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Abstract

This working paper describes a possible design for a new Internet
namespace. A primary goal of creating this new namespace is to use
the new namespace as a non-topological network-layer identifier for
hosts. By doing so, a number of current routing issues, particularly
those related to mobile hosts and to multi-homed campuses become
simpler to solve. As this is a working paper, there is also discussion of
open issues with this design.

1 Introduction

At present, the Internet Architecture does not have a transport-layer iden-
tifier or a network-layer identifier that is independent of the host’s Internet
Protocol address (IP Address). Instead, the Internet protocol suite over-
loads the IP address to sometimes be a topologically significant address of
a particular network interface of a host, while at other times trying to use
the TP address as a generic network-layer identifier (i.e. outside the context
of the routing system). A consequence of this is that many protocols out-
side the routing system contain source and/or destination IP addresses in
their protocol state. For example, the User Datagram Protocol (UDP) and
the Transport Control Protocol (TCP) include both source IP address and
destination IP address inside the transport-layer state of a given session. !

2 Background

2.1 Early History

If one looks back at the history of the Internet, it becomes clear that the
technology was built bottom-up, rather than top-down. In the late 1960s,
the focus of attention was creating a workable packet network protocol,

In BSD Unix terms, the IP addresses are part of the Transport Control Block.



the Network Control Protocol (NCP) [NKPCT70], and deploying a work-
ing wide-area packet network. Hence, in those early days the application
software necessarily used the network-layer address in many different ways.
Also, mobile networks and highly mobile hosts were not part of the original
ARPAnet, so it was quite reasonable to assume that a host’s network-layer
address would not change very often or very quickly. In such an environ-
ment, the use of the network-layer address as the principal host identifier
would only be natural.? Also, at this time the current notion of a layered
protocol architecture was not fully refined.

However, people could more easily remember a name than a number, so
early naming was created in the early 1970s. These initially used a fixed flat-
file host table, which quickly came under centralised management [Wat71].
At this time there were no domain-names. Instead, there were single string
hostnames, so most sites included the site nickname in each host’s name.
For example, some host named ”A” at the Information Sciences Institute
might be named ”ISI-A”. During the 1970s, work on protocol architectures
progressed, leading to a more clearly layered architecture, and ultimately
into the creation of TCP, UDP, and IPv4 as distinct protocols with distinct
functions. The flag-day transition from the NCP-based ARPAnet to the
IPv4-based ARPAnet occurred on 1 January 1983.[Pos81a]

2.2 Influence of BSD UNIX

In the early 1980s, the Computer Systems Research Group (CSRG) at UC
Berkeley added TCP /IP networking support into the Berkeley Software DIs-
tribution (BSD) of UNIX.[LMKQS89] At that same time, the Domain Name
System (DNS) of today was being designed.[Moc83] So once again, it was
only natural to use the network-layer address as the connection identifier
in the BSD Sockets Application Programming Interface (Sockets API). As
networked applications grew during the last two decades, many applications
unconsciously used the network-layer address as a host identifier. In the
early period, there was no other option. However, in the late 1980s, the Do-
main Name System (DNS) was widely deployed.[Moc87] A key decision was
to initially deploy the BIND DNS resolver as a library in application-space,
rather than updating the BSD Sockets API to support the domain-name
directly. This early design choice means that even today applications using
the BSD Sockets API must internally convert a domain-name provided by
the user into an IP address that can be supplied to the BSD Sockets API to
open, alter, or close a network session. So networked applications are neces-
sarily aware of the IP addresses associated with a network session and many
such applications continue to use the IP address as a host identifier. Had the
DNS been deployed in conjunction with a revised BSD Sockets API, then

2The term socket actually dates back to the early 1970s and referred to a communica-
tions endpoint in the NCP-based ARPAnet.[HHM71]



applications might well have used the domain-name as the host-identifier. In
that case, the deployed Internet might well be much more compatible with
network-address translation and also might have better support for mobile
hosts and mobile networks.

2.3 Today’s Internet

So for reasons that are almost entirely historical, the deployed Internet per-
vasively uses the network-layer address as a host identifier, even though
the address is ill-suited for that use and the domain-name exists as a much
better alternative for that purpose. This misuse creates a number of archi-
tectural and practical problems in the deployed Internet of today. The next
section will discuss the current architectural issues created by the misuse of
the address as a host identifier in more detail.

3 Current Architectural Issues

The existing Internet Architecture has performed admirably for many years.
However, during the 1990s, some issues arose that could not have been fore-
seen and external business stresses also arose. As a result of this, there are
some current architectural issues within the Internet Architecture. Among
these issues are clean support for mobile hosts, scalable support for campus-
network multi-homing, and the widespread deployment of Network Address
Translation techniques. This section describes those issues in more detail
and highlights a possible architectural change that might significantly ame-
liorate each of them.

A recurring issue is that the transport-layer state in the hosts contains
network-layer address information. For many years, the Internet has had
two primary transport-layer protocols, the User Datagram Protocol (UDP)
[Pos81c] and the Transmission Control Protocol (TCP) [Pos81b]. UDP pro-
vides an unreliable datagram service, while TCP provides a byte-oriented
reliable transport service. UDP can support unicast or multicast sessions,
while TCP can only handle unicast sessions. The 4.x BSD implementation
of UDP and TCP keeps transport-layer session state in the Protocol Control
Block data structure. This state includes the IP addresses of the end points
of the session, making it difficult to have any IP address change during the
lifetime of the session. [LMKQ89][MBKQ96]

In recent years, the IETF has standardised a new transport-layer pro-
tocol, the Stream Control Transmission Protocol (SCTP).[OY02]. SCTP is
similar to the Transmission Control Protocol (TCP) in some ways; each pro-
vides reliable in-order delivery of data, unlike UDP. However, SCTP provides
message-oriented delivery rather than byte-oriented delivery. Also, SCTP
explicitly supports multi-homed endpoints, although it does not support



mobile endpoints. Common implementations of SCTP also keep transport-
layer session state in the Protocol Control Block data structure. While
SCTP supports multi-homed endpoints, it only supports unicast sessions.
So the Transport Control Block for SCTP holds more than one IP address
for each endpoint, but does not support changing any IP address during a
given SCTP session. So none of the standard transport-layer protocols have
support for mobile hosts or for changes in any IP address during the lifetime
of a given transport session. Further, the 4.x BSD implementation of those
protocols does not support changes to the IP address(es) in the Protocol
Control Block.

3.1 Mobile Hosts

If one considers the case of a laptop that is moving and also in use, there are
at least two kinds of mobility. The first kind, which here we will call micro-
mobility, includes mobile hosts that are able to retain link-layer connectivity
while mobile. This might be implemented by a link-layer interface to a
mobile phone system’s data service or via a link-layer interface to a wireless
Ethernet subnet, for example. The second kind, which here we will call
macro-mobility, includes mobile hosts that are not able to retain link-layer
connectivity while moving. In this paper, we will only be discussing macro-
mobility. It is important to understand that since an TP Address names the
location in the routing system of a particular network interface on a host,
the TP Address will normally need to change whenever a host connects to a
different link-layer segment (IP subnetwork).

A significant challenge in the current Internet Architecture is how a
mobile host can retain an active TCP or UDP session even as its IP address
needs to change to reflect a new location in the network’s topology. This
is challenging for the reason hinted at above, namely the transport-layer
contains the IP addresses of the session endpoints in the transport-layer
session state for those sessions. Also, various upper-layer protocols include
IP addresses as identifiers in their session state, and sometimes even as
protocol data elements over the wire.

One can imagine a variety of different "hacks’ that could be used to
work around this architectural limitation, some more ugly than others, but
none of them really attractive. In Mobile IP, the host retains a fixed Home
Address permanently and the transport-layer session state includes that IP
address, rather than the host’s variable Care-Of Address. [Per02] There are
additional protocol mechanisms that are used to enable the mobile host to
inform its Home Agent about the mobile host’s current Care-Of Address
and to inform existing Correspondent Hosts whenever the Care-Of Address
changes. Aside from the tremendous complexity that all these new protocol
mechanisms bring, there are a variety of subtle security issues lurking in this
approach.



If one had a non-topological network-layer Identifier in addition to the
existing IP Address, then one could use that identifier in the transport-
layer session state. Since the identifier is non-topological, its value would
not change as the mobile host changed location. As a consequence of that,
such an identifier could be used in the transport-layer state to decouple the
transport-layer from any need to know about the location change of the
network-layer interface. Similarly, upper-layer protocols that currently use
the IP address in the upper-layer protocol state could instead use this new
topology-independent identifer.

3.2 Multi-Homed Sites

It is no longer unusual for a campus network to have more than one up-
stream network link, with each upstream link connecting to a different
service provider. Such an arrangement provides redundancy, higher net-
work availability, and potentially better connectivity than having a single
upstream link. However, current IP routing technology for this requires
that the campus either have a single routing prefix that is advertised sepa-
rately by each provider or that there be separate routing prefixes for each
provider.[RL93] In the former case, the specific prefix (and prefix length) for
that campus will need to be added to the global routing table’s default-free
zone, but fail-over from one provider to another (e.g. because of a fibre cut)
will not impact existing network sessions. In the latter case, the prefixes can
be aggregated under the respective provider’s primary prefix without adding
any entries to the default-free zone, but in the current Internet architecture
any exiting sessions using the failed provider’s routing prefix will suddenly
fail.

Support for each additional routing prefix in the default-free zone in-
creases costs and has other adverse operational impacts on all service providers
around the globe, including those that do not have a given multi-homed
campus as one of their customers.[RL93] For example, each routing prefix in
the default-free zone needs to be carried in the routing tables of each inter-
domain router on the globe. That prefix consumes memory in the routing
table and forwarding table, but more importantly is suspected of having
subtle adverse impacts on the path-vector routing algorithm. The existing
size of the IPv4 default-free zone, more than 130 000 entries, is already cause
for concern within the Internet operations community.

So a new architecture is needed that would eliminate the need to adver-
tise any additional prefixes in the default-free zone and would also provide
session continuity even when an upstream provider had a failure.

If one had a non-topological network-layer identifier, then that could be
used instead of the IP address by the transport-layer protocol(s) and also by
the upper-layer protocol(s). This would reduce the smooth-failover problem
to one of notifying the remote correspondents of the still working routing



prefixes associated with the communicating host on the multi-homed cam-
pus. Various mechanisms for this can be imagined, for example new Internet
Control Message Protocol (ICMP) message types could be created. Since
one can use the IP Authentication Header with ICMP, such control mes-
sages could also be cryptographically authenticated.[Atk95a] Absent cryp-
tography, the use of a nonce in a control protocol could be used to provide
the same level of (in)security provided in the current IPv4 Internet.

3.3 Edge Network Issues

In the early 1990s, as the web initially took off and as major online services,
for example America Online (AOL), joined the Internet, the size of the IPv4
routing table in the default-free zone grew quite rapidly. In large part,
this was due to the practice of allocating address blocks directly to end-
users, rather than using provider-oriented addressing. This situation was
mis-reported by many in the trade press as a shortage of IPv4 addresses. To
resolve this concern, changes were made to the address allocation practices.
Smaller organisations were required to obtain their IPv4 address space on
a lease-hold basis from one of their upstream service providers. Also, the
regional Internet registries became much more systematic in requiring writ-
ten justification before allocating new address blocks to service providers
or to the few large organisations that were given direct allocations by the
registries.

In parallel with these changes in the address allocation practices, the
security of systems connected directly to the Internet became a larger con-
cern. Many large organisations realised that only a small percentage of their
computing systems needed to be connected directly to the Internet. Smaller
organisations shared the security concerns and also found it cumbersome
to obtain addresses and timeconsuming to carefully manage their address
spaces. In the late 1990s, broadband Internet connectivity started to become
widely available in many parts of the world. Many residential broadband
users wanted to have Internet connectivity for web and email access, but
also wanted to have a small home LAN with a printer and more than one
personal computer.

Equipment vendors responded to these various circumstances by im-
plementing a technique known as Network Address Translation. NAT is a
technology that enables an edge router to modify the IP addresses of packets
transiting that router. In the most common case, the interior address block
comes from private address space [RMKT96] that is not globally unique,
while the exterior addresses come from globally-routable address space. A
closely related technique, Network Address Port Translation increases ad-
dress utilisation efficiency by using port-based multiplexing and having a
single exterior IP address correspond to many interior IP addresses.[TS00]
Some vendors even claimed that NAPT was a security technique, though



scientific analysis does not support this claim.[Bel02]. Others proposed the
use of NAT to provide load sharing.[SG9S|

As we have seen previously, an architectural issue with the Internet pro-
tocol suite is the inappropriate use of the IP Address, most commonly
by upper-layer protocols that actually only need a generic host identifier.
The deployment of NAT and NAPT exacerbated these issues. In order
to work with any TCP-based or UDP-based application, the NAT device
needed to modify the IP header and also make corresponding changes to the
TCP header. For the numerous applications that inappropriately embed
the IP address inside the application, a NAT would need to make simi-
lar application-specific modifications to packets transiting the NAT. All of
this in transit modification is a gross violation of the End-to-End Principle.
[SRC84]. NAT and especially NAPT do not work flawlessly in real-world
deployments. Such devices, particularly NAPT, break many protocols, thus
restricting access from interior systems and greatly Balkanising the global
Internet.

Some have asserted that if IPv6 deployed, NAT and NAPT will quickly
disappear. Instead, it is likely that NAT or NAPT will be important tran-
sition technologies if IPv6 starts to become widely used. At present, and
at least during initial IPv6 deployment, virtually all Internet content can
only be accessed using IPv4. So an IPv6-only host would need to use some
form of NAT device to translate the IPv6-based request into an IPv4-based
request so that it could contact the content server. Further, the IPv4-based
responses from the content server would need to be translated back into IPv6
so that they can be correctly understood and processed by the originating
IPv6-only host.

Application-layer gateways, which are sometimes also called Proxys, are
increasingly common at the edge of an enterprise network.[BBC*04] Such
a gateway operates at the application-layer only, providing translation ser-
vices between the interior of the enterprise network and sites outside the
enterprise network. A firewall is often a specialised kind of application-layer
gateway. A major issue with application-layer gateways is that the only
support transmission of selected supported applications across the domain
boundary. So if someone tries to use an unsupported application across that
domain boundary, the attempt fails due to the application-layer gateway. In
order to work properly, an proxy must create and retain session state for
each session traversing the proxy. This additional state makes the network
more brittle, and reduces resilience to potential failure. For example, if the
routing path changes from one proxy to a different proxy, the session will fail
because the second proxy does not have the session state known only to the
original proxy. If security is in use, the proxy generally prevents end-to-end
security. For example, if Transport Layer Security (TLS)[DA99], which is
the IETF standard derivative of Secure Sockets Layer (SSL), is being used, it
cannot be used end-to-end as would normally be the case. Instead, the TLS



session would need to connect the exterior system to the exterior interface
of the proxy and a separate TLS session would need to connect the interior
interface of the proxy to the interior host. Because of this, neither end host
can be confident that the information being protected has not been modified
by the proxy. Similar problems occur when many other security mechanisms,
for example IP Security (IPsec), are in use. So we can see that deployment
of application-layer gateways breaks the end-to-end communications model
and creates security problems. If proxys and similar devices are going to be
a long-term part of the deployed Internet, it might be better if they were
explicitly supported by the Internet Architecture. Alternately, if they are
being deployed because of a limitation in the current Internet Architecture,
that would be a reason to consider evolving the Internet Architecture.

3.4 Application Issues

Because of the way that historic networking APIs have been designed, appli-
cations are required to maintain network-layer state inside the applications.
Ironically, recently designed applications are perhaps the most likely to use
Universal Resource Locators (URLs) containing domain names. So while the
user is probably providing a DNS-based URL to the application, tradition-
ally an application is required to perform the domain-name to IP address
translation via a library call to gethostbyname(), then open the network
session using the resulting IP address.

More recently, alterations to the BSD Sockets API have been proposed
as part of the IPv6 development effort within the IETF.[GTBS97][GTBS99]
These enhancements are intended to provide applications with a network
programming interface that is independent of the Internet Protocol version
in use (at least for IPv4 or IPv6). The new getaddrinfo(3) library func-
tion call takes in a host’s domain name and a service name, then returns
the parameters needed for the existing socket(2), bind(2), connect(2), and
listen(2) system calls. These new library calls facilitate the development
of applications that do not use the IP address inappropriately. However,
the operating system’s internal data structures, for example the Transport
Control Block (TCB) contents, continue to bind the session firmly to the
IP addresses. So, even though the application might be written without
using the address inappropriately, the session might have difficulty handling
situations where one or both endpoint addresses change during the lifetime
of the session.

The common practice of using the network-layer IP address as a host
identifier in various application protocols (e.g. file transfer protocol) means
that many applications have protocol state that includes the IP addresses
of the endpoints, rather than some more abstract and topology-independent
identifier. In the case of FTP, there are two parallel communications sessions
supporting a single FTP user session. One of these provides the communica-



tions channel for the control messages, while the other provides the commu-
nications channel for the file data transfer. Unfortunately, the design of FTP
passes network-layer IP address information over the control channel as a
host identifier. This causes traditional FTP to fail when a Network Address
Translation (NAT) device exists somewhere along the path. The failure
occurs because one endpoint’s perception of the correct IP address is not
the same as the other endpoint’s perception (after NAT processing) of the
correct IP address value. In this situation, users need to use passive-mode
FTP to side-step this problem. A better protocol design would have passed
some topology-independent identifier across the control channel, instead of
a raw [P address.

This requirement for applications to know and handle network-layer
objects also means that most applications would need to have additional
special-purpose software to handle any situation where the IP address of the
remote end might change during the communications session. This might
occur when one end is a mobile host and its IP address changes as the host
moves. Alternately, this might occur when a Network Address Translation
(NAT) device is located somewhere along the communications path between
the communicating session endpoints.

3.5 Distributed Computing Issues

Distributed computing was a major research area in the late 1980s, as the
computing world tried to find more effective ways to connect and share com-
puting resources. Distributed computing includes a broad range of capabil-
ities. A fundamental capability is sharing files among a set of computers.
In some distributed computing environments, support for remote procedure
calls or process migration was included. In many distributed environments,
for example MIT’s Athena Project, user authentication was a key require-
ment and capability.

In the late 1980s, few hosts or file servers were mobile, so it was accept-
able that the distributed computing protocols, including the distributed file
systems, only work when the communicating hosts were at fixed locations,
with fixed IP addresses. However, in the modern day, highly mobile laptops
are commonly used as hosts or distributed computing clients. Also, mobile
servers exist in some environments. So that compromise of the late 1980s is
no longer an acceptable constraint on distributed computing systems.

Today there is strong interest in both mobile computing and ad-hoc
computing. People would like to be able to use their laptops as part of a
distributed computing even as they move around a campus or even move off-
campus. The desire is both to support remote access to fixed file servers and
also to support remote access to other mobile hosts’ files. Similarly, people
would like to be able to combine their own local laptop with other mobile
computing resources to form an ad-hoc computing cluster. This interest is



more than academic, military forces and commercial firms (e.g. petroleum
exploration firms) also are interested in these new models of computing and
networking.

Existing distributed file systems, such as Sun Microsystem’s Network
File System (NFS) or Carnegie-Mellon University’s Andrew File System
(AFS), normally use domain-names as part of the user interface to the dis-
tributed file system.[CPS95] In the case of NFS, this is primarily exposed via
the user configuration interface. In the case of AFS, this is exposed both via
the user configuration interface and also in the filenames themselves. With
AFS, the full pathname of a file typically starts with the string /afs which
is then immediately followed by the fully-qualified domain name of the AFS
cell being accessed, for example /afs/cmf .nrl.navy.mil/. However, im-
plementations of NFS and AFS are limited by the same constraints as other
networked applications. In order to use the network API, the implementa-
tion must translate the fully-qualified domain-name into an IP address, and
then use only that IP address with the network API.

Parallel Virtual Machine (PVM) 2 is a system for building a virtual
parallel computer out of heterogenous computers connected via ordinary In-
ternet networking technology. PVM was primarily developed at the (US)
Oak Ridge National Laboratory and the nearby University of Tennessee at
Knoxville. PVM uses a message-passing model to build its virtual computer
system. PVM has its own "middleware” protocols that are built upon stan-
dard Internet technology, IP, UDP, and TCP. In these middleware protocols,
the PVM software keeps tables that include the IP address and UDP port
number that are used to reach other PVM daemons. Unfortunately, in do-
ing so the PVM application falls into the now familiar trap of using the IP
address as a host identifier. So PVM does not work well in situations where
one or more PVM nodes in a given virtual computer instance happen to be
mobile.

Significant improvements in distributed computing could be made if one
had a topologically-independent host identifier and an improved network
API, so that changes in a node’s IP address did not affect the continuity
or security of existing or new communications sessions. Also, the existence
of such an identifier could be leveraged by the distributed computing pro-
tocols themselves. For example, at present key management for distributed
computing has to use an IP address or perhaps a domain-name as its host
identifier. However, in many cases a single domain-name identifies a set of
hosts (e.g. behind some sort of network load-balancing device) that do not
share network session state among themselves. In such a case, the fully-
qualified domain name is not always suitable for the distributed computing
schema. Use of this identifier could be helpful in providing a namespace al-
ternative or in distinguishing different hosts that happen to share the same

$More on PVM is available online at http://www.csm.ornl.gov/pvm
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fully-qualified domain-name.

3.6 Security Protocol Issues

Kerberos is one of the most widely deployed distributed authentication sys-
tems today. Originally developed as part of MIT’s Project Athena in the late
1980s, Kerberos continues to evolve today. Initial deployment of Kerberos
was at MIT, followed by deployments at a number of other large universi-
ties, a few businesses, and at least one large Internet Service Provider. More
recently, Microsoft has added Kerberos support into its Windows operating
systems; also, Apple has added Kerberos support into the Macintosh OS
X operating system. So Kerberos has non-trivial deployment today and is
supported by most deployed computer servers and workstations. Kerberos
was standardised by the IETF in the early 1990s.[KN93]

In most respects Kerberos is oriented around the combination of the
user’s userid and the Kerberos realm that the user belongs to. Neither of
these is normally an IP address. So Kerberos is conceptually free of the
misuse of the IP address as an identifier. However, there are some places
where the Kerberos v5 protocol operations normally bind one or more IP
addresses into a Kerberos ticket, which means that in practice Kerberos
does not work well with mobile hosts if the host’s IP address should change
during the lifetime of a Kerberos session. Section 2.5 of the Kerberos spec-
ification notes that ”Kerberos tickets are usually valid from only those net-
work addresses specificaly included in the ticket”. While Section 2.6 of the
Kerberos specification discusses how IP addresses normally are bound into
ticket-granting tickets ”to complicate the use of stolen credentials”, it also
says that tickets can be issued that do not contain IP addresses. In prac-
tice, nearly all Kerberos deployments do bind IP addresses into all tickets,
a decision intended to increase the effective security of the deployment. If
a system whose address is not present in the ticket attempts to use a ticket
containing an address, then the Kerberos server is supposed to return a
KRB_AP_ERR_BADADDR message and deny the attempted use. There
are numerous examples in the Kerberos specification where the address of
the requesting system is compared with the address(es) in the applicable
ticket as part of deciding how to respond to some Kerberos packet. So in
practice, Kerberos does use the IP address as a host identifier in numerous
places. Kerberos would better support mobile clients and mobile servers if
it could bind to some non-topological host identifier instead of binding to
the host’s IP address(es).

When the IP Security (IPsec) protocols, the Encapsulating Security Pay-
load (ESP) [Atk95b] and the Authentication Header (AH) [Atk95a] were
being developed in the early 1990s, the designer faced a dilemma. On the
one hand an IPsec Security Association, which is the set of key material and
other configuration parameters for a secure IP session, needs to include the
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identity of the originator and of the responder. On the other hand, there
was not a good host identifier to use. A domain name might name a set
of systems rather than a single system, while an IP address names a single
network interface rather than naming a single system. In the end, IPsec can
support several different kinds of identities, but none of them are ideal. The
set of supported identity types are defined in the IP Security Domain of In-
terpretation (IPsec Dol) for the Internet Key Exchange (IKE). [Pip98] The
most commonly deployed identities are iP addresses, which means that [Psec
generally does not work through a Network Address Translation (NAT) de-
vice. It also means that IPsec does not work well with mobile hosts, nor
can it take full advantage of the several interfaces of a multi-homed host.
However, within the Internet architecture of that time, there was no truly
suitable host identifier that could be used. If the Internet architecture were
enhanced to have a new identifier that named a single host, not a cluster,
and not a single network interface, that would enable native IPsec to sup-
port multi-homed hosts, mobile hosts, and NAT well. Additionally, the key
management protocols used with I[Psec, for example the Internet Key Ex-
change (IKE), could use such a new identity to enable them to also work
well with multi-homed hosts, mobile hosts, and NAT devices.

Existing firewalls often have address-based security policies. For exam-
ple, packets to a certain IP subnet (IP prefix + netmask) might need to be
carried via tunnel-mode IP security. Alternately, communications to or from
a particular internal IP address and port might be allowed or denied. In a
new architecture, there would be some benefits. For example, the firewall
could know to permit all communications from a particular mobile device
(e.g. faculty laptop computer) that might happen to be on the exterior
side of the firewall, regardless of which IP address that device happens to
be using at the moment. However, decoupling address and identity would
mean that the firewall would need to be enhanced to permit identity-based
policies, instead of relying on the currently overloaded semantics of the IP
address.

So we can see that security protocols and technologies are currently lim-
ited by the lack of a suitable host identifier and that a number of significant
enhancements would accrue if such an identifier were added to the Internet
architecture. This brings us to the question of what such an identifier might
look like and what set of changes to the Internet protocol suite might be
needed to enable such an identifier. This is discussed next.

4 Prior Work & Other Research

In the late 1990s, the Internet Research Task Force (IRTF) created the
Namespace Research Group (NSRG) to consider whether to add a topologically-
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independent identifier to the Internet Architecture.* This question was con-
tentious within the group and no consensus was ultimately reached on the
issue. However, as part of the group’s discussions, a sub-group led by J.
Noel Chiappa (and including this author) came up with the idea of a ”stack
name”. The sub-group proposed that the Internet needed to be able to add
a namespace to name each network stack. In this concept, a single host
might have more than one network stack, for example in a multi-level secure
(MLS) operating system. Also, for example within a distributed system,
one might have a single network stack but multiple central processing units
(CPUs). The full details of the new namespace were never sorted out by the
sub-group — and the NSRG as a whole was unable to reach any consensus
on adding a namespace. This work is a direct follow-on to that prior work.

Another spin-out from the IRTF’s NSRG was a proposal from Robert
Moscowitz to add a cryptographic identifier as a new namespace. This
proposal, known formally as the Host Identity Protocol (HIP), is the subject
of current work by the IRTF’s new HIP Security (HIPSEC) Research Group
and also by the IETF’s HIP Working Group. In this proposal, the new non-
topological identifier for a host is a cryptographic hash of the public key of
the host. This is useful since one can easily authenticate that a given identity
is associated with a given public-key, through knowledge of the appropriate
public/private key pair. However, it simultaneously creates a significant
limitation. If a private key were ever compromised, then the corresponding
host would need to obtain an entirely new identity, because the identity is
tightly bound to the public/private key pair used by the host.

This work proposes creating a new identifier, which is described in more
detail in the next section. However, the author believes it unwise to use a
host’s current public key to create the host’s identity. Instead, the author
wants to have an identifier that can be authenticated, but that can also be
preserved even if the host should change its public/private key pair.

5 A New ldentifier

In this section we propose to alter the Internet Architecture to add an ex-
plicit non-topological network-layer identifier. Further, this section will de-
scribe the candidate new network-layer identifier, describe its properties
(and some explicit non-properties), and provide a basic description for how
the new architecture would work. The goal of this change is to enable the
IP Address to resume its original function as a network-layer identifier used
solely for packet routing. By doing this, we resolve many of the current
application issues, the mobile networking issues, and distributed computing
issues of the current Internet Architecture.

4The author was a member of the IRTF NSRG.
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In order that any host on the global Internet can communicate depend-
ably with any other host, it is important that any identifier used in com-
munications sessions be globally unique. In practice, this requirement can
be weakened a little. The actual requirement is that the identifier have a
very high probability of being globally unique, so that any given attempted
communications session has a very high probability of succeeding. In turn,
this implies that the identifier needs to be sufficiently large to permit each
end system to have a different identifier.

If any new identifier were created, some mechanism for assigning and
distributing that identifier to end hosts would also be needed. Ideally, the
selected identifier would already be available on typical computing plat-
forms, so that no additional work would be needed to assign and manage
that identifier.

5.1 Basic Properties

We propose a new identifier that is an opaque 64-bit quantity, with no
heirarchy or embedded topology. It is nearly globally unique — sufficiently
so that a given host is extremely unlikely to ever communicate with more
than one host at a time for a given identifier. Alternately put, the intent is
that this new identifier would be globally unique, but the design would not
fail if that property did not strictly hold in all cases.

In short, we propose re-using the IEEE 1394 MAC Address as the new
host identifier. The IEEE defined the MAC Address for use in FireWire to
contain the existing 48-bit IEEE 802 MAC Address range as a proper subset.
So any host that has an Ethernet (IEEE 802.3), Token-Ring (IEEE 802.5),
Token-Bus (IEEE 802.4), FDDI, Resilient Packet Ring (IEEE 802.17), or
FireWire (IEEE 1394) interface already has at least one identifier already
assigned to it. Because a host might well have more than one such inter-
face, it is permitted that a single host have multiple identifiers at the same
time. The IEEE 1394 MAC Address is globally unique, unless a host sets
the local-significance bit and creates its own non-unique identifer, a host is
deliberately mis-configured with a MAC Address not assigned to it by the
manufacturer, or the network interface manufacturer accidentally created
more than one network interface with the same MAC Address.

It is important to remember that, in the proposed network architecture,
this new identifer is a host identifier, not a link-layer interface identifier.
So, for example, a host with multiple valid identifiers will normally select
a single common identifier for use with all communications sessions. This
means that the identifier derived from the Ethernet MAC Address might well
be used on network sessions that do not communicate over that particular
Ethernet interface.
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6 Systems Architecture

The previous section described the proposed new network-layer identifier
in detail. This section describes how the current Internet Architecture and
some of the key existing protocols would need to evolve both to support this
new identifier and also to resolve the issues identified in the first section of
this paper.

6.1 DNS Enhancements

A new resource record, the ID record, is added to the Domain Name System
within the Internet (IN) zone. This record is associated with a fully-qualified
domain name, such that given a fully-qualified domain name one can use
DNS to find the set of associated identifiers. Each ID record contains a
single 64-bit network-layer identifier. A given fully qualified domain-name
might have more than one valid ID record at a time. Other IETF work in
progress provides a mechanism to place a host’s public key into the DNS.

If one is going to deploy any identifier it is important to be able to au-
thenticate the bindings between that identifier and other parameters associ-
ated with the legitimate holder of that identifier. Fortunately, recent work
on authenticating the Domain Name System makes this straight-forward.
[Wel0Ob, Wel00a, 3rd01] DNS Security extensions are used to cryptograph-
ically bind the ID record to the domain-name, and also to bind the host’s
public key to the domain-name.

6.2 IP Enhancements

In the currently deployed Internet, most sessions do not use any form of
cryptographic security. So those sessions are not protected against an active
or passive attack by some unauthorised party along the path between the
communicating parties. To reduce the operational risk in the new archi-
tecture to that same level, a new IP option is added. This new end-to-end
option contains a session nonce.

The session originator includes the nonce in the first packet of the ses-
sion. The responder includes the nonce in its first reply packet. From that
point onwards, the session nonce is used in all control messages for risk re-
duction. This is implemented as an IP-layer option, but it could instead
be implemented as a transport-layer option or as a control protocol mes-
sage. The IP-layer option appears to be the best implementation choice. If
implemented in the transport-layer, the same capability would need to be
added to each transport protocol, which would mean the same capability
would be present on the wire in several forms and which would also mean
that changes to the networking protocol suite would be more widespread. If
implemented as a new control protocol message, there would be a significant
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increase in the deployment difficulty, because many sites use firewalls that
block all control protocol messages or block all unknown (e.g. new) control
protocol messages.

6.3 ICMP Enhancements

The Internet Control Message Protocol (ICMP) is enhanced with two new
message types in this proposal. Each of these messages includes the session
nonce established at the beginning of the communications session to reduce
the risk of forgery. Additionally, standard techniques such as the IP Authen-
tication Header (AH) can be used to provide cryptographic authentication
to this or any other ICMP message.

The first message is the ICMP I Have Moved message, which is used to
provide a hint to an existing correspondent that the message originator has a
new IP address. Using this message helps the remote correspondent remain
aware of the current IP address to use even as the local correspondent’s
IP address might change (e.g. due to change in network location). This is
primarily intended for use by mobile hosts.

The second new ICMP message is the ICMP Preferred Routing Prefix
message, which is used to suggest a different routing prefix that the corre-
spondent should use in communicating with the host originating that ICMP
message. This is primarily intended for use by multi-homed hosts, either
directly multi-homed with multiple network interfaces or indirectly multi-
homed via a local campus that has more than one Internet uplink.

6.4 Other Protocol Modifications

The transport-layer protocol implementations would be modified to use this
new 64-bit host identifier value in each place (e.g. Transport Control Block)
where the IP Address is used as an identifier at present. Also, the current
Session Nonce would likely be cached in those same places in the imple-
mentation. Equivalent modifications would be made to each upper-layer
protocol and application. So if this concept were fully implemented, the
IP Address would cease to be used by any upper-layer protocol or ordinary
application. So the TP Address would return to its original role in routing
packets. The operating system software that implements the network-layer
and transport-layer would need to be modified to support the new ICMP
messages noted above.

For a given transport-layer session, the identifiers in use for that session
must not change during the lifetime of that session. Normally, a given
host will always use the same identifier for all communications sessions.
However, it is permitted that if a given host (A) has multiple valid identifier
values, then A might use different network-layer identifiers to represent A in
different communications sessions with another host (B) at a given point in
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time. In order that the binding between domain-name and identifier can be
authenticated, along with the bidirectional binding of domain-name and IP
Address(es), it is important that the relevant data all be stored correctly in
the DNS and also that DNS Security be enabled. Because the identifier is
not related to the IP address, the host’s IP address(es) may change during
the session without adversely impacting the session.

This new systems architecture requires that the Domain Name System
be operating properly in order for applications to initiate new communi-
cations sessions. A properly operating DNS is not a formal requirement of
the current Internet, though most users of the current Internet are unable to
distinguish between a DNS failure and a general network failure. If an appli-
cation that follows the new systems architecture is in use and the DNS fails,
the application probably will not be able to initiate new communications
sessions.

7 Open Issues & Future Research

Although the proposed architectural and protocol modifications do usefully
mitigate the issues identified at the beginning, there are some side-effects
that one needs to be aware of. Also, there are some unresolved issues, such
as support for multicasting, that are good candidates for future research.
This section will elaborate on both of these topics. Finally, a more detailed
comparison of this proposal against other proposals, such as HIP, needs to
be performed.

7.1 Increased Reliance on DNS

As the Domain Name System was not deployed until several years after the
Internet protocol was deployed, many aspects of the Internet can still work
when the DNS is not working or is not working well. Prior to the deployment
of the web, most users were relatively sophisticated and could recognise the
difference between a network-layer failure and a DNS failure, so they could
often work around a DNS fault. However, in recent years most users are
primarily interested in accessing network-based content, such as the web.
For most such users, a DNS failure is equivalent to the Internet being down.
® So during the past decade, the majority of the user base has become quite
dependent on the DNS.

This proposal has the side effect of making all users much more depen-
dent on the DNS working properly. If one misuses an IP Address as a host
identifier as at present, then a DNS failure will not necessarily impact the
ability to use the network — provided one already knew the remote end’s

®In fact, DNS failures are often reported to consumer ISPs as "network down”, much
to the frustration of the ISP support staff.
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IP address. However, if one moves to an architecture and to revised proto-
cols that use the proposed new host-identifier and/or fully-qualified domain
names as the principal identifiers above the network-layer, then it will be
much more difficult to work around a DNS fault. In metallurgy, when one
makes a metal that is stronger, the result is typically both stronger and more
brittle. So, to draw an analogy, the proposed new architecture and revised
protocols strengthen the Internet and perhaps also make it more brittle.

It is, however, important to note that many critical network debugging
tools, such as ping(1), traceroute(1l), or nslookup(1), should continue to
work well without modification. This does matter operationally, as any
distributed system will suffer faults from time to time; it is important that
when a fault occurs, suitable tools exist for analysing the cause of the fault,
for repairing the fault, and for mitigating the fault’s effects until repaired.

7.2 Multicasting

In the special case of a multicast session, the current proposal does not
describe what identifier should be used to represent the multicast group.
While some transport protocols, such as TCP or SCTP, are not used with
multicasting, other protocols, primarily UDP and RTP, are regularly used
with multicasting.

This is a significant short-coming of the current proposal; this proposal
cannot be considered complete unless multicasting is supported in some
manner.

7.3 Security

While this proposal has not ignored security considerations in its design,
there is no well-documented threat analysis for the new architecture — nor is
there a threat analysis for the requisite protocol modifications. This proposal
cannot be considered complete without such a threat analysis, describing
potential threats, security mechanisms used to mitigate those threats, and
the residual risks of the new architecture. While the author believes the
net effect of the new architecture will be to facilitate wider deployment of
better quality security mechanisms than are deployed today, this should be
documented and shown to actually be the case.

7.4 Prototyping & Experimentation

The experience of the IRTF NameSpace Research Group (NSRG) indicates
that while some will be able to understand the new architecture and system
after reading documentation, many others will not believe that the system
could actually work absent experimental results. So once the design is stable
and reasonably complete, it would be sensible to build a prototype imple-
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mentation, deploy it at least in a small testbed, and run suitable experiments
to validate the architecture and also the protocol specifications.

If this issue is addressed via implementation, the work would likely be
most accessible to others in the networking research community if imple-
mented inside a networking software stack derived from 4.4 BSD Unix. If
this is addressed using a network simulation instead, perhaps because of
lack of resources/time to do a full implementation, then the work would be
probably most accessible to others if coded using the NS network simulator
or using the commercial OPnet simulation tool.

8 Summary

This working paper has outlined a set of technical issues and limitations
with the current Internet architecture. The issues described include several
specific difficulties in the deployed Internet of today. Further, this paper
proposes that the Internet architecture would be improved by adding a new
host identifier that is not used by the network routing system (i.e. is not
an IP address) to mitigate or resolve the identified issues. We have also
outlined other changes needed to existing protocols to fully support the
enhanced network architecture. Finally, we described the open issues and
several areas that appear worthy of future research.
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