
A Coordination Model for Sentient Computing

Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
{L.Capra|W.Emmerich|C.Mascolo}@cs.ucl.ac.uk

Abstract. Sentient computing is a computing paradigm that aims at
making applications more responsive to their physical world. Environ-
mental information is captured by sensors, and when changes that are
relevant to the application (and its user) occur, actions are triggered.
Realising this conceptually simple dialogue between the application and
the environment poses a number of challenges, ranging from the diffi-
culty and tedium of monitoring a variety of heterogeneous sensors to
managing large sets of events triggered by the sensors, from processing
raw sensor data to aggregating events in an application specific man-
ner. In this paper we present a coordination model that orchestrates the
interactions between applications and their execution environment. We
describe a middleware architecture that realises this model, and report
on its implementation and evaluation.

1 Introduction

Sentient computing [1] is a computing paradigm that aims at making applica-
tions more responsive and useful by observing and reacting to the physical world.
Environmental information is captured by sensors, and when changes that are
relevant to the application (and its user) occur, actions are triggered. This com-
puting paradigm has been acknowledged to be particularly attractive in mobile
computing where applications running on portable devices, such as PDA and
mobile phones, are required to react to an always changing context while on the
move. For example, information about current temperature, pressure and hu-
midity could be gathered from different sensors and processed by an application
on our PDA while we are on holiday to make an accurate weather forecast.

The rapid technological advances we have been witnessing in recent years
are making sentient computing a reality. Modern households are flooded with
technology and so are our cars. The infrastructure needed to make sentient com-
puting a reality is also getting established, thanks to the rapid spread of wireless
networks of increasing bandwidth at a lower cost. However, the development of
the conceptually simple dialogue that forms the basis of sentient computing (i.e.,
‘monitor the environment until some condition holds and then trigger an action’),
turns out to be quite complicated instead. Sentient applications may be required
to respond to the stimuli provided by a variety of heterogeneous sensors (e.g.,

location sensors, light sensors, etc.). Large amounts of widely distributed data
are produced by sensors, which applications will have to process before deciding
whether a relevant change has occurred (e.g., an increase in the room tempera-
ture, together with the detection of smoke, may trigger a fire alert, while simple
changes in the room temperature may not be regarded as ‘relevant’). Processing
sensor data is not an easy task in itself, as there is usually a serious gap between
raw sensor data (e.g., location information of user A in terms of his x, y, z spatial
coordinates) and application-relevant data (e.g., location of A inside a building).

It would be highly ineffective to require application developers to take care
of implementing the sentient computing paradigm, thus re-inventing the wheel,
each time a new sentient application has to be realised. Rather, a middleware
based approach is called for, that takes care of coordinating applications with
the physical world, so that developers can concentrate on the application’s func-
tionalities. It is the middleware responsibility to: create a mapping between the
physical world, made of heterogeneous sensors, and the logical world that is
presented to application programmers as a set of uniform abstractions; perform
the monitoring of sensors and capture the events they produce at a high rate;
correlate the events on behalf of the application in arbitrarily complex ways and,
finally, trigger actions only when relevant changes have occurred. To the appli-
cation programmer, the middleware must only present a simple abstraction of
the physical world, together with an interface through which the key elements
of this abstraction can be dynamically specified.

In recent years, coordination models for the pervasive environment have
started to appear; however, they either do not take the dialogue between a
device and its context into consideration, focusing on the coordination between
interacting peers only, or they do not provide rich enough abstractions to model
complex context conditions. In this paper, we propose a coordination model for
sentient computing that exploits powerful abstractions and highly structured
data to meet the goals listed above. Section 2 illustrates the abstractions used
to close the gap between the logical and the physical environment. We then for-
mally define the semantics for event filtering, event aggregation and reaction,
that are the core actions describing the sentient computing dialogue. Because of
the possibly high number and variety of sensors and devices that must be coor-
dinated, and the consequently large amount of events that must be processed,
issues of scalability and performance must be taken into consideration. Section 3
presents the design of a middleware layer that realises our sentient coordination
model, and Section 4 reports on the middleware implementation and evaluation,
to prove its suitability to the target scenario. In Section 5 we compare our work
with others in the field and, finally, in Section 6 we draw our conclusions.

2 The Sentient Coordination Model

Fig. 1 depicts an overview of the sentient coordination model we have devel-
oped. As shown, coordination between the application and the physical world is
mediated by a middleware layer.

2

Mobile Host

Application

Middleware

Application
Profile

Programmer
Interface

Sensor Sensor Sensor Sensor Sensor

Application/Middleware
Dialogue

Middleware/Physical
World Dialogue

Fig. 1. Sentient Coordination Model Overview.

Dialogue between the Application and the Middleware. The main goal of the
middleware is to hide the complexity and the heterogeneity of the environment
to application developers, presenting them with an abstract model of the world
that is easier to understand and manipulate. In particular, the physical world ap-
pears to applications as a collection of resources, where a resource may vary from
a physical sensor (e.g., temperature sensor), to resources local to the device (e.g.,
battery), to other devices within reach (e.g., printers). We call configuration a
snapshot of the resources that make up the execution environment of an applica-
tion at any point in time. Not all resources are of interest to an application, nor
are all possible configurations. For example, a weather forecast application may
be interested in gathering information from a temperature sensor and a pressure
sensor, while not being interested in the data that an audio sensor provides.
Moreover, it may be interested in being informed when both temperature and
pressure jointly decrease below certain thresholds (as an indication of possible
rain), while not being interested in minor temperature/pressure oscillations. In
our coordination model, each application is associated with an application profile
where applications specify, in a simple declarative way, what are the configura-
tions of interest to their execution, and what behaviour should occur when these
configurations are entered.

Dialogue between the Middleware and the Physical World. For each running
application, the middleware interacts with the resources the application is inter-
ested in (i.e., those that appear in the profile), so to acquire information about
their status. These interactions may happen in a variety of ways, depending on
the nature of the resources themselves. In this paper, we do not describe these
specific, low level dialogues; rather, we assume that each interaction produces
data about the current status of the resource. It is the middleware responsibility
to collect raw data from the sensors, process them in an application-specific man-
ner, filter out irrelevant information and trigger application-defined behaviours
(as specified in the profile) when relevant configurations are entered.

In the reminder of this section, we formalise these two dialogues. First, we
describe what information is encoded in application profiles; second, we define
the semantics of profiles, with respect to the way they govern the coordina-
tion between the applications and the physical world. Finally, we illustrate the
programmer interface that application developers are presented with to build
sentient computing applications.

3

2.1 The Sentient Application Profile

As previously said, coordination between an application and the physical world
is realised by means of an application profile. Each application profile contains
information about how the application is willing to behave when particular con-
figurations are entered, where each configuration is expressed in terms of condi-
tions on homogeneously represented resources. For example, an application may
be willing to know when room temperature increases beyond 24� and someone is
in the room, so to automatically turn on the air conditioning. An application pro-
file thus establishes associations between particular physical world configurations
that depend on the status of one or more resources that the middleware moni-
tors, and policies (i.e., behaviours) that the middleware has to trigger when such
configurations are entered. The task of interacting with the actual resources to
obtain updated information about their status, of checking if one of the encoded
configurations is entered, and then of executing the corresponding behaviour, is
automatically performed by the middleware, without the application having to
implement these low-level tasks.

Fig. 3 illustrates the abstract syntax of an application profile. As shown,
a profile contains hierarchically structured data in the form of associations
(policyList) between policies (identified by name pname) and physical world
configurations (configList) that determine when each policy should be fired.
Each configuration (config) is uniquely identified inside the profile (cid), and
describes the status of one or more resources (resourceList). Each resource
(resource) is identified by a unique name (rname), and its status is described by
the result of applying a resource-specific operator (oname) to a set of associated
values (valueList). For example, (temperature, inBetween, {20, 25}) describes
resource temperature having one of the possible values {20, 21, 22, 23, 24, 25}
(captured using a temperature sensor). We use a model for the physical world
that is based on boolean algebra, which allows us to easily construct more com-
plex configurations starting from atomic formulae, using the ∧ (logical and) and
∨ (logical or) operators. An atomic configuration is represented by the 3-ary
predicate: < rname oname valueList >. Atomic formulae can then be combined
using (implicit) ∧ operators, to form more complex configurations to which a
new cid is assigned; finally, various configurations can be combined using (im-
plicit) ∨ operators and are then associated with a policy. In other words, each
configuration expresses the set of resource conditions that must simultaneously
hold (∧ operator) for a policy to be applied; these configurations are then put
in ∨ relation, as the same policy may be enabled in different contexts.

Fig. 4 shows an example of application profile; the application requires notifi-
cation (highTemperatureAlert) when the external temperature increases above
24�. Also, whenever specific configurations are entered (cid 2 and 3), it re-
quires the re-evaluation (computeWeatherPrediction) of the previously com-
puted weather forecast. Note that, once temperature has increased above 24�
and the corresponding alert has been fired, the application should not keep re-
ceiving notifications of the fact that temperature is above 24� every t time units
(i.e., at the frequency at which middleware processes temperature data). The se-

4

Σ : alphabet
P ⊂ Σ∗ : set of all policy names

N : set of all natural numbers
R ⊂ Σ∗ : set of all resource names
O ⊂ Σ∗ : set of all operator names

V : set of all values of resources in R
E ⊂ ℘(R×V) : set of all possible execution contexts

Fig. 2. Application Profile - Domain Sets.

profile ::= policyList | ε

policyList ::= policy policyList | policy

policy ::= pname configList

configList ::= config configList | config

config ::= cid resourceList

resourceList ::= resource resourceList | resource

resource ::= rname oname valueList

valueList ::= value valueList | ε

Fig. 3. Application Profile’s Abstract Syntax. pname ∈ P, rname ∈ R, cid ∈ N,
value ∈ V, oname ∈ O, being P, R, N, V, and O the domain sets listed in Fig. 2.

mantics we attach to each association is therefore the following. Configurations
are independent: if a policy has more than one configuration associated with
it, any of them (∨ semantics) can cause the policy to be fired. Moreover, each
configuration determines a partition of the context space; for example, cid=1
determines a partition between a context where temperature is greater than
24�, and one where its value is less than 24�. When the temperature raises
above 24� (i.e., when the physical world of interest to the application enters the
first element of the partition), the policy is fired; before this policy is fired again,
changes must have happened that have brought the physical world into a different
element of the partition. For example, when temperature increases above 24�
for the first time, a highTemperatureAlert is triggered. Before cid=1 causes
the policy to be fired again, temperature must have decreased below 24�, and
then gone back above 24�; therefore, while temperature keeps increasing, the
policy is not fired repeatedly, thus avoiding an undesired sequence of alerts.

A formalisation of this behaviour is shown in Fig. 6 to 8. The domain sets
of the semantic functions presented here can be found in Fig. 5. When an ap-
plication is started, the middleware loads its profile and processes it, in order to
associate a boolean value equal to true to each resource of the configurations
encoded in the profile itself (function init in Fig. 6). In order for a configuration
to be enabled, and the associated policy to be fired, all resource conditions ex-

5

highTemperatureAlert

1

temperature greaterThan 24

computeWeatherPrediction

2

temperature greaterThan 20

pressure greaterThan 1030

humidity lowerThan 70

3

temperature inBetween [15,20]

pressure inBetween [1010,1030]

humidity inBetween [70,80]

. . .

Fig. 4. Application Profile Example.

pressed in the configuration must hold, and the associated boolean values set to
true. As we are going to show, we use these boolean values to prevent cascading
policies, as they represent a sort of ‘firability’ pre-condition.

In order for a policy to be fired, two conditions must be met (see Fig. 7): at
least one of its associated configurations evaluates to true (i.e., it is enabled) in
the current environment (i.e., all resource conditions hold), and all the boolean
values of resources that make up this configuration are true. We use the auxiliary
boolean function eval, such that eval((rname, oname, vList), e) returns true if
the value of resource rname in environment e is among the values obtained by ap-
plying the operator oname to vList. For example, eval((temperature, inBetween,
{20, 25}), {(temperature, 22)}) = >. If the current state of a sensor cannot be
obtained (e.g., because of sensor failure), the eval function returns ⊥. Once a
policy has been executed, we prevent it from being repeatedly fired by setting
the boolean value of each resource in the enabling configuration to false (Fig. 8).

Boolean values representing firability pre-conditions are re-set to true by the
update function. Middleware re-evaluates the status of resources and updates the
boolean value previously associated with each resource in the following way: if

bool : {>, ⊥}
resourceStatus : R×O× ℘(V)× bool

resourceStatusList : ℘(resourceStatus)
configStatus : N× ℘(resourceStatusList)

configStatusList : ℘(configStatus)
policyStatus : P× ℘(configStatusList)

policyStatusList : ℘(policyStatus)

Fig. 5. Application Profile Semantic Functions - Domain Sets.

6

init : policyList → policyStatusList

initcl : configList → configStatusList

initrl : resourceList → resourceStatusList

init[[policy policyList]] = init[[policy]] ∪ init[[policyList]]

init[[policy]] = init[[pname configList]]

init[[pname configList]] = {(pname, initcl[[configList]])}
initcl[[config configList]] = initcl[[config]] ∪ initcl[[configList]]

initcl[[config]] = initcl[[cid resourceList]]

initcl[[cid resourceList]] = {(cid, initrl[[resourceList]])}
initrl[[resource resourceList]] = initrl[[resource]] ∪ initrl[[resourceList]]

initrl[[resource]] = initrl[[rname oname valueList]]

initrl[[rname oname valueList]] = {(rname, oname, valueList, >)}

Fig. 6. Application Profile Semantics - (init).

fire : policyStatusList → E → ℘(P× N)

fire[[pStatus psList]]e = fire[[pStatus]]e ∪ fire[[psList]]e

fire[[pStatus]]e = fire[[(pname, csList)]]e

fire[[(pname, csList)]]e =

8>>>><>>>>:
{(pname, cid)} if ∃ cStatus = (cid, rsList) ∈ csList |

∀ rStatus = (rname, oname, vList, b) ∈ rsList,
eval((rname, oname, vList), e) = > ∧ b = >

∅ otherwise

Fig. 7. Application Profile Semantics - (fire).

the boolean value is set to false, and the current resource value does not respect
the condition expressed by that resource in the profile, the value is changed to
true; otherwise, the boolean value is not altered (Fig. 9).

Let us refer to the example shown in Fig. 4, where we have encoded a con-
dition (temperature, greaterThan, 24) in configuration 1. When the application
is started, a boolean value equal to true is associated with the temperature
condition; as soon as a change brings the temperature value above 24� the
highTemperatureAlert policy is fired, and the boolean value is changed to
false; as long as temperature stays above 24� configuration 1 does not en-
able this policy, as the boolean value stays false. A change in the environment
that brings temperature below 24� will cause the boolean value to be set to
true (update function), and the next time temperature increases above 24� the
highTemperatureAlert policy will be fired again.

7

reset : policyStatusList → ℘(P× N) → policyStatusList

resetcsl : configStatusList → ℘(P× N) → configStatusList

resetrsl : resourceStatusList → ℘(P× N) → resourceStatusList

reset[[pStatus psList]]pcl = reset[[pStatus]]pcl ∪ reset[[psList]]pcl

reset[[pStatus]]pcl = reset[[(pname, csList)]]pcl

reset[[(pname, csList)]]pcl =

8>><>>:
∪{(pname, resetcsl[[csList]]{(pi,ci)})} ∀ i |
∃ (pi, ci) ∈ pcl, pname = pi

{(pname, csList)} otherwise

resetcsl[[cStatus csList]]{(p,c)} = resetcsl[[cStatus]]{(p,c)} ∪ resetcsl[[csList]]{(p,c)}

resetcsl[[cStatus]]{(p,c)} = resetcsl[[(cid, rsList)]]{(p,c)}

resetcsl[[(cid, rsList)]]{(p,c)} =

{(cid, resetrsl[[rsList]]{(p,c)})} if cid = c

{(cid, rsList)} otherwise

resetrsl[[rStatus rsList]]{(p,c)} = resetrsl[[rStatus]]{(p,c)} ∪ resetrsl[[rsList]]{(p,c)}

resetrsl[[rStatus]]{(p,c)} = resetrsl[[(rname, oname, vList, b)]]{(p,c)}

resetrsl[[(rname, oname, vList, b)]]{(p,c)} = {(rname, oname, vList,⊥)}

Fig. 8. Application Profile Semantics - (reset).

update : policyStatusList → E → policyStatusList

updatecsl : configStatusList → E → configStatusList

updatersl : resourceStatusList → E → resourceStatusList

update[[pStatus psList]]e = update[[pStatus]]e ∪ update[[psList]]e

update[[pStatus]]e = update[[(pname, csList)]]e

update[[(pname, csList)]]e = {(pname, updatecsl[[csList]]e)}
updatecsl[[cStatus csList]]e = updatecsl[[cStatus]]e ∪ updatecsl[[csList]]e

updatecsl[[cStatus]]e = updatecsl[[(cid, rsList)]]e

updatecsl[[(cid, rsList)]]e = {(cid, updatersl[[rsList]]e)}
updatersl[[rStatus rsList]]e = updatersl[[rStatus]]e ∪ updatersl[[rsList]]e

updatersl[[rStatus]]e = updatersl[[(rname, oname, vList, b)]]e

updatersl[[(rname, oname, vList, b)]]e =

8<:
{(rname, oname, vList,>)}

if eval((rname, oname, vList), e) = > ∧ b = ⊥
{(rname, oname, vList, b)} otherwise

Fig. 9. Application Profile Semantics - (update).

8

After an initialisation process that takes place when an application is started
(time t0), coordination between the application and the physical world is deter-
mined by the application profile in the following way:

t0 : PSL0 = init[[policyList]]

t1 : P1 = fire[[update[[PSL0]]e1
]]e1

PSL1 = reset[[PSL0]]P1

· · ·
ti : Pi = fire[[update[[PSLi−1]]ei

]]ei
(1)

PSLi = reset[[PSLi−1]]Pi

where PSLi ∈ policyStatusList associates boolean values with resource con-
ditions, and Pi ∈ ℘(P × N) states what policies have been fired, and what
configurations have enabled them.

2.2 The Sentient Application Programmer Interface

Application profiles encode how applications (and their users) are willing to coor-
dinate with the physical world. As user’s needs may vary over time, applications
must be allowed to customise the information here encoded while executing,
that is, to dynamically specify what and how environmental changes should be
handled. We exploit the principle of reflection [2] to attain this goal. Reflection
has been recognised to be a powerful and elegant way to make the system it is
applied to adaptable to its environment and better able to cope with changes [3].
The approach demands that an explicit representation of middleware behaviour,
with respect to the above running applications, is maintained; we do this by
means of application profiles. Reflection then allows both dynamic inspection
and adaptation of middleware behaviour by means of a meta-interface that the
middleware offers to applications to access this explicit representation.

Fig. 10 lists the semantic functions provided by the meta-interface to dynam-
ically access application profiles. As shown, access to the profiles may occur at
various levels of granularity: from the resources associated with a configuration,
to the configurations associated with a policy, up to the policies that consti-
tute the root elements of the associations in the profiles. Inspection is based on
unique names for policies and resources, and on ids for context configurations; we
use null to indicate an empty search result. Adaptation takes place by adding,
removing and updating the elements of the associations1.

Note that adaptation of application profiles causes alterations to the
policyStatusList PSLi (see equation 1) that is used by the middleware to decide
what policies to fire as a result of context changes. In order for a policy to be
fired, both the information encoded in a profile, and the ‘firability’ status of its
1 The semantics of these functions is trivial and is thus omitted; interested readers

may refer to [4] for a complete semantics specification.

9

readPolicy : profile× P → policy ∪ {null}
readConfig : profile× P× N → config ∪ {null}

readResource : profile× P× N× R → resource ∪ {null}

remPolicy : profile× P → profile

remConfig : profile× P× N → profile

remResource : profile× P× N× R → profile

addPolicy : profile× policy → profile

addConfig : profile× P× config → profile

addResource : profile× P× N× resource → profile

updPolicy : profile× P× policy → profile

updConfig : profile× P× N× config → profile

updResource : profile× P× N× R× resource → profile

Fig. 10. Reflective Meta Interface.

remPSPolicy : policyStatusList× P → policyStatusList

remPSConfig : policyStatusList× P× N → policyStatusList

remPSResource : policyStatusList× P× N× R → policyStatusList

addPSPolicy : policyStatusList× policy → policyStatusList

addPSConfig : policyStatusList× P× config → policyStatusList

addPSResource : policyStatusList× P× N× resource → policyStatusList

updPSPolicy : policyStatusList× P× policy → policyStatusList

updPSConfig : policyStatusList× P× N× config → policyStatusList

updPSResource : policyStatusList× P× N× R× resource → policyStatusList

Fig. 11. Implicit Meta Interface.

associated resources are checked. Therefore, each time an operation that changes
the profile is performed, the policyStatusList is implicitly updated, by inter-
nally calling the semantic functions listed in Fig. 11; the new policyStatusList
obtained is then used in equation 1 to decide what policies to fire2.

2 As before, the semantics of these functions is trivial and is not reported; interested
readers may find a complete semantics specification in [4].

10

Example
Application

BatteryEvent

LocationEvent

PressureEvent

Controller

IEvent

Application
Handler

Application
Profile

Reflective
Meta-Interface

BatteryValue LocationValue

PressureWrapper

PressureValue

Application
Model

IWrapper
Physical World
Model

BatteryWrapper LocationWrapper

Battery Sensor Infrared Sensor Pressure Sensor

Fig. 12. Sentient Computing Architecture.

3 The Sentient Computing Architecture

Fig. 12 provides an overview of a sentient computing architecture that realises
our coordination model for a sample running application. Middleware services
(e.g., discovery) that are not the focus of the paper have not been depicted.

For each abstract resource an application is interested in (i.e., for each re-
source listed in the profile), a wrapper exists that is able to interact with the
physical resource (i.e., sensor in the picture), and to process the information thus
obtaining a value that the application understands. Different wrappers may exist
that interact with the same sensor, but that process information in a different
manner; or, vice versa, the same wrapper may interact with various sensors, to
synthesise context information in an application-specific manner. Only wrap-
pers of resources that running applications are interested in are loaded, to avoid
wasting computational resources, already scarce on a portable device. Fig. 12
illustrates a Battery Wrapper, interacting with a Battery Sensor (i.e., a primi-
tive of the operating system), a Location Wrapper, interacting with an Infrared
Sensor, and a Pressure Wrapper, interacting with a Pressure Sensor.

Wrappers export an interface that is used to register the interest of an ap-
plication in resource-specific environmental conditions. For example, if an appli-
cation specifies, in its profile, an interest in the following configuration:

1

temperature greaterThan 24

humidity lowerThan 65

then the Temperature Wrapper is instructed to monitor the first condition, while
the Humidity Wrapper is instructed to monitor the second. Wrappers maintain
information about the status of the associated resources and independently pro-
duce an event only when the evaluation of the conditions that they monitor
changes (from true to false and viceversa).

11

These events are captured and processed by a Controller component whose
main tasks are: first, to process the profiles of running applications, both at
application startup and whenever a profile is changed, so to break the config-
urations an application is interested in into their constituents, and then pass
individual resource conditions to the relevant wrappers. Second, the controller
collects the various individual events that wrappers produce and combine them
to check whether an application-defined configuration has been entered; in this
case, the corresponding action is triggered, thus realising the coordination model
whose semantics has been defined in Section 2.

The dialogue between the application and the middleware is mediated by
an ApplicationHandler. Each time an application is started, an ApplicationHan-
dler is created to fetch the application profile and to pass it to the Controller
component for processing. During the lifetime of the application, the handler
is responsible for providing applications access to their own application profile
through a well-defined reflective meta-interface that realises the sentient appli-
cation programmer interface described in the previous section.

4 Implementation and Evaluation

The sentient computing architecture described above has been implemented us-
ing the Java 2 Micro Edition (Connected Device Configuration, Personal Pro-
file) [5]. Application profiles have been encoded using XML [6], and the
KXML2 [7] parser has been deployed as a building block to realise the reflective
meta-interface. Additional components that are not strictly related to this work
have been implemented, in order to make the middleware usable in practice; in
particular, we have implemented a multicast system to advertise and discover
remotely available resources3. In total, our implementation occupies less than
130KB (compressed), including the KXML2 parser, making it suitable for mo-
bile devices. On top of it, we have developed a smart conference application,
that is able to interact with various resources, for example, to provide guidance
about where the next talk is going to be, to chat with some attendees when
they are connected, and so on. As a proof of concept, we have implemented two
sample components to monitor the status of the physical world: a component
that emulates the amount of battery power remaining, and a component that
interacts with an external location sensor (implemented as an http server). The
application and two components occupy 18KB as a Jar archive.

We already pointed out that crucial issues for sentient computing systems
are performance and scalability. Applications may express interest in the status
of various resources, so that large amounts of data may be processed by the
middleware. In order to prove the scalability and efficiency of our middleware
(for plausible profile configurations), we have implemented a benchmark appli-
cation that enables customisation of the information encoded in the application

3 In this work, we made the assumption that resources (e.g., sensors, devices, etc.) are
one hop away from us.

12

1 70 140 240
2 90 170 280
3 110 190 320
5 160 270 400
7 190 330 491

10 260 420 641
15 350 561 971
20 470 771 1322

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

Number of Resources
Ti

m
e

in
 m

s.

5 configurations
10 configurations
20 configurations

Fig. 13. Performance Evaluation.

profile in terms of: number of associations, number of configurations per associ-
ation, and number of resource conditions per configuration. In our experiments,
we considered the overhead required by the wrapper to process sensor data in
an application specific manner to be negligible; we believe this assumption to
be acceptable, as sensors greatly vary in nature, and therefore may introduce
overheads of different orders of magnitude (e.g., knowing the amount of battery
left requires much less time than gathering and processing location information)
that we cannot compare.

The chart in Fig. 13 summarises some of the results we observed. All tests
were performed on Dell Latitude laptops equipped with 128MB RAM, Intel
Pentium II processors rated at 300MHz, and connected in an ad-hoc network
using Cisco Aironet 340 10Mbps wireless cards. We simulated a very high traffic
of events (every second new events were generate by the wrappers - indicating
a change in the individual resource condition satisfiability - and passed to the
Controller component). As shown, even for profiles of high complexities (up to
10 configurations of 15-20 different resource conditions each), the time taken by
the Controller to process the received events and trigger an action is below or
around 500ms. During the evaluation, we noted that, as expected, increasing
the number of configurations (while keeping the number of resources associated
with each of them constant) had a stronger performance impact than increasing
the number of resources associated with a configuration. This is because of the
and/or semantics used in the profiles: resource conditions follow the ∧ semantics,
so that as soon as one resource condition fails to be true, all remaining resource
conditions associated with the same configuration need not be evaluated. On the
contrary, configurations associated to the same policy follow the ∨ semantics, so
that all of them have to be checked as any could enable the associated policy.

5 Discussion

The sentient computing paradigm increases the need for coordination support
between the application and the highly dynamic physical world they execute in.
Various coordination models have been proposed to date, mainly to support coor-
dination among mobile entities: for example, JEDI [8] offers a publish-subscribe

13

paradigm where nodes interact by exchanging events through a logically cen-
tralized event dispatcher; MARS [9] defines coordination among logically mobile
agents that migrate from one node to another. A common limitation to these
approaches is that they focus on the dialogue happening among peer devices,
without taking into consideration the dialogue that happens between a device
and its physical environment. Supporting the latter type of coordination is of
paramount importance, in order to enable sentient computing applications to
adapt to their changing execution environment.

Different aspects of the dialogue between the application and the physical
world have been addressed. For example, the Context Toolkit [10] tackles the
problem of heterogeneity by providing a uniform interface to perform context
sensing; however, it does not address the need for a distributed coordination
model. Odyssey [11] provides a reaction mechanism to detect local changes;
however, detection of remote changes is not supported. Recently, more compre-
hensive coordination models have been developed to orchestrate the dialogue
between applications and context. Lime [12], for example, manipulates context
as data, and supports coordination between applications and their execution en-
vironment via tuple-space based coordination primitives. However, each context
condition refers to the status of a single resource so that the burden of process-
ing independent events into complex application-relevant configurations is on the
application. Similar considerations apply to Limone [13] and to EgoSpaces [14],
where the same tuple-space based reactive mechanisms are used. We believe
our model moves a step forward in reducing the programming effort required to
build sentient computing applications that need coordination with a wide range
of physical resources.

6 Conclusions

In this paper we have presented a coordination model that supports the sentient
computing paradigm. Developers build applications that can coordinate with the
physical world by means of an easy-to-use interface that is based on the powerful
abstraction of application profiles. An application profile defines how the appli-
cation is wishing the dialogue between itself and a (homogeneously presented)
physical world to happen, in terms of policies that should be triggered when cer-
tain environmental configurations are entered. It is the middleware responsibility
to break up this information into its constituents, to interact with the individ-
ual resources that compose the environment of interest to the application, to
reassemble the data coming from these resources in an application-specific man-
ner, and to trigger application-defined reactions when particular configurations
are entered. The semantics of these steps have been defined and an architecture
that realises the sentient coordination model has been illustrated and evaluated.

Our experience in building the conference application has shown us that fur-
ther work is required to correlate environment information in even more complex
ways. In particular, besides the boolean logic operators, temporal operators seem
to be required, for example, to express an application interest in a sequence of

14

environment changes. It is our plan to extend the coordination model presented
in this paper to include these operators. Moreover, rather than considering un-
satisfied those conditions that refer to resources whose status cannot be currently
obtained (e.g., because of sensor failure or unreachability), we plan to extend
our semantics with an undefined value, so to treat these conditions differently.

References

1. Hopper, A.: The Royal Society Clifford Paterson Lecture, 1999 - Sentient Com-
puting. Phil. Trans. R. Soc. Lond. 358 (2000) 2349–2358

2. Smith, B.: Reflection and Semantics in a Procedural Programming Language. Phd
thesis, MIT (1982)

3. Eliassen, F., Andersen, A., Blair, G.S., Costa, F., Coulson, G., Goebel, V., Hansen,
O., Kristensen, T., Plagemann, T., Rafaelsen, H.O., Saikoski, K.B., Yu, W.: Next
Generation Middleware: Requirements, Architecture and Prototypes. In: Proceed-
ings of the 7th IEEE Workshop on Future Trends in Distributed Computing Sys-
tems, IEEE Computer Society Press (1999) 60–65

4. Capra, L.: Reflective Mobile Middleware for Context-Aware Applications. PhD
thesis, University College London (2003)

5. Sun Microsystem, I.: Java 2 Platform, Micro Edition. http://java.sun.com/j2me/
(2000)

6. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language.
Recommendation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide
Web Consortium (1998)

7. : The KXML2 XML parser. http://www.kxml.org/ (2004)
8. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and

its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27 (2001) 827–850

9. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4 (2000) 26–35

10. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human-Computer
Interaction (HCI) Journal, special issue on Context-Aware Computing 16 (2001)
97–166

11. Satyanarayanan, M.: Mobile Information Access. IEEE Personal Communications
3 (1996) 26–33

12. Murphy, A., Picco, G.P.: Using Coordination Middleware for Location-Aware Com-
puting: A Lime Case Study. In: Proc. of the 6th International Conference on Co-
ordination Models and Languages (Coordination 2004). Volume 2949 of Lecture
Notes in Computer Science., Pisa, Italy, Springer-Verlag (2004) 263–278

13. Fok, C.L., Roman, G.C., Hackmann, G.: Lightweight Coordination Middleware for
Mobile Computing. In: Proc. of the 6th International Conference on Coordination
Models and Languages (Coordination 2004). Volume 2949 of Lecture Notes in
Computer Science., Pisa, Italy, Springer-Verlag (2004) 135–151

14. Julien, C., Roman, G.C.: Active Coordination in Ad Hoc Networks. In: Proc. of
the 6th International Conference on Coordination Models and Languages (Coor-
dination 2004). Volume 2949 of Lecture Notes in Computer Science., Pisa, Italy,
Springer-Verlag (2004) 199–215

15

