, denoted with I . Finally, to complete the description of a MAS, a set of atomic
propositionsAP is introduced, together with a valuation function h : AP → 2G.

In symbols, we will denote an interpreted systems IS with a tuple
IS =

〈

(Li, Acti, Pi, ti)i∈Σ , I, h
〉

. Interpreted systems have been proven a suitable se-
mantics for reasoning about temporal and epistemic properties of agents [8, 19]. Model
checking algorithms and tools have been developed for the verification of epistemic and
temporal properties of MAS expressed in the formalism of interpreted systems [9, 23].

4



3 Model checking ATL and its epistemic extensions

Some problems arise when evaluating ATL formulae on semantical models designed
for multi-agent systems. We review the relevant literature on this subject in Section 3.1.
In Section 3.2 we introduce two different algorithms for the verification of ATL in
interpreted systems systems using OBDD’s.

3.1 ATL and multi-agent systems

In Section 2.1 and 2.3 the same symbol Σ was used to denote a set of players and
a set of agents. Indeed, many similarities are evident between CGS’s and interpreted
systems. In both formalisms there are individual actors (the players and the agents), and
these actors are allowed to perform certain moves (or actions), depending on the state
in which they are. Moves (or actions) label transitions between states; these transitions
generate a temporal evolution of the system, starting from a set of initial states. In this
line, it seems natural to reason about strategies for agents in MAS, and not only for
players of a game.

3.1.1 ATEL

In [11], the logic ATEL, an extension of ATL, is introduced. In addition to coopera-
tion modalities, ATEL includes epistemic operators Ki, one for each agent i ∈ Σ, and
operators for group modalities to characterise common knowledge, distributed knowl-
edge, and knowledge in a group of agents. The semantics of ATEL formulae may
be given in terms of an interpreted system IS ([11] uses epistemic transition systems,
but the differences are minimal). We define a strategy for agent i as a function from
global states to a set of actions: fi : G → 2Act (notice that we are dropping here the
assumption of perfect recall as assumed in [2]). As in Section 2.1, FΓ denotes a set
of strategies for the group of agents Γ, and out(g, FΓ) denotes the set of sequences
(or computations) from global state g that the group Γ can enforce. Satisfaction of an
ATEL formula ϕ in global state g of an interpreted system IS is defined as follows:
g |= p iff g ∈ h(p),
g |= ¬ϕ iff g 6|= ϕ,
g |= ϕ1 ∨ ϕ2 iff g |= ϕ1 or g |= ϕ2 ,
g |= 〈〈Γ〉〉Xϕ iff there exists a set of strategies FΓ s.t. for

all computations π ∈ out(g, FΓ), π(1) |= ϕ.
g |= 〈〈Γ〉〉Gϕ iff there exists a set of strategies FΓ s.t. for

all computations π ∈ out(g, FΓ) and
∀i ≥ 0, π(i) |= ϕ.

g |= 〈〈Γ〉〉(ϕUψ) iff there exists a set of strategies FΓ s.t. for
all computations π ∈ out(g, FΓ), ∃i ≥ 0
s.t. π(i) |= ψ and ∀0 ≤ j < i, π(j) |= ϕ

g |= Ki(ϕ) iff for all g′ s.t. l(g) = l(g′), g′ |= ϕ.

(we refer to [11, 8] for the

remaining group modalities). We say that a formula ϕ is true in an interpreted system
IS , written IS |= ϕ, if g |= ϕ, ∀g ∈ I . The authors of [11] suggest that the problem of
model checking ATEL formulae can be reduced to verification of ATL formulae, using
the MOCHA model checker [1], and they present an example of this translation.

The interpretation of ATL formulae in multi-agent system models, however, raises
some issues on the interpretation of the ATL operators. These problems have been

5



noted by van der Hoek and Wooldridge in [26], and by other authors [14, 17, 15, 16].
Indeed, unlike in CGS, in the formalism of interpreted systems:

1. agents have incomplete information about the system (in the sense of [2]), be-
cause agents are not allowed to observe the other agents’ local states (therefore,
they cannot distinguish between epistemically equivalent global states);

2. the protocols are non-deterministic, and agents may perform different actions in
the same state, or in two epistemically equivalent states.

These differences may cause counter-intuitive properties to hold true in certain mod-
els. This happens, for example, in the simple card game introduced in [14, 17] and
discussed in Section 5.1. It has been suggested by van der Hoek and Wooldridge [26]
that the ATEL operator 〈〈Γ〉〉 does not express the idea that the group Γ has a a strategy
to enforce a state of affairs. Instead, 〈〈Γ〉〉 may be read as group Γ has the possibility
of bringing about something, perhaps by “guessing” the moves in epistemically equiv-
alent states. Although this is not the intended meaning of the operators as given in [2],
it seems to us that this interpretation is useful in certain circumstances; we provide a
motivational example of this in Section 5.2.

3.1.2 ATOL

If, differently from above, one wants to remain close to the original interpretation of
〈〈Γ〉〉 as being able to enforce a state of affairs, changes are needed in the interpreta-
tion of ATL operators over interpreted systems. The key idea, presented in [16, 17], is
to restrict the evaluation of the ATL operators to uniform (or feasible) strategies in an
interpreted system. A strategy is said to be uniform if (1) it is a valid strategy, in the
sense of Section 3.1.1, and (2) if two global states are related via an epistemic relation
for agent i, then agent i must perform the same action in the two states. Instead of con-
sidering a single agent, in point (2) above it is possible to consider a collective strategy
for a group of agents and impose various conditions of the accessibility relations. We
refer to [16] for more details. For the purposes of this paper, when considering a group
of agents, we will impose that each agent in the group performs the same action in
epistemically equivalent states.

For the purposes of this paper, we are not interested in the full syntax of ATOL (as
presented in [16]), and we do not see major issues in the extension of what is presented
below to the full ATOL. We will consider the following subset of the language of
ATOL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈Γ〉〉•Xϕ | 〈〈Γ〉〉•Gϕ | 〈〈Γ〉〉•(ϕUψ)|Ki(ϕ)

In [16, 17], the semantics of this language is given as follows:

6



g |= p iff g ∈ h(p),
g |= ¬ϕ iff g 6|= ϕ,
g |= ϕ1 ∨ ϕ2 iff g |= ϕ1 or g |= ϕ2,
g |= 〈〈Γ〉〉•Xϕ iff there exists a set of uniform strategies FΓ s.t. for

all computations π ∈ out(g, FΓ), π(1) |= ϕ.
g |= 〈〈Γ〉〉•Gϕ iff there exists a set of uniform strategies FΓ s.t. for

all computations π ∈ out(g, FΓ) and
∀i ≥ 0, π(i) |= ϕ.

g |= 〈〈Γ〉〉•(ϕUψ) iff there exists a set of uniform strategies FΓ s.t. for
all computations π ∈ out(g, FΓ), ∃i ≥ 0
s.t. π(i) |= ψ and ∀0 ≤ j < i, π(j) |= ϕ

g |= Ki(ϕ) iff for all g′ compatible with the strategy
and s.t. l(g) = l(g′), g′ |= ϕ.

To interpret ATOL formulae in interpreted systems IS , we proceed as follows. We
consider the set Θ of all the uniform strategies for the agents in IS . For each strategy
s ∈ Θ, we build a new interpreted system IS s(s ∈ Θ), which is identical to IS , except
that the protocols for the agents must be consistent with the uniform strategy s (i.e.
the protocols must prescribe the same action in epistemically equivalent states). In
line with the original ATOL semantics, we evaluate an ATOL formula as true in IS if
the formula holds in at least one of the generated interpreted systems {IS s}s∈Θ We
provide more details about the interpretation of ATOL formulae in Section 3.2.2.

3.2 Model checking algorithms

In this section we present two algorithms for the verification of ATEL and ATOL for-
mulae in an interpreted system. Our approach is similar, in spirit, to the traditional
model checking techniques for the temporal logic CTL [7], and to the approach pre-
sented in [23]. Indeed, we reduce the problem of verification of a formula to the
verification of the equivalence of two boolean formulae. In particular, we proceed
as follows. Given an interpreted system IS =

〈

(Li, Acti, Pi, ti)i∈Σ , I, h
〉

, we be-
gin by computing the number of boolean variables vi(i ∈ IN) required to encode
the local states of an agent, denoted with nv(i): nv(i) = dlog2|Li|e. Similarly, to
encode an agent’s action, the number of boolean variables wi(i ∈ IN) required is
na(i) = dlog2|Acti|e. Thus, a global state g can be encoded as a boolean vector
(v1, . . . , vN ), where N =

∑

i

nv(i). A joint action a can be encoded as a boolean

vector (w1, . . . , wM ), where M =
∑

i

na(i). A set of global states (or joint actions)

can be expressed as the disjunction of the boolean formulae encoding each global state
in the set. Having encoded local states, global states, and actions by means of boolean
variables, all the remaining parameters can be expressed as boolean functions of these
variables. Indeed, since the protocols relate local states to set of actions, they can
also be expressed as boolean formulae. The evolution functions can be translated into
boolean formulae, too. The set of initial states is easily translated, while h can be
translated into a function returning a set of states, i.e. a boolean function.

3.2.1 Model checking ATEL

In addition to the parameters presented above, the algorithm for model checking ATEL
requires the definition of a boolean function Rt(g, g′), representing a possible transi-
tion between the global states g and g′. Rt(g, g′) can be obtained from the evolution

7



SAT (ϕ) {
ϕ is an atomic formula: return h(ϕ);
ϕ is ¬ϕ1: return G \ SAT (ϕ1);
ϕ is ϕ1 ∧ ϕ2: return SAT (ϕ1) ∩ SAT (ϕ2);
ϕ is 〈〈Γ〉〉Xϕ1: return SATX(ϕ1, Γ);
ϕ is 〈〈Γ〉〉(ϕ1Uϕ2): return SATU (ϕ1, ϕ2, Γ);
ϕ is 〈〈Γ〉〉Gϕ1: return SATG(ϕ1, Γ);
ϕ is Kiϕ1: return SATK(ϕ1, i);
}

Figure 1: ATEL algorithm

functions ti by quantifying over actions. This quantification can be translated into a
propositional formula using a disjunction (see [7] for a similar approach to boolean
quantification):

Rt(g, g
′) =

∨

a∈Act

[(t(g, a, g′) ∧ P (g, a)]

where P (g, a) is a boolean formula imposing that each component of the joint action
a is consistent with the agents’ protocols in global state g. The above gives the desired
boolean relation between global states. Also, to evaluate the epistemic operatorK, it is
necessary to restrict the epistemic accessibility relations to reachable states. The set G
of reachable global states can be expressed symbolically by a boolean formula, and it
can be computed as the fix-point of the operator τ(Q) = (I(g)∨∃g′(Rt(g′, g)∧Q(g′)).
The fix-point of τ can be computed by iterating τ(∅) by standard procedure (see [7]).
Epistemic accessibility relations can be expressed using boolean functions RKi : these
functions are defined by imposing equivalence on local states.

Figure 1 presents the algorithm for model checking ATEL formulae, based on the
parameters presented above. SAT (ϕ) computes the set of global states (expressed
as a boolean formula) in which ϕ holds. The support procedures SATX and SATK
are presented in Figure 2, while SATG and SATU are defined in a standard way (see
also [2, 11] for a similar approach). The main idea is to express SATG and SATU
as fix-point of operators based on SATX . The procedure SATX(ϕ,Γ) uses a double
quantification on actions and returns the set of states from which there exists an action
for the agents in Γ such that, for all actions of the agents in Σ\Γ, a transition is enabled
such that in the next state ϕ holds. In the support procedures, ActΓ denotes a joint
action performed by group Γ.

3.2.2 Model checking ATOL

The model checking algorithm for ATOL formulae requires to perform evaluation of
uniform strategies only (see Section 3.1.2). To this end, it is still possible to use the
encoding of the parameters into boolean formulae as presented at the beginning of
Section 3.2, but the algorithm of Figure 1 needs to be modified. Given an ATOL
formula ϕ and an interpreted system IS , we proceed as follows:

8



SATX(ϕ, Γ) {
Y = {g|∃g′ s.t. Rt(g, g′) and ∃a ∈ ActΓ s.t.

∀b ∈ ActΣ\Γ, t(g, 〈a, b〉, g′) and g′ ∈ SAT (ϕ)}
return Y ;

}
SATK(ϕ, i) {

X = SAT (¬ϕ);
Y = {g ∈ G s.t. RK

i (g, g′) and g′ ∈ X}
return ¬Y;

}

Figure 2: ATEL support procedures

1. We determine the set of agents that appear under any ATOL operator in ϕ; we
denote this set with ∆.

2. We compute all the uniform collective strategies for agents in ∆, denoted with
F∆.

3. For each uniform strategy s ∈ F∆, we compute the set of reachable global states
where agents in ∆ adhere to s; we denote this set withGs. Similarly, we compute
new transition relations Rst (g, g

′). We assume that agents not in ∆ are allowed
any strategy, i.e. they are not restricted to uniform strategies.

4. For each s ∈ F∆, we evaluate the formula ϕ using the parameters Gs and
Rst (g, g

′). If the formula is true, we stop the algorithm and we return true.

5. If there is no strategy in F∆ for which the formula holds, we return false.

Figure 3 summarises the algorithm; notice that the support procedure SAT2ATOL
is similar to the procedure in Figure 1. Due to space limitation, we do not report the
details of all the support functions, but these can be easily inferred as an extension of
the procedures of Figure 2.

Although the number of uniform strategies may grow exponentially, in our algo-
rithm we keep a symbolic representation of the strategies, and we avoid to pre-compute
all the parameters. Instead, they are built on-the-fly and the process terminates as soon
as a valid strategy is found. Of course, in the worst case this may lead to an exponential
number of steps, but this is intrinsic in the nature of ATOL. However, in the experiments
presented below, we did not notice big differences in performance between ATEL and
ATOL verification.

4 Implementation

In this section we present an implementation of the algorithms presented in Section 3.2.
In the implementation, interpreted systems are described using the language ISPL (In-
terpreted Systems Programming Language). Figure 4 gives a short example of this

9



SATATOL(ϕ) {
∆ = compute uniform agents(ϕ);
F∆ = compute uniform strategies(∆);
for each ( s ∈ F∆ ) {
Gs = compute reachable states(s);
Rs

t = compute transition relation(s);
if ( I == SAT2ATOL(ϕ, Gs, Rs

t ) ) {
print ( ”ϕ is TRUE” );
}

}
print ( ”ϕ is FALSE” );
}

SAT2ATOL(ϕ, Gs, Rs
t ) {

ϕ is an atomic formula: return h(ϕ);
ϕ is ¬ϕ1: return G \ SAT2ATOL(ϕ1, G

s, Rs
t );

ϕ is ϕ1 ∧ ϕ2: return SAT2ATOL(ϕ1, G
s, Rs

t )∩
SAT2ATOL(ϕ2, G

s, Rs
t );

ϕ is 〈〈Γ〉〉Xϕ1: return SAT2ATOL−X(ϕ1, Γ, Gs, Rs
t );

ϕ is 〈〈Γ〉〉(ϕ1Uϕ2): return SAT2ATOL−U (ϕ1, ϕ2, Γ, Gs, Rs
t );

ϕ is 〈〈Γ〉〉Gϕ1: return SAT2ATOL−G(ϕ1, Γ, Gs, Rs
t );

ϕ is Kiϕ1: return SAT2ATOL−K(ϕ1, i, G
s, Rs

t );
}

Figure 3: ATOL algorithm

10



Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Action = {a1,a2,a3};
Protocol:
s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Figure 4: ISPL example

language. We refer to the files available online for the full syntax of ISPL. ATEL and
ATOL formulae to be checked are provided at the end of the specification file, using an
intuitive syntax.

MCMAS automatically parses the specification and builds the relevant parameters,
stored as OBDD’s using the library provided by [25].

We have implemented the two algorithms of Section 3.2. MCMAS is able to recog-
nise whether a formula is an ATEL formula, or an ATOL formula, and calls the relevant
function to compute the set of states in which a formula holds, in the form of an OBDD.
To determine whether or not a formula holds in the interpreted system, its OBDD is
compared with the OBDD representing the set of initial states, and the appropriate out-
put is produced.

MCMAS can be run from the command line, and accepts various options to modify
verbosity, to inspect OBDD’s statistics and memory usage, to enable variable reordering
in the OBDD’s (see [25]), etc. These options can be used to determine the “critical”
points, and to fine tune the performance of MCMAS.

MCMAS is written in C/C++ and it has been successfully compiled on various plat-
forms, including PowerPC (Mac OS X 10.2 and 10.3), Intel (various Pentium flavours
using Linux 2.4 and 2.6), and SPARC (SunOS 5.8 and 5.9). The source code has been
compiled with gcc/g++ from version 2.95 till version 3.3.

5 Examples

Although MCMAS is engineered for large systems whose state space may approach
1040, here we exemplify its usage on two small MAS examples. The examples further
clarify the subtle differences between ATEL and ATOL.

11



<A,K> <A,Q> <K,A> <K,Q> <Q,A> <Q,K>

<−,−>

Win Lose Win Lose Win Lose Win Lose Win Lose Win Lose

Keep Change

Change

Keep

Change
Keep

Keep

Change

Keep

Change

Change

Keep

Figure 5: A simple card game

5.1 Card game

This example is presented in [15] and in [17]: an agent (the player) plays a simple card
game against another agent, the environment. There are just three cards in the deck:
Ace (A), King (K), and Queen (Q); A wins over K, K wins over Q, and Q wins over
A. In the initial state no cards are distributed; in the first step, the environment gives a
card to the player and takes a card for itself. In the second step, the player can either
keep its card, or change it. The game is depicted in Figure 5. A description of this
scenario in terms of interpreted systems can be easily obtained, and it is available in
the downloadable files. This example illustrates how ATEL semantics differs from the
original meaning of ATL operators. Indeed, it is possible to check with MCMAS that the
ATEL formula 〈〈player〉〉F (Win) is true in this scenario. As remarked in Section 3.1,
the ATEL formula above expresses what player may bring about, by randomly selecting
the correct move in a global state. In this example, however, it seems more natural to
reason with an operator to express the fact that the agent is able to enforce a particular
state of affairs. This is equivalent to require that the agent has a feasible (or uniform)
strategy, by using the ATOL formula 〈〈player〉〉•F (Win) As expected, MCMAS reports
that the formula is false. This result expresses the fact that the agent does not have a
feasible plan to enforce a favourable state of affairs.

Our approach on the analysis of plans is slightly different from [16]. Indeed, the
evaluation of propositions in interpreted systems is based on states, and there is no
machinery to reason about actions in formulae. Hence, we avoid to express concepts
such as “knowledge of a strategy”, or “common knowledge of a strategy in a group”,
and we see strategies as a property of the model, instead of a group of agents. This is
enough to allow model designers to verify the presence of strategies in their models.

5.2 Prisoners’ dilemma

In certain cases, we do not want to reason about feasible strategies; instead, we are
interested in the analysis of what may happen in the worst case scenario. We give an
example of this by means of a well known situation: the prisoners’ dilemma.

The dilemma goes as follows: author1 and author2 are arrested, suspected of being
the authors of the serious crime of plagiarism. They are kept apart, and the police
examines them separately. If they both confess, they will receive five years of jail
sentence; if neither confesses, they will receive one year for lack of strong evidence.
However, if one confesses but the other does not, the confessor will go free, while the
other will receive a ten years jail sentence.

12



N. crypt. |M | MOCHA MCMAS

3 7 · 1013 0.35sec 0.36sec
4 7 · 1018 2.32sec 3.8sec

Table 1: Time requirements for 10 formulae.

We are interested here in the following question: is it true that author2 has a way to
send author1 to prison?

It is not difficult to describe this scenario with the ISPL language (see the down-
loadable files). We introduce the proposition author1-prison, which is true if the first
author does not go free in the final state. MCMAS correctly reports that the ATEL for-
mula 〈〈author2〉〉F (author1-prison) is true in this interpreted system (notice that, in this
case, the equivalent ATOL formula would be true as well).

By extending this simple example to more complex scenarios, ATEL formulae may
be used to determine whether or not a component of a system has the power to enforce
some unwanted state of affairs. In this kind of analysis we are not interested in the fact
that an agent (or a group of agents) has a feasible strategy. Instead, designers typically
want to verify that a system is safe, irrespective of the (possibly random) choices of
some of the components. It seems to us that ATEL offers the proper semantics to
express such claims.

6 Experimental results

The examples presented above were checked in less than 0.1sec by MCMAS a standard
PC, thus we do not consider them meaningful for evaluating the performance of our
tool on bigger examples.

Instead, in this section, we will consider the protocol of the dining cryptographers
as presented in [6] to evaluate MCMAS against MOCHA [1], the only model checker
available for ATL. We will not introduce the details of the protocol here; for the sake
of this paper, it is only important that the example is fairly large, it involves temporal
properties, and it can be easily scaled up. We ran the test on a Pentium 4 at 2.8GHz
with 1Gbytes of RAM and running Linux (Kernel 2.4.20). The average times required
to check ten temporal-only formulae (MOCHA does not support epistemic operators)
are reported in Table 1.

We noticed that MOCHA is faster than MCMAS in the construction of the initial pa-
rameters: it only takes 1 second to construct a model of the protocol with 4 cryptogra-
phers. MCMAS, instead, is slower in constructing the initial OBDD’s for the parameters
(3.6sec for a similar model construction), but it is actually faster in the verification of
formulae. We think that this difference may be due to different implementation choices:
MOCHA may compute certain parameters on-the-fly, in the verification process, while
we pre-compute the majority of the parameters before the verification process, with the
exception of ATOL parameters. Moreover, in MCMAS we build OBDD’s for epistemic
accessibility relations, and for other parameters that are specific of interpreted systems.
This is not done in MOCHA, and might itself be the reason for the difference.

13



N.Crypt. |M | OBDD’s nodes Memory
3 ≈ 7 · 1013(46) ≈ 104 ≈ 4.4 MB
4 ≈ 2 · 1018(62) ≈ 6 · 104 ≈ 5.2 MB

Table 2: Memory requirements.

Finally, we report statistics about the memory usage for the tool. These are reported
in Table 2 (in brackets we report the number of boolean variables used).

We see these as encouraging results. MCMAS compares well with MOCHA, a
mature model checker for ATL, and has functionalities not supported by it. Moreover,
the use of OBDD’s allows for a dramatic reduction in the state space, as can been seen
when the number of states in the model is compared with the number of OBDD-nodes
in Table 2. Furthermore, we believe that the ISPL language that we use is well suited
for MAS specification.

7 Conclusion and future work

We have presented two algorithms and a tool for model checking ATEL and ATOL
formulae in multi-agent systems. This analysis has prompted us to some comments
on the issues related to epistemic extensions of ATL in MAS. We have tested MCMAS

with two small examples to ground our claims on ATEL and ATOL. By verifying a
fairly large example, we found that MCMAS has a performance comparable to the more
mature MOCHA model checker, although it surpasses it in functionality, given its ability
to check epistemic formulae.

While we see these as encouraging results, we also acknowledge that more work
is required before a mature product is delivered to system designers. In particular, we
did not tackle the issue of fairness constraints in the verification process, and we did
not investigate the complexity of model checking for ATEL and ATOL. It is known [2,
11] that ATL and ATEL have a PTIME model checking algorithm when the model is
given explicitly, but the complexity of the problem may grow when we relax certain
assumptions on the model (see [24]). On top of this, in our case the model is given
symbolically in terms of variables, and the size of the model could grow exponentially
in the number of variables. It would be interesting to evaluate the complexity of ATEL
and ATOL model checking when such a symbolic representation is given.

Finally, we did not consider the issue of counter-example generation for unsatisfi-
able formulae: establishing why a formula is false may be, in certain conditions, just
as useful as establishing that a formula is true in a model. We leave all these issues for
further work.

References

[1] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA:
Modularity in model checking. In Proceedings of the 10th International Confer-

14



ence on Computer Aided Verification (CAV’98), volume 1427 of LNCS, pages
521–525. Springer-Verlag, 1998.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages 193–207. Springer-
Verlag, 1999.

[4] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
agentspeak. In J. S. Rosenschein, T. Sandholm, W. Michael, and M. Yokoo, ed-
itors, Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-agent systems (AAMAS-03), pages 409–416. ACM Press, 2003.

[5] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, 35(8):677–691, 1986.

[6] D. Chaum. The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

[9] P. Gammie and R. van der Meyden. Mck: Model checking the logic of knowledge.
In Proceedings of 16th International Conference on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

[10] V. Goranko and W. Jamroga. Comparing semantics for logics of multi-agent
systems. Synthese, 139(2):241–280, 2004.

[11] W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epis-
temic goals. In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), pages 1167–1174. ACM Press, 2002.

[12] G. J. Holzmann. The model checker SPIN. IEEE transaction on software engi-
neering, 23(5), 1997.

[13] M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, Cambridge, England,
2000.

[14] W. Jamroga. Some remarks on alternating temporal epistemic logic. In B. Dunin-
Kȩplicz and R. Verbrugge, editors, Proceedings of the International Workshop on
Formal Approaches to Multi-Agent Systems (FAMAS’03), pages 133–140, 2004.

15



[15] W. Jamroga. Using Multiple Models of Reality. On Agents who Know how to Play
Safer. PhD thesis, University of Twente, Enschede, The Netherlands, 2004.

[16] W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta
Informaticae, 62:1–35, 2004.

[17] G. Jonker. Feasible strategies in alternating-time temporal epistemic logic. Mas-
ter’s thesis, University of Utrech, The Netherlands, 2003.

[18] M. Kacprzak and W. Penczek. A SAT-based approach to unbounded model
checking for alternating-time temporal epistemic logic. Synthese, 142:203–227,
2004.

[19] A. Lomuscio. Knowledge Sharing among Ideal Agents. PhD thesis, School of
Computer Science, University of Birmingham, Birmingham, UK, June 1999.

[20] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[21] W. Nabiałek, A. Niewiadomski, W. Penczek, A. Półrola, and M. Szreter. VerICS

2004: A model checker for real time and multi-agent systems. In Proceedings
of the International Workshop on Concurrency, Specification and Programming
(CS&P’04), volume 170 of Informatik-Berichte, pages 88–99. Humboldt Univer-
sity, 2004.

[22] S. van Otterloo, W. van der Hoek, and M. Wooldridge. Knowledge as strategic
ability. ENCTS, 85(2):1–23, 2003.

[23] F. Raimondi and A. Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: an algorithm and its implementation. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04), 2004.

[24] P.Y. Schobbens. Alternating-time logic with imperfect recall. ENTCS, 85(2):1–
12, 2004.

[25] F. Somenzi. CUDD: CU decision diagram package - release 2.4.0. http://
vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

[26] W. van der Hoek and M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

[27] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multiagent
systems with mable. In Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

16


