
Reasoning about Trust Groups to Coordinate
Mobile Ad-Hoc Systems

Licia Capra

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
L.Capra@cs.ucl.ac.uk

Abstract. The increasing popularity of mobile computing devices, cou-
pled with rapid advances in wireless networking technologies, have cre-
ated the infrastructure needed to support the anywhere-anytime com-
puting paradigm. Middleware systems have started to appear that aim
at facilitating coordination among these devices, without the user even
thinking about it, thus receding technology into the background. How-
ever, faced with overwhelming choice, additional support is required for
applications to decide who can be trusted among this plethora of inter-
acting peers. In this paper we propose a coordination model that exploits
trust groups in order to promote safe interactions in the ubiquitous en-
vironment. Trust groups are asymmetric, that is, each device has its own
view of the groups it belongs to, and long-lived, that is, their lifetime
spans an extended period of time, despite group membership being dy-
namically handled. The dynamics of trust group creation, evolution and
termination are described, based on the history of interactions of the
device and on the ontology used to encode the context of trust. The pro-
grammer efforts required to reason about trust groups when coordinating
mobile ad-hoc systems are discussed.

1 Introduction

Mobile computing devices, such as mobile phones, personal digital assistants,
digital cameras and the like, are getting increasingly ubiquitous. Their computing
capabilities are growing quickly, while their size is shrinking, so that we rely on
an everyday larger number of devices to accomplish any task at hand. Wireless
networks of broader bandwidth allow these mobile units to aggregate and form
complex distributed system structures, thus providing users anytime-anywhere
access to their personal information, as well as public resources and services.

Coordinating these devices has been recognised as a major challenge. Mo-
bile ad-hoc networks form opportunistically, with nodes entering and leaving
the communication range dynamically. The execution context changes quickly
as well, and devices are required to react to variations in both local and remote
resource availability. In order to simplify application programming, new coordi-
nation paradigms that take into consideration the characteristics of the mobile

computing environment have emerged, and middleware systems that support
these paradigms have been developed. For example, JEDI [1] offers a publish-
subscribe coordination paradigm that enables nodes to interact, despite network
disconnections, by exchanging events; Lime [2] exploits tuple-space based prim-
itives, together with an abstraction of context as data, to facilitate coordination
both among mobile devices and between devices and their execution context.

However, one of the most difficult challenges of the mobile ad-hoc environ-
ment has not received much attention yet, that is, how to decide who to trust in
this plethora of opportunistically connected peers. Each time an interaction takes
place, we face an inherent risk as we can never be certain of the trustworthiness
of the entities we interact with, or that mediate the interaction. The perceived
risk is much higher in mobile ad-hoc settings than in traditional distributed sys-
tems, because of the lack of administrative boundaries, the anonymity of the
entities we interact with, the speed at which new entities come into reach while
others disappear, and so on. In these circumstances, collaboration may seriously
be hindered and mobile devices may prefer to shut down connectivity, unless
they are provided with a means to reduce the exposure to risky transactions.

A trust management framework (TMF) offers a solution to the problem. It
aims at reducing the uncertainty that characterises mobile ad-hoc interactions
by enabling devices to form, exchange and evolve trust opinions about other
agents in the system. Such a trust management model should not be artificially
imposed on the user, but rather perceived as natural, thus making it ultimately
invisible. In order to achieve this goal, trust dynamics in the human society have
to be observed and captured into computer models. The following two aspects
of human trust are of particular relevance:

We reason as individuals - Intuitively speaking, trust can be defined as the de-
gree of belief about the behaviour of another entity, or agent, upon which we
depend (for example, to have a service delivered). These beliefs are usually
based on our direct experiences with the agent (i.e., our history of interac-
tions), and on recommendations (i.e., advice) that other agents provide us.
Individuality of reasoning implies that the same history of interactions and
the same set of recommendations may lead different people to form different
beliefs about the trustworthiness of the same agent, because their natural
disposition to trust (i.e., the way they reason about past experiences and
recommendations) may differ.

We behave in groups - The entities we most frequently interact with form fairly
stable groups; for example, we often eat in the same restaurants, we buy
books from the same booksellers, and so on. Also, before interacting with
an agent for the first time, we seek the advice of entities we know and trust:
our family, our friends, our colleagues at work, and, in general, fairly stable
communities of recommenders that share our interests and opinions.

In order to support subjective reasoning, we have developed hTrust [3], a trust
management model and framework that relieves the application programmer
from tedious tasks, such as collecting and processing recommendations from
other agents in the network, while exporting a simple interface that, given in

2

input the pseudonym of an entity, returns a trust prediction of the entity’s
behaviour. To capture the natural disposition to trust of the user of the device,
and thus support subjectivity of reasoning that is typical of human trust, users
can customise a set of functions that hTrust internally uses to compute trust.

We argue that supporting subjective reasoning is not enough. The informa-
tion each device has to manage to reason about trust can be massive; for example,
when asking for recommendations about a particular agent, hundreds or thou-
sands of replies may be returned to the device for processing. However, only a
very small fraction of these recommendations are actually taken into considera-
tion (those coming from our acquaintances, that is, our trust groups), as most of
them will typically come from unknown, or untrustworthy, recommenders. We
argue that, besides enabling subjective reasoning, trust group modeling must
be supported, in order to achieve more efficient and effective processing of trust
information, as well as to foster a more natural coordination paradigm.

In this paper, we present a novel coordination model for mobile ad-hoc net-
works that reasons about trust groups to decide who to interact with. In Sec-
tion 2, we provide an overview of hTrust, pointing out its limitations as far as
coordination of mobile ad-hoc systems is concerned1. Section 3 characterises the
trust groups we are interested in (i.e., long-lived groups that are asymmetrically
defined by each agent), and it formalises the dynamics of trust group creation,
evolution and dissolution, based on an agent’s history of interactions and on the
ontology used to encode the context of trust. In Section 4 we discuss a coordina-
tion middleware that realises the trust group model previously defined. Section 5
compares our work with others in the field and, finally, Section 6 concludes the
paper and examines future directions of research.

2 hTrust Overview

hTrust promotes trust-aware collaborations in mobile ad-hoc networks by en-
abling each trustor agent a to collect and process trust information about a
trustee agent b, so to form a trust opinion before interaction takes place. Sources
of trust information are: direct experiences and recommendations.

Direct Experiences. The trustor’s history of interactions with b is processed
and kept locally in the form of a single aggregated trust information tuple:

[a, b, l, s, k, t].

The meaning of the tuple is as follows: agent a trusts agent b at level l ∈ [−1, 1]
(−1 meaning total distrust, and 1 meaning blind trust) to carry out service
s. For example, we may specify that Alice (a) trusts Bob’s eBookshop (b) at
level 0.8 (l) to sell travel books (s). Because in mobile ad-hoc settings agents
can have only a partial knowledge of their surroundings, their trust opinions

1 Although we describe trust group reasoning on top of the trust management model
we have previously developed, the concepts illustrated in this paper can be applied
to different TMFs.

3

Agent a

Social
Context

- Aggregated Trust Tuples
- Application-specific

Parameters

Trust Dissemination

Trust Formation

Trust Evolution

hTrust

Applications

Communication Middleware

Local
Environment

Recommendations

Fig. 1. hTrust Overview.

contain a level of uncertainty. In order to distinguish between ‘don’t trust’ (i.e.,
trust-based decision) from ‘don’t know’ (i.e., lack of evidence), we explicitly
model the degree of knowledge k ∈ [0, 1] in the trust opinion expressed, with 0
meaning unknown, and 1 meaning perfect knowledge. The higher the number
of direct experiences happened between the trustor and the trustee, the higher
the degree of knowledge. The trustor’s knowledge k decays with time; we thus
associate, to each tuple, a timestamp t indicating at which time the knowledge k
refers to. A service s of particular importance, provided by virtually every agent
in the system, is the service of supplying the recommendations themselves. In
human interactions, we tend to value more recommendations coming from people
who have given us good recommendations in the past (i.e., people with whom
we shared opinions), while discarding recommendations coming from unknown
recommenders, or from recommenders with whom we had divergence of opinions.
Agents are thus judged based on the quality of the recommendations they give,
in the same way they are assessed for any other service they provide.

Recommendations. When direct experiences are not available (e.g., because no
interaction has ever happened in the past between the trustor and the trustee),
the trustor may ask other agents in the environment (what we call the social
context) for recommendations. For example, Alice may be willing to buy books
from Bob’s eBookshop provided that it has been recommended by Clare (agent
x). A recommendation tuple sent by x about agent b looks like:

[x, b, l, s, k, t]SKx
.

A recommendation is thus computed by signing the local aggregated tuple; a
signature is necessary to prove the recommendation’s authenticity. We refer to
x as to the agent’s pseudonym; it is the piece of information the agent is known
for in the system (e.g., its public key2).

Fig. 1 shows hTrust model overview. The trust formation component is used
whenever agent a is willing to make a prediction about the trustworthiness of an-
other agent b; both a’s past opinion about b and recommendations are processed
(using customisable functions) to compute a range of possible trust values. In-
tuitively, the lower the confidence in the trust data (parameters k and t), the

2 We assume each agent has got a pair of public/private keys (perhaps more than
one), that is managed via an independent public-key management system specifically
developed for ad-hoc networks (e.g., [4, 5]).

4

wider the predicted range, and viceversa. Recommendations are collected by the
trust dissemination component. Upon completion of an interaction between a
and b, the trust evolution component of agent a updates a’s local environment:
the aggregated trust information tuple that refers to b is updated based on b’s
just perceived trustworthiness; moreover, the tuples referring to agents that have
sent a new recommendations about b are updated based on the difference be-
tween the recommended and the perceived trust. Details about the algorithms
used to realise trust formation, dissemination and evolution can be found in [3].

Although enabling subjective reasoning, the social network model hTrust is
based on, that is, a flat collection of individual agents, is too simplistic and
far from reality. In human interactions, we view the social network as a set
of (possibly overlapping) communities, and we most frequently coordinate with
the communities we belong to. By modeling the social network as a collection of
communities (or groups), rather than a collection of individuals, more effective
and efficient trust reasoning can be achieved. For example, when seeking for rec-
ommendations about a specific service provider, rather than querying the social
network at large, we may query only the community of people that we know can
provide us with useful information about it, thus increasing the quality of the
information received (effectiveness), and reducing the number of recommenda-
tions that have to be processed (efficiency). In the following section, we illustrate
how to model groups on top of a flat social network and how to exploit them to
promote trust-aware coordination.

3 Trust Group Coordination Model

Groups can be characterised using two orthogonal dimensions: symmetric versus
asymmetric, and volatile versus long-lived. In a symmetric group, each member
has the same view of who the other members of the group are; for example,
the Mobile System Group at UCL is a symmetric group. Symmetric groups
often have wide visibility, and their existence is acknowledged even by non-
members; new members are usually accepted after explicit join requests have
been processed. In an asymmetric group instead, each member has its own vision
of who the members of the group are; for example, the group of Ann’s friends may
include Bob, but Bob’s group of friends may not include Ann. Asymmetric groups
have local visibility, and their dynamics are entirely defined by the member
whose point of view is under consideration. Volatile groups have a very short
lifetime, that is, they are created, managed and then destroyed rather quickly;
for example, the group of people on a train from London to Cambridge. Long-
lived groups have a longer lifetime instead, although membership can be very
dynamic; for example, the group of our colleagues at work.

All combinations of these characteristics are plausible. In this paper, we focus
on asymmetric, long-lived groups, as we believe they best suit our target scenario.
To begin with, because of the dynamicity of mobile ad-hoc settings, symmetric
groups cannot be efficiently maintained; even simple issues, such as using a voting
procedure to accept a new member in a group, could become very difficult to

5

deal with, if current group members cannot be reached for long periods of time.
Second, as trust is subjective, it is unlikely that all members of a group would
reach a consensus, further supporting our focus on asymmetric groups. Finally,
as trust opinions are strongly based on past experiences, reasoning about volatile
groups would do no better than performing a random choice about who to trust
and who not to, as there would be no historical information to rely on.

In the remainder of the paper, we illustrate how to reason about asymmetric,
long-lived trust groups to coordinate mobile ad-hoc systems.

3.1 Groups of Trust

The first question we need to answer is: who do we want to include in a trust
group (i.e., who are we willing to coordinate with)? Usually, we want to include
only those agents that have been trustworthy in the past, and that we have
known long enough to give us confidence they will be trustworthy also in the
future. Both information, that is, trustworthiness and confidence, can be found
in the aggregated trust information tuples.

Given a set I of aggregated trust tuples, the set of agents we are willing to
include in a trust group at a particular point in time is defined as follows:

Aτ (tnow) = {x | x ∈ πtrustee(at ∈ I|fτ (at) ≥ τmin)},

where πtrustee projects a tuple onto the trustee field; fτ is an agent’s specific
function that computes the expected minimum trust of agent x based on the
aggregated trust tuple at = [a, x, l, s, k, t]; and τmin ∈ [−1, 1] represents an
agent specific threshold so that, if the expected minimum trust is below τmin,
the agent is not included in the trust group. Different choices of fτ are plausible,
because of the subjective nature of trust. An example of fτ is the following:

fτ : I → [−1, 1]

fτ ([a, x, l, s, k, t]) = l −∆l, ∆l = l − l ∗ k ∗max
(
0,

T − (tnow − t)
T

)
,

where ∆l represents the potential loss of trust due to time and knowledge un-
certainty, and T is the time interval during which interactions are observed.
This function takes into consideration the fact that trust information is time-
sensitive: the older the information, the higher the uncertainty it embeds. For
example, given the aggregated trust tuple at = [a, b, 0.75, bookseller, 0.92, 1∗t],
parameter τmin = 0.45, and T = 10 ∗ t for some time unit t, then b would
be included in a’s trust group at time tnow = 3 ∗ t as the following holds:
fτ (at) = 0.75− (0.75− 0.75 ∗ 0.92 ∗ 10∗t−(3∗t−1∗t)

10∗t) = 0.75− 0.19 = 0.56 ≥ τmin.
The above definition causes a projection of all the aggregated trust tuples

an agent has collected over an arbitrary long history of interactions and recom-
mendation processing, onto the group of tuples whose trustees currently have an
expected minimum trustworthiness that is above an agent’s defined threshold.
By promoting an agent’s coordination with the entities belonging to this group,

6

the risks inherent to interactions in uncertain environments are reduced. How-
ever, this first level of grouping is not enough to support effective and efficient
trust reasoning. For example, when we are looking for a trustworthy electronic
bookseller, we would like to focus only the (trustworthy) agents that provide
such service, without processing the aggregated trust information that refers to
different services. We argue that, as trust information is context-dependent (i.e.,
it refers to a specific service), context must be taken into consideration when
modeling trust groups. In the following section, we illustrate how to identify
groups of agents that share the same interests (i.e., the same context).

3.2 Groups of Interest

As shown in Section 2, each aggregated trust tuple [a, b, l, s, k, t] contains infor-
mation about the context s to which the trust information refers to. This context
can be simply defined as the type (or category) of service that the trustee b pro-
vides; for example, the above tuple may express a’s trust in b as a s =‘book
seller’, s =‘flight booker’, s =‘restaurant advisor’, and so on. In this work, we
assume that context is represented by means of a shared ontology. In its simplest
instance, an ontology [6] includes a vocabulary (i.e., the syntax), a taxonomy
(i.e., the semantics - a tree structure imposed over a vocabulary), and a set of re-
lationships among the elements of the taxonomy. Various ontologies (e.g., [7–9])
have been proposed to describe classes of services, each with different expressive
power and targeted to different domains. In this paper, we are not interested
in what particular ontology is used; we simply exploit its tree structure, where
each node represents a service category, this being a sub-category of its parent
node. We also make the assumption that each mobile device has access to (the
portion of) the tree that defines services of interest to him.

Given the group Aτ (tnow) of the agent’s most trusted interacting peers at
time tnow, we operate a partition based on different service categories, and define
a set of groups of interest, that is, groups whose members are providers of the
same type of service si (or its sub-categories) , as follows:

A(τ,si)(tnow) = {x | x ∈ πtrustee(at ∈ I|fτ (at) ≥ τmin

∧ πservice(at) = instanceOf(si))},
(1)

πservice being a function that projects a tuple onto the service field, and si being
a service category in the ontology in use. As each A(τ,si)(t) contains a smaller
number of members than Aτ (t), the processing of trust information gains in
terms of efficiency, as fewer trust tuples have to be processed to decide with
whom to interact. However, to promote effectiveness of reasoning as well, our
definition of groups must be further refined; in particular, we aim at capturing in
our trust groups those agents that are fairly stable over time, as these are more
likely to provide us with useful information in the future, as opposed to agents
with whom we share only very short and/or unstable periods of interactions.
In the next section, we illustrate how stable groups of trustworthy agents that
provide the same type of service can be identified and maintained over time.

7

recommending

books electronics

fiction biographytravel

thrillerhorror

Stable groups created
at time T’=5*T

G thriller (T’) = {e}

G horror (T’) = {b,d}

Trust tuples collected
at time T’=5*T

[a,b,0.8,horror,0.7,tb]
[a,c,0.7,horror,0.6,tc]

[a,d,0.9,horror,0.8,td]
[a,e,0.7,thriller,0.9,te]
[a,f,0.6,thriller,0.7,tf]
[a,g,0.4,thriller,0.3,tg]
[a,h,0.8,thriller,0.2,th]

(a) (b) (c)

Fig. 2. Group Dynamics - Group Creation Example.

3.3 Group Dynamics

The lifecycle of agent a’s trust groups can be described as follows.
Phase 0 - Knowledge Gathering. Let T be the time interval during which a

observes interactions in the environment. During the first T ′ = p ∗ T time inter-
vals, the basic mechanisms of hTrust are used to allow agent a to gather trust
information about other agents in the system (in the form of direct experiences
and recommendations). This information is maintained in the agent’s local envi-
ronment as aggregated trust tuples associated to the nodes of the ontology tree
in use, depending on the service category they refer to.

Phase 1 - Group Initialisation. After p time intervals have passed, and the local
environment has been populated with aggregated trust tuples, a process starts
that aims at grouping these tuples into stable trust communities of interest. In
particular, the ontology tree is traversed bottom-up, and for each node a stable
group is created as follows:

G(τ,si)(p ∗ T) = { x | #{y ∈
p⊎

j=1

A(τ,si)(j ∗ T)|y = x} ≥ µ }(2)

where µ ≤ p is an agent-defined parameter indicating the minimum number of
times an agent x must have been considered trustworthy (according to defini-
tion 1) over the last p observations to be included in the current group of stable
interacting peers. The closer the value of µ to the number p of time intervals
that have been observed, the more stable the defined group. Let us consider, for
example, the ontology tree shown in Fig. 2(b); for the first p = 5 time intervals,
a uses hTrust to maintain local trust tuples, arriving at time 5 ∗ T with the set
of aggregated tuples shown in Fig. 2(a). Every T time units, formula 1 is used
to compute a snapshot of trusted groups of interests. For example, assuming
A(τ,horror) to be ∅ at time T , {d} at time 2T , {b, d} at time 3T , {b, d} at time
4T , and {b, c, d} at time 5T , and assuming µ = 3, then a stable trust group
G(τ,horror)(5T) = {b, d} is created, as shown in Fig. 2(c).

Phase 3 - Group Maintenance. Instead of querying the social context at large
to decide which agents to coordinate with, the group associated to node s in the
ontological tree is considered whenever agents operating in context s are needed.
After initial stable groups have been created using formula 2, the following more

8

general formula is applied to maintain stable trust groups of interest over time:

G(τ,si)((p + q) ∗ T) = { x | #{y ∈ (G(τ,si)((p + q − 1) ∗ T)\
A(τ,si)(q ∗ T)] A(τ,si)((p + q) ∗ T)) | y = x} ≥ µ }

(3)

This formula is computationally cheaper than formula 2 as each stable group is
computed based on 3 sets only: G(τ,si)((p + q − 1) ∗ T), that is, the stable group
of interest si computed at the last observation time p+ q−1; A(τ,si)(q ∗T), that
is, a snapshot of trustworthy agents providing service si at p observations ago;
and A(τ,si)((p + q) ∗ T), that is, the current snapshot of trustworthy agents of
service si at time p + q. New direct interactions of a with other agents in the
system, as well as newly received recommendations, are fed into the system and
accounted for in the computation of this last set (see formula 1).

If a group of agents associated to service category s is not found in the tree,
the tree is traversed bottom-up until a group is found; note that, the further up
we move, the lower the chances to find such a group, because loss of precision
in context definition implies lower trust values for the agents (i.e., the chances
for an agent’s trust to pass the threshold τmin defined in formula 1 decrease).
If a group is not found either on node s or on the nodes on the path from s to
the root, hTrust basic mechanisms are used to gather fresh information about
available providers of service s; a group creation may follow. It may also happen
that, although a group exists, a is not satisfied with it, as it contains too few
members (this number sizemin being agent specific). Consider, for example, the
case where group cardinality is exactly 1: in this situation, agent a would restrict
its interactions to a single other agent in the system, thus severely restricting its
coordination within the social context. However, many other agents may exist
that a trusts in a very similar, although not identical, context. For example, ac-
cording to Fig. 2, agent a would consider recommendations of thriller books only
from agent e; however, there exists another group of agents (i.e., b and d) that
are trusted in a similar (although not identical) context (i.e., recommendations
of horror books). In these situations, it would be better to merge similar, very
small groups into a bigger one, thus increasing the variety of trust information
processed and, consequently, the potential for coordination. Before defining the
dynamics of group merging, a definition of similarity of context is required.

Given two nodes s1 and s2 in the ontology tree, we define the distance of
the two nodes d(s1, s2) as the least number of nodes for s1 to traverse to s2

3.
For example, the distance between ‘horror’ and ‘books’ in Fig. 2(b) is 2. Based
on this definition, we can describe group merging as follows. For simplicity, we
focus on the merge of the stable group g1 of a child node s1, with the stable
group g2 of a father node s2; the merging among n groups arbitrarily placed in

3 The definition of distance we have provided may be enriched using weights associated
to the various nodes of the given ontology. For example, assuming the existence of
another leaf ‘romance’ being subnode of ‘fiction’, we may want our definition of
distance to return a higher value for the distance between ‘romance’ and ‘horror’,
than the value returned for the distance between ‘horror’ and ‘thriller’. In this paper,
we do not investigate this possibility.

9

Merge 1: horror/fiction
Gfiction(T’)={b,d} Ghorror(T’)={} Gthriller(T’)={e}

fiction

[a,b,0.8,horror,0.7,tb]
[a,d,0.9,horror,0.8,td]
[a,e,0.7,thriller,0.9,te]

Trust tuples before merging

G thriller (T’) = {e}

recommending

[a,b,0.53,horror,0.7,tb]
[a,d,0.6,horror,0.8,td]
[a,e,0.7,thriller,0.9,te]

books electronics

travel biography Merge 2: thriller/fiction
Gfiction(T’)={b,d,e} Ghorror(T’)=Gthriller(T’)={}

(b)

[a,b,0.8,horror,0.7,tb]
[a,d,0.9,horror,0.8,td]
[a,e,0.47,thriller,0.9,te]

G horror (T’) = {b,d}
horror thriller

(a)

Fig. 3. Group Dynamics - Group Merging Example.

the ontology tree can be defined as a sequence of this basic merge operation.

merge(g1, g2) =
{

x | x ∈ g1 ∪ g2 ∧ if x ∈ g1 then fτ (at′) ≥ τmin(4)

with at = [a, x, l, s1, k, t] 7→ at′ = [a, x, l′, s1, k, t], l′ = l ∗
(
1− h(s2 \ s1)

Dmax

) }
After merging, s1 is left without group, while s2 has an associated group that
contains the union of g1 and g2. When moving one level up in the ontology tree,
the aggregated trust tuples of the agents in g1 have to be adjusted, as they now
refer to a different (broader) context. In particular, given the aggregated tuple
at = [a, x, l, s, k, t] for an agent x in g1, the trust value l in at is replaced by
l′ = l ∗ (1 − h(s2\s1)

Dmax
), with Dmax being the maximum distance between two

arbitrary nodes in the ontology tree (for a balanced ontology tree, Dmax would
be 2 ∗ height, height being the depth of the tree), and h(s2 \ s1) representing
the maximum distance between s1 and any newly acquired context (that is, the
maximum distance between the parent node s2 and any of its descendants not
belonging to the subtree rooted in s1). Intuitively, the broader the new context
to which agents in g1 refer to (that is, the deeper the ontological subtree to
which they are associated after merging), the higher the fading of the trust
values to which they are associated (because of lower precision in the definition
of the context of trust). Fig. 3 shows an example of this process. On the left
hand side (a), the state before merging is shown: two stable groups have been
defined and associated to service categories ‘horror’ and ‘thriller’ respectively;
the aggregated trust tuples that refer to agents in these groups are also shown.
Because these groups contain very few members, they are merged in two steps,
as shown on the right-hand side (b): a merge between horror and fiction occurs
first, leaving the group for horror empty, while creating a new group for fiction
and adjusting the trust values for agents b and d using the formula l′ = l ∗ (1−
1
3) (Dmax = d(recommending, horror) = d(recommending, thriller) = 3, and
h(fiction \ horror) = d(fiction, thriller) = 1); a second merge between thriller
and fiction leaves the group for thriller empty and enlarges group fiction, while
adjusting the trust value for agent e. Note that, when adjusting the trust tuple
values during merging, so to take into account the additional uncertainty due to
the loss of precision in the specification of context, an agent’s trust level fτ (at′)
may not reach the minimum value τmin required for that agent to belong to

10

Split 1: books/fiction
Gfiction(T’)={b,d,e} Gbooks(T’)={j}

recommending

books

fictiontravel

thrillerhorror

G books (T’) = {b,d,e,j}

Trust tuples before splitting
[a,b,0.35,horror,0.7,tb]

[a,b,0.53,horror,0.7,tb]
[a,d,0.6,horror,0.8,td]
[a,e,0.47,thriller,0.9,te]
[a,j,0.62,travel,0.8,tj]

[a,d,0.4,horror,0.8,td]
electronics[a,e,0.31,thriller,0.9,te]

[a,j,0.62,travel,0.8,tj]

biography Split 2: fiction/horror
Ghorror(T’)={b,d} Gfiction(T’)={e} Gbooks(T’)= {j}

[a,b,0.8,horror,0.7,tb]
[a,d,0.9,horror,0.8,td]
[a,e,0.47,thriller,0.9,te]
[a,j,0.62,travel,0.8,tj]

(a) (b)

Fig. 4. Group Dynamics - Group Splitting Example.

a trust group (see formula 4). If this is the case, the agent is not included in
the newly formed group, thus remaining an orphan: its trust tuple goes back to
the local environment knowledge database, with the trust value restored to the
context it originally referred to.

Group merging proceeds until either a group is created with sufficient mem-
bers, or the group is dissolved (because the loss in context precision causes the
agents’ trustworthiness not to pass the minimum threshold). Viceversa, when a
accesses an intermediate node whose group is too highly populated (this number
sizemax > sizemin being agent’s specific), a split procedure is started, to refine
the originally oversized group (oversizing may happen as a result of maintaining
groups originated from merge procedures, thus covering broad contexts). Group
splitting requires symmetric operations to be performed: given a stable group
g1 of a parent node s1, the agents in g1 whose context s belongs to the subtree
rooted in the node s2 (child of s1) are removed from g1 to form an indepen-
dent group g2 associated to s2

4. Also, trust values are re-adjusted (in particular,
increased), as a consequence of precision gain in context definition.

split(g1) = (g′1, g2) | g′1 = g1 \ g2 ∧(5)

g2 =
{

x ∈ g1 | πcontext(at) = instanceOf(s2)

with at = [a, x, l, s2, k, t] 7→ at′ = [a, x, l′, s2, k, t], l′ = l/
(
1− h(s2 \ s1)

Dmax

) }
Fig. 4 shows an example of this procedure. Before splitting (a), a single group
containing agents b, d, e, j is associated to node ‘books’. After a first split (b),
a new group is created and associated to ‘fiction’, and the trust values of inter-
ested agents (i.e., b, d, e) are adjusted using the formula l′ = l/(1− 1

3) (Dmax =
d(recommending, horror) = d(recommending, thriller) = 3, and
h(books \ fiction) = d(books, travel) = d(books, biography) = 1). A second
split follows that creates a group associated to service category ‘horror’, while
adjusting the trust values of agents b, d.

Groups are implicitly dissolved in three circumstances: during a group merge
(the child node group is dissolved), during a group split (the parent node group
4 Note that, during merging, the context specified in the trust information tuples was

not changed, so that the original context the tuples refer to is not lost.

11

Communication Layer

Local Environment

Ontology Trust Tuples Trust GroupsAppl-spec Info

Trust Management
Framework (hTrust)

Group Management
Framework

Subjective Reasoning Group Reasoning

C
oo

rd
in

at
io

n
 M

id
dl

ew
ar

e Application

Fig. 5. Coordination Middleware.

may be dissolved if it does not contain further members), and during group
maintenance if no agents survive the pruning defined by formula 3 (e.g., because
of inactivity or loss of trust).

As shown, groups are dynamically managed by means of both reactive and
proactive operations: merging and splitting are reactively performed when anoma-
lous situations are detected by a upon accessing a trust group in the ontological
tree, while maintenance is proactively repeated at regular intervals of time on the
currently defined trust groups. Also, hTrust basic mechanisms of querying the
network at large are used from time to time, to provide a with fresh information,
thus avoiding the risk of over-restricting a’s knowledge of its surroundings.

4 Trust Group Coordination Middleware

The model described in the previous sections has been realised by means of the
coordination middleware depicted in Fig. 5 (components that are not the fo-
cus of the paper, such as discovery, are not shown). The middleware provides
the device (and its applications) with an image of the mobile ad-hoc system
as a collection of communities, each focused on a specific service category, and
populated by the most trusted agents delivering that service (according to the
agent’s perspective); low-level and tedious tasks, such as handling device con-
nectivity, developing recommendation exchange protocols, implementing group
dynamics etc., are not exposed to the applications. Application developers engi-
neer trust-based collaborations by means of two simple interfaces: an interface
that enables subjective reasoning about individual agents, and an interface that
enables group reasoning. The former is provided by hTrust [3]: given an agent’s
pseudonym in input, the agent’s expected trust is returned, based on the agent’s
past behaviour and the collected recommendations; maintenance of the agent’s
history of interactions in the form of aggregated trust tuples is performed by
hTrust, without the application having to care about it. However, as argued be-
fore, subjective reasoning is not enough, as mobile ad-hoc settings are populated
by large numbers of devices providing the same services, and it would be highly
inefficient to make a prediction about all of them before deciding with whom to
interact. The latter interface, realised using the model described in this paper,
overcomes this limitation: given in input a service category, the group of stable,
most trusted agents delivering that service is returned. In particular, our group

12

management model processes the information contained in the aggregated tu-
ples and, together with an ontology of service categories of interest to the agent,
dynamically maintains stable trusted group of agents delivering the same ser-
vice. As a result, an agent can more efficiently and effectively decide who to
coordinate with.

We argue that the coordination model described in this paper is well-suited
for the mobile setting for the following reasons: first, it is completely decen-
tralised (i.e., each agent is a self-contained unit of trust information, with groups
defined in a completely asymmetric way). Moreover, the resource demands im-
posed by an implementation of the framework are customisable, so that devices
with different computing capabilities can tune the amount of resources devoted to
trust management. For example, application-specific parameters (e.g., minimum
trust level τmin) can be chosen so to cause different overheads. We acknowledge
the fact that a unique, optimal choice of these parameters does not exist, as they
are domain-dependent; it is our plan for the future to tailor the framework to
a specific application domain, and to empirically evaluate the impact of differ-
ent choices of these parameters both on resource usage, and on efficiency and
effectiveness gains over non group-based trust coordination models.

5 Related Work

The need to coordinate a growing number of mobile devices in scenarios dom-
inated by uncertainty and high dynamicity, such as the mobile ad-hoc setting,
has resulted in a growing community of researchers investigating trust manage-
ment issues. However, coordination models and frameworks that can effectively
support the engineering of trust-based collaborations in this kind of societies are
still at en early stage of research.

To date, most of the proposed solutions focus on providing support for sub-
jective reasoning. In [10], a trust management model is discussed to give au-
tonomous entities the ability to reason about trust, based on direct experiences
and recommendations. In [11], a mechanism for the management of distributed
reputation in mobile ad-hoc networks is presented, that is able to detect mali-
cious recommenders based on the idea of ‘recommendation reputation’, that is,
agents are judged based on the recommendations they have given in the past.
As part of the SECURE project [12], a trust management model has been de-
fined that makes explicit, for the first time, the distinction between trust and
knowledge (although the uncertainty that time brings in is not taken into con-
sideration). In [13], a different approach to distributed reputation management
is proposed, that prescribes the use of first-hand (non-aggregated) experiences
only. Various formalisms of trust (e.g., [14–17]) have been proposed too, in order
to help reasoning about trust. While supporting subjective reasoning to different
extents, none of these approaches attempts to model trust group reasoning.

Research in the area of group management is mainly found in the multi-
agent system community. However, most of these works are funded on completely
different assumptions that limit their applicability to our setting. For example,

13

approaches such as the one described in [18] focus on action coordination, that
is, how to distribute tasks rather than who to interact with. Other approaches
(e.g., [19]) tackle the issue of which other agents to deal with; however, they
assume that agents (and their roles) are known within the boundaries of a certain
organisation, and thus cannot be applied to the mobile ad-hoc setting. In [20],
the formation of trusted coalitions of agents is discussed; however, the paper
presents very early work and ideas, without details about how coalitions are
actually formed and how they evolve.

To the best of our knowledge, the model we proposed in this paper is the first
attempt to combine subjective trust reasoning with trust group management, in
a framework where the context of trust is also explicitly taken into account.

6 Conclusion and Future Work

Coordinating the large, always increasing number of devices that populate mobile
ad-hoc networks, has been recognised as a major challenge. In order to simplify
application programming, this paper has presented a coordination model that
fosters the engineering of trust-based collaborations, by means of long-lived,
asymmetric, trusted groups of interest. Trust information is gathered, in the
form of aggregated trust tuples, via a trust management framework, such as
hTrust. This flat, unorganised information is then processed to identity fairly
stable communities of an agent’s most trusted interacting peers, based on an
ontology that describes the service categories an agent accesses; the dynamics
of group creation, evolution and dissolution have been defined. Although group
management requires some additional resource consumption over non group-
based solutions, it later simplifies an agent’s reasoning about which other agents
to deal with, thus actually achieving more efficient and effective coordination.

Our plans for the future span various directions. In Section 4, we have dis-
cussed our intention to tailor the model to a specific application domain, in order
to analyse the impact of different choices of application-specific parameters onto,
for example, resource usage. Other issues on our agenda include refinements of
the ontological dimension of trust; in particular, we intend to provide a richer
definition of semantic distance, based on weights assigned to different nodes in
the tree. This would allow applications to influence the way merging and splitting
operations are performed. Also, at present, a unique minimum trust threshold
is defined for an entire ontological tree; in the future, we plan to assign different
thresholds to different subtrees, thus enabling applications to differentiate the
sensitivity of different services. Finally, although we assumed the existence of a
single, universally accepted ontology, it is very unlikely there will ever be one;
it is our intention to investigate techniques to perform probabilistic, on-the-fly
translations between different ontologies.

References

1. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on

14

Software Engineering 27 (2001) 827–850
2. Murphy, A., Picco, G.P.: Using Coordination Middleware for Location-Aware Com-

puting: A Lime Case Study. In: Proc. of the 6th International Conference on Co-
ordination Models and Languages (Coordination 2004). Volume 2949 of Lecture
Notes in Computer Science., Pisa, Italy, Springer-Verlag (2004) 263–278

3. Capra, L.: Engineering Human Trust in Mobile System Collaborations. In: Proc.
of the 12th International Symposium on the Foundations of Software Engineering
(SIGSOFT 2004/FSE-12), Newport Beach, CA, USA, ACM Press (2004) 107–116

4. Capkun, S., Buttyán, L., Hubaux, J.: Self-Organized Public-Key Management for
Mobile Ad Hoc Networks. IEEE Trans. on Mobile Computing 2 (2003) 52–64

5. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing Robust and Ubiquitous
Security Support for Mobile Ad-Hoc Networks. In: International Conference on
Network Protocols (ICNP), Riverside, California (2001) 251–260

6. Edgington, T., Choi, B., Henson, K., Raghu, T., Vinze, A.: Adopting ontology to
facilitate knowledge sharing. Communications of the ACM 47 (2004) 85–90

7. : Resource Description Framework (RDF). www.w3.org/RDF/ (2004)
8. : OWL-based Web Service Ontology. http://www.daml.org/services/owl-s/ (2004)
9. : Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.

http://www.w3.org/TR/wsdl20/ (2004)
10. Abdul-Rahman, A., Hailes, S.: Using Recommendations for Managing Trust in

Distributed Systems. In: Proc. of IEEE Malaysia International Conference on
Communication (MICC’97), Kuala Lumpur, Malaysia (1997)

11. Liu, J., Issarny, V.: Enhanced Reputation Mechanism for Mobile Ad Hoc Networks.
In: Proc. of the 2nd International Conference on Trust Management (iTrust). Vol-
ume 2995., Oxford, UK, LNCS (2004) 48–62

12. et. al., V.C.: Using Trust for Secure Collaboration in Uncertain Environments.
IEEE Pervasive Computing Mobile And Ubiquitous Computing 2 (2003) 52–61

13. Obreiter, P.: A Case for Evidence-Aware Distributed Reputation Systems - Over-
coming the Limitations of Plausibility Considerations. In: Proc. of the 2nd Inter-
national Conference on Trust Management (iTrust). Volume 2995., Oxford, UK,
LNCS (2004) 33–47

14. Jøsang, A.: A Logic for Uncertain Probabilities. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 9 (2001) 279–311

15. Carbone, M., Nielsen, M., Sassone, V.: A Formal Model for Trust in Dynamic
Networks. In: Proc. of First International Conference on Software Engineering and
Formal Methods (SEFM’03), Brisbane, Australia (2003) 54–63

16. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In:
Proc. of the 3rd European Symposium on Research in Computer Security (ES-
ORICS ’94), Brighton, UK (1994) 3–18

17. Weeks, S.: Understanding Trust Management Systems. In: Proc. IEEE Symposium
on Security and Privacy, Oakland, CA (2001) 94–105

18. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101 (1998) 165–200

19. Brooks, C., Durfee, E.: Congregating and Market Formation. In: Proc. of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Bologna, Italy, ACM Press (2002) 96–103

20. Griffiths, N., Luck, M.: Coalition Formation through Motivation and Trust. In:
Proc. of the Second International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Melbourne, Australia, ACM Press (2003) 17–24

15

