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Abstract— The vast majority of mobile ad hoc net-
working research makes a very large assumption: that
communication can only take place between nodes that
are simultaneously accessible within in the same connected
cloud (i.e., that communication issynchronous). In reality,
this assumption is likely to be a poor one, particularly for
sparsely or irregularly populated environments. Moreover,
asynchronous communication such as email, which is
by far the pre-eminent form of networked person-to-
person communication, has a natural fit to such partially-
connected environments, but has been relatively little
explored in the context of mobile ad-hoc networking. This
is perhaps unsurprising, given the complexities involved.
Indeed, the few approaches that have been described to
date are simplistic or heavyweight, relying on brute force
methods in order to achieve message delivery.

In this paper, we present the Context-Aware Routing
(CAR) algorithm. CAR is a novel approach to the provision
of asynchronous communication in partially-connected
mobile ad hoc networks, based on the intelligent placement
of messages. We discuss the details of the algorithm,
and then present simulation results demonstrating that
it is possible for nodes to exploit context information in
making local decisions that lead to good delivery ratios
and latencies with small overheads.

I. I NTRODUCTION

Since the earliest days of email, asynchronous com-
munication has been the pre-eminent form of person-to-
person communication; in comparison, relatively little
Internet traffic is generated for synchronous personal
communication, though the balance is expected to shift
a little with the increasing deployment of VoIP. The
reasons for the success of the asynchronous paradigm are
clear: asynchronous communication works even when
both parties are not simultaneously available; it is less
intrusive than synchronous communication, since recip-
ients can deal with messages at their convenience; and
(most importantly for us) it is less sensitive to link failure
than synchronous traffic, simply because the traffic is

deemed to have higher tolerance to delay.
Ad hoc networks represent the purest form of decen-

tralised systems and, therefore, they impose many chal-
lenges to cooperative communication. As a consequence,
much ad hoc network research has focused on the
investigation of fundamental algorithms for routing [1]
on which almost everything else relies. However, in order
to make the problem tractable, almost all research on
routing algorithms makes the oversimplistic assumption
that it is only meaningful to attempt to exchange mes-
sages within connected clouds of nodes, in other words,
that all communication is synchronous in nature.

This assumption is overly constrained if one considers
that there is a strong requirement for communication that
is asynchronous in nature, as argued above. In such a
case, the delay tolerant character of the traffic allows
useful communication to still occur by using nodes
moving between disconnected groups of nodes (clouds)
to transport messages from one cloud to another. Thus,
it is perfectly possible that two nodes mayneverbe part
of the same connected cloud and yet may still be able
to exchange delay tolerant information by making use of
predicted mobility patterns as an indicator of which other
nodes might make good carriers for this information.

In the absence of special information, the problem of
predicting which nodes might make good carriers in ad
hoc networks is a very challenging one. Likely future
mobility patterns must be inferred from past mobility
patterns, but this alone is inadequate; parameters such as
remaining battery lifetime are also key in determining
which potential carriers are most likely to result in
successful delivery. In this paper, we consider what types
of information are available to nodes in deciding on a
carrier. We use this analysis in the design of a Context-
aware Adaptive Routing algorithm (CAR), a general
framework for the evaluation and prediction of context
information, aimed at achieving efficient and timely
delivery of messages. Using simulations, we explore



the performance of the CAR algorithm with respect
to epidemic routing [2] and flooding. Whilst, in the
developed world, synchronous communication (in the
form of phone and Internet) is generally cheap and
easy to come by, there are several real scenarios in less
developed parts of the world in which different portions
of a logical network are physically disconnected. Thus,
for example, this is the case in recent projects established
to assist nomadic communities such as the Saamis in
Lapland [3] or to assist populations in rural areas of
India [4]. In the latter case, a number of villages each
have their own local networking infrastructure, but there
is no interconnection between them. A bus containing a
wireless node travels between villages, picking up email
in one and depositing it in others on its round. Self-
evidently, although there is never a direct connection
between sender and recipient, mail can still be delivered.

This paper is organized as follows: in Section II
we discuss the most relevant aspects of asynchronous
routing for mobile ad-hoc networks. Section III presents
our approach. The details related to the evaluation of
context information are discussed in Section IV. The
description of the simulations carried out to evaluate
CAR is provided in Section V, together with an analysis
of the results. In Section VI we compare CAR with
previous work in this area and Section VII concludes
the paper, outlining possible future research directions.

II. A SYNCHRONOUSCOMMUNICATION IN MOBILE

AD HOC NETWORKS

Synchronous protocols rely on the fact that a con-
nected path exists between the sender and the receiver
of a message; the absence of such a path will, at best,
lead to a failure indication to the originating host. If
delivery is important, the best that can be done is for the
sender to continue to poll for the receiver. However, as
in the example of the bus delivering messages outlined
in Section I, it may be the case that sender and receiver
are never in the same connected cloud, so this will not
achieve the wanted results.

Only a small number of approaches have been pro-
posed in the field of asynchronous communication for ad
hoc networks [2], [5]. As described above, the challenge
in producing an algorithm for delivering asynchronous
messages derives from the deceptively simple question
of determining the best carrier or carriers for each
message. Clearly, leaving the message with the sender
is inappropriate, since sender and receiver may never
meet.

An alternative, if inefficient, solution is to spread the
messages to all hosts using a form of persistent flooding.
In this approach, which is more properly known as
epidemic routing[2], a host floods the message it wishes
to send to all hosts within its connected cloud. Each
carrier host buffers the message and if, as a result of
movement, they come into contact with hosts that do not
have a copy, they transfer it to them, making them new
carriers, in an analogous was to the spread of disease.
Eventually, the message will reach all nodes in the
system, provided that movement patterns allow for this.
Epidemic routing is a reasonable approach when there
is no information about the likely movement patterns of
nodes in the system. In other words, when there is no
basis on which to distinguish the movement pattern of
any node from another, and the movement pattern of
each node is individually random, the only choice about
message placement is to place messages randomly or to
place them everywhere, since there is no more intelligent
basis for making a decision.

The aim of our protocol is to allow nodes to make
intelligent local decisions about the choice of carriers for
messages. These decisions are based on small amounts
of information that are exchanged along with standard
routing tables, and they are effected by using prediction
techniques both to reduce the amount of information
needs to be sent and to increase its utility. In the imme-
diately following sections, we analyse the information
gathering, prediction and exchange mechanisms before
proceeding to an analysis of the performance of the
protocol.

III. C ONTEXT-AWARE ROUTING FORMOBILE AD

HOC NETWORKS

The Context-Aware Routing algorithm is built on
the assumption that the only information a host has
about its position is logical connectivity information.
In particular, we assume that a host is not aware of
its absolute geographical location nor of the location of
those to whom it might deliver the message. Although
this information could potentially be useful, and, indeed,
we plan to examine its utility in the near future, it is
currently unreasonable to assume the existence of GPS
for all potential application domains for this technology.
Another basic assumption is that the hosts present in the
system cooperate to deliver the message. In other words,
we do not consider the case of hosts that may refuse to
deliver a message or that act in a Byzantine manner.

The delivery process depends on whether or not the
recipient is present in the same cloud as the sender. If



both are currently in the same connected portion of the
network, the message is delivered using the underlying
synchronous routing protocol to determine a forwarding
path. In the remainder of this paper we assume that a
proactive routing protocol is used (in our simulations
we employed DSDV [6]). Reactive protocols require
different approaches to optimisation that would simply
confuse the presentation and so are deemed to be outside
the scope of this particular work.

If a message cannot be delivered synchronously1, the
best carriers for a message are those that have the highest
chance of successful delivery, i.e., the highestdelivery
probabilities. The message is sent to one or more of these
hosts using the underlying synchronous mechanism.

Delivery probabilities are synthesized locally from
context information such as the rate of change of connec-
tivity of a host (i.e., the likelihood of it meeting other
hosts) and its current energy level (i.e., the likelihood
of it remaining alive to deliver the message). We define
contextas the set of attributes that describe the aspects
of the system that can be used to optimize the process of
message delivery. Since we assume a proactive routing
protocol, every host periodically sends both the infor-
mation related to the underlying synchronous routing
(in DSDV this is the routing tables with distances,
next hop host identifier, etc.), and a list containing its
delivery probabilities for the other hosts. When a host
receives this information, it updates its routing tables.
With respect to the table for asynchronous routing,
each host maintains a list of entries, each of which is
a tuple that includes the fields (destination, bestHost,
deliveryProbability). In this paper, we choose to explore
the scenario in which each message is placed with only a
single carrier rather than with a set, with the consequence
that there is only a single list entry for each destination.

When a host is selected as a carrier and receives the
message, it inserts it into a buffer. The size of this buffer
is important, and represents a trade-off between storage
overhead and likely performance. If the buffer overflows,
messages will be lost from the system, since we assume
the existence of a single replica.

In order to understand the operation of the CAR
protocol, consider the following scenario in which two
groups of nodes are connected as in Figure 1. Host

1It is worth noting that the recipient may be in the same cloud
but not reachable using synchronous routing, since the routing
information is not available (for example because the space in the
routing tables is not sufficient to store the information related to all
the hosts in the cloud or because the node has just joined the cloud).
In these cases we exploit the asynchronous mechanisms.

H1 wishes to send a message toH8. This cannot be
done synchronously, because there is no connected path
between the two. Suppose the delivery probabilities for
H8 are as shown in Figure 1. In this case, the host
possessing the best delivery probability to hostH8 is H4.
Consequently, the message is sent toH4, which stores
it. After a certain period of time,H4 moves to the other
cloud (as in Figure 2). Since a connected path between
H4 and H8 now exists, the message is delivered to its
intended recipient. Using DSDV, for example, it is worth
noting thatH4 is able to send the message shortly after
joining the cloud, since this is when it will receive the
routing information relating toH8.

What we have described is the basic model behind the
CAR protocol. In the following sections we will describe
the details of the algorithms and techniques exploited for
the calculation of the delivery probabilities.
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Fig. 1. Two connected clouds, with associated delivery probabilities
for message transmission betweenH1 andH8
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Fig. 2. H4, carrying the message, joins the second cloud.

IV. PREDICTION AND EVALUATION OF CONTEXT

INFORMATION

The general problem from the point of view of the
sender of a message is to find the host with the best deliv-
ery probability, as calculated using the predicted values
of a range of context attributes. Instead of using the
available context information as it is, CAR is optimized
by using predicted future values for the context, so to
have more realistic values. The process of prediction and



evaluation of the context information can be summarized
as follows.

• Each host calculates its delivery probabilities. This
process is based on theprediction of the future
values of the attributes describing the context (see
Section IV-B) and on thecomposition of these
estimated values using multi-attribute utility the-
ory [7] (see Section IV-A). The calculated delivery
probabilities are periodically sent to the other hosts
in the connected cloud as part of the update of
routing information.

• Each host maintains a logical forwarding table
of tuples describing the next logical hop, and its
associated delivery probability, for all known desti-
nations.

• Each host uses local prediction of delivery probabil-
ities between updates of information. The prediction
process is used during temporary disconnections
and it is carried out until it is possible to guarantee
a certain accuracy. Morever, in the case of hosts
within reach, the interval between update shipment
is based on the possibility or not to make accurate
predictions. In other words, hosts send updates only
when the evolution of the mobile scenario follows
a certain trend. This is done by evaluating the
sampled values of context information.

In the remainder of this section, we will analyze more
closely how delivery probability information is predicted,
spread in the system, maintained, and evaluated.

A. Local evaluation of context information

There are several techniques that can be used to
combine and evaluate the multiple dimensions of context
in order to decide which nodes are the best candidates for
carrying a particular message. The simplest is to allow
application developers to define a static hierarchy among
the predicted context attributes [8].

A possible alternative to this method is to use goal pro-
gramming, exploiting the so-calledpreemptive method-
ology. With respect to a single attribute, our goal is to
maximize its value. The optimization process is based
on the evaluation of one goal at a time such that the
optimum value of a higher priority goal is never degraded
by a lower priority goal [9]. However, in general, the
definition of static priorities is inflexible. For more
realistic situations, we expect to need to attempt simul-
taneous maximization of a range of different attributes,
as opposed to using a predefined hierarchy of priorities.

1) Significance-based evaluation of context-aware in-
formation: The priority based technique just mentioned

seems too simplistic because, in general, our decision
problem involves multiple conflicting objectives [7]. For
example, if we wish to determine which host has the
best delivery probability, considering both the battery
energy level and the rate of change of connectivity, it
may happen that the host characterized by the highest
mobility has scarce residual battery energy and vice
versa. In general, maximization across all parameters
will not be possible and, instead, we must trade off the
achievement of one objective (i.e., the maximization of
a single attribute) against others.

The context information related to a certain host can
be defined using a set of attributes(X1, X2, ..., Xn).
Those attributes denoted with a capital letter (e.g.,X1)
refer to the set of all possible values for the attribute,
whereas those denoted with a lower case letter (e.g.,
x1) refer to a particular value within this set. In the
remainder of this section we will use the classical
notation of utility theory. Our goal is to allow each host
locally to associate a utility functionU(x1, x2, ..., xn),
representing the delivery probability, with every other
host. We use the following definitions:

Definition 1: Given a set of attributesX1, X2, ..., Xn

partitioned into two complementary setsY =
(X1, X2, ..., Xs) andZ = (Xs+1, Xs+2, ..., Xn), we say
thaty’ is conditionally preferred or indifferent toy given
z if and only if

(y’ , z) � (y, z)

Definition 2: The set of attributesY is preferentially
independent of the complementary setZ if and only if
for somez’

[(y’ , z’) � (y, z’)] ⇒ [(y’ , z) � (y, z)],∀z, y, y’

To understand this definition, consider the case of
three attributesX1, X2, X3: two attributesX1 and X2

are preferentially independent of a third attributeX3 if
the preference between(x1, x2, x3) and(x′1, x

′
2, x3) does

not depend on the particular valuex3 for the attributeX3.

Definition 3: The attributesX1, X2, ..., Xn are mutu-
ally preferentially independent if every subsetY of these
attributes is preferentially independent of its complemen-
tary set of attributes.

Given these definitions, an interesting result of the multi-
attribute decision theory is the following theorem demon-
strated by Debreu in 1960 [10].

Theorem 1:Given attributesX1, X2, ...Xn, an addi-
tive function of the following form exists if and only if



the attributes are mutually preferentially independent

U(x1, x2, ..., xn) =
n∑

i=1

Ui(xi)

whereUi is a utility function overXi.
Thus, in the case of mutually preferentially indepen-

dent attributes, that is to say those characterized by the
same degree of significance, the sum of the attributes
is adequate as a means of combining those attributes.
However, the case of attributes that have different relative
importance is more interesting. In this case, we use the
theory of goal programming, a branch of mathematics
that has been studied since 1960 in the operation re-
search community. More specifically, we use theweights
method in order to find the host that has the highest
probability of delivering the message.

Our aim is to maximize each attribute, in other words,
to choose the host that presents the best trade-off be-
tween the attributes representing the relevant aspects
of the system for the message delivery. Analytically,
consideringn attributes, the problem can be reformulated
in terms ofn goals where each goal is given as

Maximise{Ui(xi)}, i = 1, 2, ..., n

The combined goal function used in the Weights method
can be defined as

Maximise{f(U(xi)) =
n∑

i=1

wiUi(xi)}

where w1, w2, ...wn are significance weightsreflecting
the relative importance of each goal.

It is worth noting that, in our case, the solution is very
simple, since it consists in the evaluation of the function
f(U1, ..., Un) using the values predicted for each host
and in the selection of the hosti with the maximum
such value.

2) Autonomic adaptation of the utility evaluation
function: As it stands, the utility function weights are
fixed in advance, reflecting the relative importance of the
different context attributes. However, such a formulation
is still too static, since it fails to take into account the
values of the attributes. Thus, for example, a small drop
in battery voltage may be indicative of the imminent
exhaustion of the battery; consequently, it would be
useful to reduce the weight of this attribute nonlinearly
to reflect this.

In general, we wish to adapt the weights of each
parameterdynamicallyand in ways that are dependent
on the values of those parameters. In other words, we
need a runtime self-adaptation of the weightings used

for this evaluation process that could be categorized as a
typical autonomic mechanism [11]. A simple solution to
this problem is the introduction of adaptive weightsai

into the previous formula, in order to modify the utility
function according to the variation of the context.

Maximise{f(U(xi)) =
n∑

i=1

ai(xi)wiUi(xi)}

ai(xi) is a parameter that may itself be composite. For
our purposes, we define it to have three important aspects
that help to determine its value, though the model could
easily be expanded to incorporate other aspects deemed
to be of importance:

a) Criticality of certain ranges of values,arangei
(xi)

b) Predictability of the context information,
apredictabilityi

(xi)
c) Availability of the context information,

aavailabilityi
(xi)

We now compose theai weights as factors in the
following formula:

ai(xi) = arangei
(xi) ·apredictabilityi

(xi) ·aavailabilityi
(xi)

a) Adaptive weights related to the possible ranges
of values assumed by the attributes :We can model
the adaptive weightsarange(xi) as a function whose
domain is[0, 1]. For example, with respect to the battery
energy level (modeled using the percentage of residual
battery energy), we would use a monotonically decreas-
ing (though not necessarily linear) function to assign a
decreasing adaptive weight that is, in turn, used to ensure
that the corresponding utility function decreases as the
residual energy tends towards zero.

b) Adaptive weights related to the predictability
of the context information:In general, it is possible
to exploit different statistical attributes for the analysis
of time series [12]. One could, for example, use the
autocorrelation functionto describe the degree of as-
sociation between values of the time series at different
lags2. In short, this gives a measure of the predictability
of the context information. Furthermore, there are clear
guidelines for adapting the use of the autocorrelation
function for non-stationary data with both trends and
seasonal variations.

In building the autocorrelation function, we first need
to consider the auto-covariance of the system: given a
time series characterized by the meanµt at the timet,

2This is a simplification by assuming independent attributes. If
this is untrue, then one might wish to use cross correlation instead
of simple autocorrelation here.



the auto-covarianceCov(Xt, Xt+k) of the time series
{Xt} at lagk is defined as follows

Cov(Xt, Xt+k) ≡ E[(Xt − µt)(Xt+k − µt+k)] =

=

n−k∑
t=1

(xt − µt)(xt+k − µt+k)

n

The lag represents the time difference (in terms of the
number of samples) between the two instants being
considered. The variance of then samples of the time
series can be expressed as follows

σ2(Xt) ≡

n∑
t=1

(xt − µt)2

n

Therefore, we use theautocorrelation coefficientρk,
at lagk defined as follows

ρk ≡
Cov(Xt, Xt+k)

V ar(Xt)

that can also be expressed as

ρk =

n−k∑
t=1

(xt − µt)(xt+k − µt+k)

n∑
t=1

(xt − µt)2

It is worth noting that is possible to prove that

0 ≤ |ρk| ≤ 1

The absolute value ofρk is exactly 1 for a perfect
autocorrelation, whereas an autocorrelation coefficient
close to zero (either positive or negative) indicates little
or no correlation between two samplesXt andXt+k. In
the case of a so-called random series, for a large number
n of samples, the value ofρk is approximately equal to
0. We therefore determine parameterapredictabilityi

thus:

apredictabilityi
= |ρk|

An interesting issue is the choice of the value of the
lag k. It is possible that autocorrelation signals will drift
slowly over time and, consequently, the value ofk will
also need to change to reflect this. However, we expect
the underlying processes that determine the nature of the
original signal to change slowly if at all.

Thus, in order to adapt the lag value to retain a
strongly correlated signal, we adopt a very simple adap-
tive technique. At the initial instantt0, k is set to
1. This is increased, up to a value ofkMAX , if the
autocorrelation coefficient is below a given lower bound
thresholdρstrongCorrLB. The process wraps on reaching

kMAX , setting the value ofk back to unity in order to
ensure that the entire space is searched. If, on the other
hand, the autocorrelation coefficient exceeds an upper
bound thresholdρstrongCorrUB, k is decreased until it
reaches the value 1.

We can summarize these concepts using the following
update equation for the lagk:

k(t+1) =


1 if t = t0 or k(t) = kMAX

k(t) + 1 if ρ(t) ≤ ρstrongCorrLB , k(t) < kMAX , t 6= t0
k(t)− 1 if ρ(t) > ρstrongCorrUB , k(t) ≥ 1, t 6= t0
k(t) otherwise

c) Adaptive weights related to the availability of the
context information:It is unreasonable to assume that all
context attributes have the same degree of availability.
Thus, we expect to have a time-varying set of attributes
available whose values are known or predictable. At-
tributes may drop out of this set if meaningful values can
no longer be predicted for them, since the information on
which the prediction would have been based is too old.
The simplest approach to this problem is to ensure that
missing context information carries an adaptive weight
ai equal to 0:

aavailabilityi
=

{
1 if the context information is currently available
0 if the context information is not currently available

Formally, to date, we have implicitly assumed that
a static set of attributes will be defined. However, it
is worth noting that, using this approach, we can dy-
namically incorporate new attribute values, simply by
assuming that they were always there, but had zero
weight for aavailabilityi

.
d) Automatic adaptation of the refresh period of

routing tables and context information:In wired net-
works, routing table state update is often done on an
unvarying regular basis as well as on a by-need basis.
However, this approach is wasteful in mobile ad hoc
environments. Thus, we consider how to adapt the rate
of context information dissemination by noting that we
already know that such information is predicted by
recipients and that such predictions are likely to be
most accurate when the signal on which they are based
is most predictable. Thus, a possible function for the
determination of refresh time is given by:

t(x1, x2, ..., xn) = c
n∑

i=1

|ρki
|

where c is a constant of proportionality.
There are several possible extensions of this model.

For example, one might wish to take account of the
absolute value of a parameter in determining update
rates. Thus, for example, as battery energy levels decline,



one might wish to update information increasingly less
frequently despite the consequent unpredictability at the
other end, in order to conserve remaining energy. If
information at the recipients becomes totally outdated,
thenaavailabilityi

will be set to zero for all our attributes
and the result is that we will not be likely recipients of
messages to transfer, which is in line with the behavior
we would expect. Thus, we could replace the simple
constant in the above equation with a generic function
of values of individual attributes. Likewise, we could
obtain a more refined model associating different weights
with the autocorrelation coefficient for each attribute in
a way similar to that applied previously for composing
the utility functions for evaluating which host has the
best message delivery probability.

B. Prediction of the context information attributes using
Kalman filters

Kalman filter prediction techniques [13] were orig-
inally developed in automatic control systems theory.
These are essentially a method of discrete signal pro-
cessing that provides optimal estimates of the current
state of a dynamic system described by astate vector.
The state is updated using periodic observations of the
system, if available, using a set ofprediction recursive
equations.

Kalman filter theory is used in CAR both to achieve
more realistic prediction of the evolution of the con-
text of a host and to optimize the bandwidth use. As
discussed above, the exchange of context information
that allows the calculation of delivery probabilities is
a potentially expensive process, and unnecessarily so
where such information is relatively easily predictable. If
it is possible to predict future values of the attributes de-
scribing the context, it is possible to update the delivery
probabilities stored in the routing tables, even if fresh
information is unavailable. Fortunately, it is possible
to express this prediction problem in the form of a
state space model. We have a time series of observed
values that represent context information. From this it is
possible to derive a prediction model based on an inner
state that is represented by a set of vectors, and to add to
this both trend and seasonal components [14]. It is worth
noting that one of the main advantages of the Kalman
filter is that it does not require the storage of the entire
past history of the system, making it suitable for a mobile
setting in which memory resources may potentially be
very limited. In view of the fact that we use existing
results, we do not present the mathematical aspects of
the application of state space models theory and Kalman

filter time series analysis in this paper; however, the
interested reader can find these in [15].

The use of prediction is complicated by the fact that
the information on which it relies for its accuracy travels
across networks. In mobile settings, bit error rates are
relatively high, and so the loss of messages is more
probable than for wired settings. If context information
is exchanged only when significant, then its loss has
a greater effect. The tradeoff between loss and the
additional overhead needed for redundant transmission
of context is a complex study in coping with uncertainty
and is outside the scope of this paper.

V. SIMULATION AND RESULTS

We evaluated the CAR algorithm by using the Om-
Net++ discrete event simulator [16]. In order to obtain
credible results and to test the peculiar characteristics
of our protocol, it was also necessary for us to develop
a new group mobility model, that will be presented in
Section V-B.

A. Description of the simulation

1) CAR Simulation:For reasons of space and in order
to allow for fair comparison with existing research, we
report results based on simulations that use only part
of the full generality of the CAR algorithm. Thus, we
simulated the CAR model using a utility function based
on the evaluation of two attributes: (i) the change rate
of connectivity and (ii) the probability of being located
in the same cloud as the destination. We made the
assumption that these factors have the same relevance,
so assigned them the same weights in the evaluation of
the overall utility (i.e.,wi = 0.5). Moreover, we also
assumed that all the possible values in the range had
the same importance (i.e,arangei

(xi) = 1) and that the
the values of attributes are always available during the
simulation (i.e.,aavailabilityi

(xi) = 1).
The change rate of connectivity attribute is locally

calculated by examining the percentage of a node’s
neighbors that have changed their connectivity status
(connected to disconnected, or vice versa) between two
instants. The co-location attribute measures the percent-
age of time that two hosts have been in reach. To cal-
culate it, we periodically run a Kalman filtering process,
assuming that the value is 1 if the host is currently in
reach or 0 if not. Clearly, the resultant predicted values
will be in the range[0, 1] and they will directly express
an estimation of the probability of being in reach of the
host in the future.



We implemented a simplified version of the DSDV
protocol [6] in order to simulate and test the synchronous
delivery in connected portions of the network, as de-
scribed in Section III.

Each host maintains arouting and context information
table used for asynchronous and synchronous (DSDV)
routing. Each entry of this table has the following
structure:

(targetHostId, nextHopId, dist, bestHostId, delProb)

The first field is the recipient of the message, the
second and the third are the typical values calculated
in accordance with the DSDV specification, whereas the
fourth is the identifier of the host with the best delivery
probability, the value of which is stored in the last field. It
is worth noting that all the autonomic mechanisms, such
as the variable refresh period of routing tables, described
previously, were implemented.

We also simulated flooding and the epidemic protocols
in order to provide comparators for the performance of
the CAR solution.

2) Flooding simulation:We elected to compare our
approach with flooding. This decision may seem strange,
since flooding only works in a fully connected envi-
ronment. However, since communications patterns are
random in the simulations, many messages will be passed
between hosts that are in connected portions of the
network, even when assessing the performance of the
epidemic algorithm and of the CAR algorithm. In order
to see the difference in delivery rates that result from
the algorithms’ ability to handle partial connectivity, it
is therefore essential to compare against a synchronous
protocol with optimum delivery ratio.

3) Epidemic routing simulation:The implementation
of the epidemic protocol follows the description pre-
sented in [2]. The only assumption made by the authors
is a periodic pair-wise connectivity, since the protocol
relies on the transitive distribution of messages for
delivery. When two hosts become neighbors (in other
words, they are within each other’s radio range), they
determine which messages each possesses that the other
does not, using summary vectors that index the list of
messages stored at each node; they then exchange them.
Each message is characterized by a unique message
identifier and a hop count value; the latter determines the
maximum number of possible exchanges of a message.
Higher hop count values reduce the delivery latency,
but, at the same time, increase the quantity of resources
(memory, battery, bandwidth) consumed in this process.
The simulation prepared by the authors shows that the

algorithm achieves total delivery of messages sent after a
limited period of time, but at the cost of very substantial
overheads. The epidemic approach represents the clas-
sic example of an asynchronous protocol and therefore
provides the ideal comparator.

4) Simulation system parameters:We evaluated the
performance of each protocol sending 100 messages with
a simulation time equal to 300 seconds. The messages
were sent after 40 seconds, in order to allow for the
settling of initial routing table exchanges, and the inter-
vals between each message were modeled as a Poisson
process, withλ = 5s−1, and the consequence that all
messages are sent in about 20 seconds. The sender and
receiver of each message are chosen randomly.

In the CAR simulation, each message has a field
that is similar to atime to livevalue that is decreased
each time that the message is transferred to another host
(the initial value being 15). Moreover, in this case, we
also introduced asplit horizon mechanism to prevent
messages from being retransmitted unnecessarily. The
buffer for each node was set to 20 messages, unless
otherwise specified. Table I summarizes the simulation
parameters.

The one key aspect of the simulation not yet addressed
is that of the mobility model. Clearly, the random way-
point mobility model, which is used extensively in such
studies, largely for reasons of simplicity, does not accu-
rately reflect human behaviour and annihilate the effect
of the prediction since movement is entirely random.
Consequently, we devised a new group-based mobility
model [17]. This is presented briefly in the following
section.

B. Mobility model

Mobility models that assume that individuals move
independently of one another in random ways are un-
realistic in terms of the deployment scenarios for ad
hoc networks that are most commonly expounded. For
example, on a battlefield, it would be indicative of a very
troubled army if each soldier were to move randomly
with respect to all others. Thus, we have developed a
new model with a form of hierarchical clustering that
better reflects the ways in which collections of people are
structured at an organizational level and, consequently,
the ways in which they move [17]. This model has been
instantiated in a simple way for these experiments, and,
as used here, is somewhat akin to those in [18], [19]
(however, its potential is larger as explained in [17]).
Thus, we introduce the concept of a collection of nodes,



TABLE I

SIMULATION PARAMETERS

Number of hosts 16/24/32
Simulation area 1 Km x 1 Km

Propagation model free space
Antenna type omnidirectional

Transmission range 200 m
Number of clouds 4

Cloud area 200 m x 200 m
Node speed 1-3 m/s
Cloud speed 1-2 m/s

Number of messages sent 100
Max number of hops 15
Message buffer size 10 to 100
Routing table size 20 entries

Max distance 15

which has its own motion overlaid on a form of random
motion within the cloud.

By parameterizing this model differently, we can
represent different archetypes: for example, one would
expect to use different parameters for an academic who
spends her life traveling between home and the univer-
sity, interacting with a very closed set of people, as op-
posed to a salesman who travels much more extensively
and interacts less discriminatingly.

A host that belongs to a cloud moves inside it towards
a goal (i.e, a point randomly chosen in the cloud space)
using the standard random way-point model. When a
host reaches a goal, it also implicitly reaches a decision
point about whether to remain within the cloud, and, if
leaving, to where it should go. Each of these decisions
is taken by generating a random number and comparing
it to a threshold (which is a parameter of the model). It
is worth noting that clouds also move towards randomly
chosen goals in the simulation space.

C. Simulation Configuration

50% of the hosts are initially placed randomly in a
cloud, whereas the others are positioned randomly in the
simulation area. Each cloud is defined using a squared
area with a side length of 200 m. In other words, we
randomly select the point(minX, minY ) that, together
with the length of the side, defines the cloud area. For
these simulations, there is only a single level of cloud.

Every host is characterized by two values,Pescape,
indicating the probability of escaping from the current
cloud, andPescapeCloud describing the probability of
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choosing a new goal in the space between clouds.
Each cloud moves with a random speed (with a value

in the range 1-2 m/s); moreover, each host moves with a
randomly generated different speed (with a value in the
range 1-3 m/s). It is worth noting that the movement of
a host is the result of the composition of these speeds.

In our simulation, the positions of all the hosts
and clouds are updated every second. When a cloud
reaches its goal, a new goal is chosen in the simula-
tion space. When a host reaches its goal, a threshold
probability PescapeThreshold is generated randomly (its
range is clearly[0, 1]). If its Pescape is greater than
PescapeThreshold the new goal is chosen outside the cur-
rent cloud, else inside. If outside, we randomly generate
PescapeCloudThreshold and compare it toPescapeCloud to
determine whether or not the goal should be chosen in
some other cloud or in the open space between clouds.
For those hosts that are already outside a cloud, the
choice of a new goal is done in an analogous way.

D. Analysis of results

In this subsection we will analyze the results of our
simulations, comparing the performance of CAR with
the flooding and epidemic protocols. We will discuss the
variation of some performance indicators as functions
dependent on the density of hosts (i.e., the number of the
hosts in the simulation area) and the size of the buffers
used to store messages in both the epidemic and CAR.
In Figure 3, there is a comparison between the delivery

ratios of the three protocols in each of three different
scenarios (with 16, 24 and 32 hosts). In all cases, the
number of messages that may coexist within a node’s
buffer is unconstrained.

CAR achieves a performance between that of flooding
and epidemic routing, as expected. Flooding suffers from
the inability to deliver messages to recipients that are
in other clouds when the messages are sent but is here
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simply as a comparator to demonstrate the numbers
of messages being delivered that cannot be delivered
directly, because the recipient is in a cloud different from
the cloud of the sender. The epidemic protocol can be
considered optimal in terms of delivery ratio, simply
because each message is propagated to all accessible
hosts, all of which have buffers large enough to hold
it. In CAR, we have chosen to operate under the most
stringent conditions: there is only ever a single copy of
each message, which represents the worst case for this
protocol. Clearly, it would be possible to trade off a small
amount of intelligent replication (to improve the delivery
ratio) against an increase in overhead.

The dependency of the delivery ratios on the buffer
size is similar for all the protocols (see in Figure 4 the
results for the 32 hosts scenario). Both of these demon-
strate a substantial degradation of their performance as
buffer size decreases; however, this phenomenon is more
evident in the epidemic approach as a result of the degree
of replication of messages.

Figure 5 is interesting because there are two com-
peting effects at work for the epidemic protocol. When
the buffer size is small, there is a high probability
that messages will be eliminated due to overflow, as
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discussed above. Consequently, the number of messages
exchanged is also low. At the other end of the scale,
as the buffer size increases to a point where it can
accommodate all the messages in the system, there is no
repeated exchange of messages, so the number is also
low. In the middle of the range, however, the buffer
size is insufficient to hold all messages and there is
a cycle in which messages are eliminated by buffer
overflow and then reinstated by other nodes, resulting
in very high overhead. In the case of CAR, it is worth
noting that the overhead in terms of the number of
messages exchanged is more or less constant, regardless
of buffer size, demonstrating itsscalability. CAR will
always be the limiting case for performance under this
metric because it only creates a single copy of each
message. Thus, even at the point where buffer size
becomes effectively infinite, the epidemic protocol will
necessarily exchange more messages than ours, simply
as a result of the replication.

Figure 6 shows the distribution of the number of
messages with respect to their delivery latency in the 32
hosts scenario. It is possible to observe that a proportion
of the messages are delivered more or less immediately,
since the recipients are in the same cloud as the sender.



Another interesting comparison is showed in Figure 7:
the distributions of the delivery latency in the case of
different node densities are very similar.

VI. RELATED WORK AND DISCUSSION

A number of approaches have been proposed to en-
able asynchronous communication in mobile ad hoc
networks.

Epidemic algorithms were first devised in the con-
text of distributed database systems in an attempt to
guarantee data consistency after disconnections [20].
Interesting theoretical results show that, using random
data exchanges, all updates are seen by all the hosts
of the system in a bounded amount of time, given rea-
sonable assumptions about connectivity. The epidemic
routing protocol [2], described earlier, that forms the
basis for much of the work in this field, applied this early
approach to the field of asynchronous message delivery,
but in a rather naive fashion.

Chen and Murphy refined the epidemic model, pre-
senting the so-called Disconnected Transitive Commu-
nication paradigm [5]. Their approach is similar to ours,
since it essentially argues for the use of utility functions,
but it provides a general framework rather than a detailed
instantiation, and so aspects related to the composition
of calculated delivery probabilities are almost entirely
missing.

In [21], Lindgren et al. propose a probabilistic routing
approach to enable asynchronous communication among
intermittently connected clouds of hosts. Their approach
is based on the fact that the exploited communication
model is typically transitive and, for this reason, the
probability of message delivery must be calculated ac-
cordingly: in other words, if, for example, a hostHA is
able to communicate withHB throughHC , the overall
delivery probability is derived by the multiplication of
the probability thatHA becomes a neighbor ofHB, with
the probability thatHB becomes a neighbor ofHC .
The calculation of the delivery probabilities is based,
somewhat simplistically, on the period of time of co-
location of two hosts, weighted by an aging factor that
is used to decrease the overall probability with the
increasing age of the information on which it was based.

In [22], Small and Haas describe a very interesting
application of epidemic routing protocols to a problem of
cost-effective data collection, using whales as message
carriers.

Sasson et al. [23] studied a possible application of
percolation theory (that studies the probability of transi-
tion between two states in fluids) to improve information

dissemination based on the flooding of messages in ad
hoc settings. Another interesting epidemic model for mo-
bile ad hoc networks is presented in [24]; in this paper
the authors investigate the similarities between flooding-
based approaches for the information dissemination in
mobile ad-hoc networks and the epidemic spreading of
diseases.

In [25], Fall proposes the Delay Tolerant Network
architecture to solve the internetworking issues in sce-
narios where partitions are frequent and a connected
path between message senders and receivers may be
not present (such as satellite and interplanetary com-
munication systems). This approach relies on routing
mechanism presented in detail in [26], based on optimal
or sub-optimal algorithms, according to the different
knowledge about the topology of the networks and the
sampled delivery delays, to compute the best end-to-end
communication shortest path.

Zhao et al. in [27] discuss the so-called Message
Ferrying approach for message delivery in mobile ad hoc
networks. The authors propose a proactive solution based
on the exploitation of highly mobile nodes called fer-
ries. These nodes move according to pre-defined routes,
carrying messages between disconnected portions of the
network.

With respect to the existing work in this research
area, such as [26] and [27], we have introduced a
general framework for the evolution and the prediction
of the mobile context to provide efficient and effective
communication mechanisms in mobile ad hoc networks.
Moreover, we believe that it is possible to integrate our
techniques with these approaches, since they address
orthogonal aspects of the problem.

It is worth noting that we used lightweight mecha-
nisms, because we believe that routing algorithms that
are complex from a computational point of view are
unsuitable for mobile devices, usually characterised by
scarcity of resources. One example is the use of Kalman
filter techniques that do not necessitate storing all the
history of the evolution of the context information.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented a novel approach to the
challenge of asynchronous ad hoc routing. This is a
problem that is deceptively easy to state but that requires
the combination of results from many fields to address
efficiently. Thus, we have designed a general and flexible
framework for the evaluation of context information
using probabilistic, statistical, autonomic and predictive
techniques in order to optimize the consumption of the



scarce resources of mobile devices whilst retaining good
delivery performance. Previous solutions to the problem
of asynchronous routing are either unoptimized (as in the
case of the basic epidemic protocol) or are insufficiently
specific to help in the construction of systems capable
of dealing with the multi-dimensional nature of context
(as in the Chen and Murphy’s approach).

In order to assess our algorithm, a new mobility
model [17], better reflecting the realities of human orga-
nization, was developed and used in simulations that give
a feel for the relative performance of CAR relative to
flooding and epidemic routing. The results demonstrated
that, even without message replication, CAR performs
respectably in terms of message delivery, with very much
lower overheads than the alternatives.

In future, we will further explore the tradeoff between
increasing delivery ratios via replication versus mainte-
nance of low overhead. Moreover, we will further ex-
plore an acknowledgment mechanism in order to notify
the sender about the correct delivery of messages (and
to remove them from intermediate nodes), exploiting
the same techniques as those used to deliver messages.
Lastly, we intend further to investigate the application
of mathematical models of social organization, most
notably small world models, in assessing performance
and in optimizing the reliability of the routing algorithm.
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