

Using Real Options to Select Stable Middleware-Induced
Software Architectures

Rami Bahsoon, Wolfgang Emmerich, and Jonathan Macke

Dept. of Computer Science, University College London
Gower Street, WC1E 6BT, London, UK

{r.bahsoon | w.emmerich} @cs.ucl.ac.uk

Abstract

The requirements that force decisions towards building distributed system architectures are usually of non-functional nature. Scal-
ability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to
build distributed systems with middleware, which provide the application developer with primitives for managing the complexity
of distribution, system resources, and for realizing many of the non-functional requirements. As non-functional requirements
evolve, the “coupling” between middleware and architecture becomes the focal point for understanding the stability of the distrib-
uted software system architecture in the face of change. We hypothesise that the choice of a stable distributed software architecture
depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional require-
ments. We devise an option-based model to value such flexibility and guide the selection. We empirically evaluate the model using
a case study that adequately represents a medium-size component-based distributed architecture. We report on how a likely future
change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with
CORBA and the other with J2EE. Our hypothesis is verified to be true for the given change. We conclude with some observa-
tions that could stimulate future research in the area of relating requirements to software architectures.

Keywords. Architectural economics; economics-driven software engineering; evolution of non-functional requirements; middle-
ware; real options theory; relating requirements to software architectures.

1. Introduction
Software requirements, whether functional or non-
functional, are generally volatile; they are likely to change
and evolve over time. The change is inevitable as it reflects
changes in stakeholders’ needs and the environment in
which the software system works. A change may “break”
the software system architecture necessitating changes to
the architectural structure (e.g., changes to components and
interfaces), architectural topology (e.g., architectural style),
or even changes to the underlying architectural infrastruc-
ture (e.g., middleware). It may be expensive and difficult to
change the architecture as requirements evolve [Finkel-
stein, 2000]. Consequently, failing to accommodate the
change leads ultimately to the degradation of the usefulness
of the system. Hence, there is a pressing need for flexible
software architectures that tend to be stable as the require-
ments evolve. By a stable architecture, we refer to the ex-
tent to which a software system can endure changes in re-
quirements, while leaving the architecture of the software
system intact. We refer to the presence of this “intuitive”
phenomenon as architectural stability.

The requirements that drive the decision towards build-
ing a distributed system architecture are usually of a non-
functional and global nature [Emmerich, 2000a]. Scalabil-
ity, openness, heterogeneity, and fault-tolerance are just
examples. The current trend is to build distributed systems
architectures with middleware technologies such as Java 2
Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002]
and the Common Object Request Broker Architecture
(CORBA) [Object Management Group, 2000]. Middleware
simplifies the construction of distributed systems by pro-
viding high-level primitives, which shield the application
engineers from the distribution complexities, managing
systems resources, and implementing low-level details,
such as concurrency control, transaction management, and
network communication. These primitives are often re-
sponsible for realizing many of the non-functional re-
quirements in the architecture of the software system in-
duced. Despite the fact that architectures and middleware
address different phases of software development, the us-
age of middleware can influence the architecture of the
system being developed. Conversely, specific architectural
choices constrain the selection of the underlying middle-
ware [Di Nitto and Rosenblum, 1999]. Once a particular

 1

middleware system has been chosen for a software archi-
tecture, it is extremely expensive to revert that choice and
adopt a different middleware or a different architecture.
The choice is influenced by the non-functional require-
ments. Unfortunately, the requirements tend to be unstable
and evolve over time. Non-functional requirements often
change with the setting in which the system is embedded,
for example when new hardware or operating system plat-
forms are added as a result of a merger, or when scalability
requirements increase as a result of having to build web-
based interfaces that customers use directly [Emmerich,
2000b]. Hence, as the non-functional requirements of the
software system evolve, the “coupling” between the mid-
dleware and the architecture becomes the focal point for
understanding the stability of the distributed software sys-
tem architecture in the face of the change.
 In an earlier paper [Emmerich, 2002], we reflected on
the architectural stability problem with a particular focus
on developing software architectures induced by middle-
ware. Specifically, we considered the architecture stability
problem from the distributed components technology in the
face of changes in non-functional requirements. We advo-
cated adjusting requirements elicitation and management
techniques to elicit not just the current non-functional re-
quirements, but also to assess the way in which they will
develop over the lifetime of the architecture. These ranges
of requirements may then inform the selection of distrib-
uted components technology, and subsequently the selec-
tion of application server products. We argued that addition
or changes in functional requirements could be easily ad-
dressed in distributed component-based architectures by
adding or upgrading the components in the business logic.
However, changes in non-functional requirements are more
critical; they can stress an architecture considerably, lead-
ing to architectural “breakdown”. Such a “breakdown”
often occurs at the middleware level and due to the incapa-
bility of the middleware to cope with the change(s), when
the non-functional requirements evolve (e.g., increased
scalability demands). This may drive the archi-
tect/developer to consider ad-hoc or propriety solutions to
realize the change, such as modifying the middleware, ex-
tending the middleware primitives, implementing addi-
tional interfaces, modifying the client(s), and so forth. Such
solutions could be problematic, costly, and unacceptable.
 We argue that the choice of the distributed software
system architecture has to be guided by the choice of the
underlying middleware and its flexibility in responding to
future changes in non-functional requirements. This is
necessary to facilitate the evolution of the software system,
to avoid unnecessary future investments (e.g., maintenance
overhead, hardware investments, reverting the choice of the
middleware etc.), and to ensure that future resources will
be used efficiently as the requirements evolve (e.g., new
servers are purchased or cycles are leased, only when nec-
essary). As a motivating example, consider a distributed
software architecture that is to be used for providing the

back-end services of an organization. This architecture will
be built on middleware. Depending on which middleware
is chosen, different architectures may be induced [Di Nitto
and Rosenblum, 1999]. These architectures will have dif-
ferences in how well the system is going to cope with
changes. For example, a CORBA-based solution might
meet the functional requirements of a system in the same
way as a distributed component-based solution that is based
on a J2EE application server. A notable difference between
these two architectures will be that increasing scalability
demands might be easily accommodated in the J2EE archi-
tecture because J2EE primitives for replication of Enter-
prise Java Beans can be used, while the CORBA-based
architecture may not easily scale. The choice is not
straightforward as the J2EE-based infrastructures usually
incur significant upfront license costs. Thus, when select-
ing an architecture, the question arises whether an organi-
zation wants to invest into an J2EE application server and
its implementation within an organization, or whether it
would be better off implementing a CORBA solution. An-
swering this question without taking into account the flexi-
bility that the J2EE solution provides and how valuable this
flexibility will be in the future might lead to making the
wrong choice.
 The novel contribution of this article is in two interre-
lated folds:
 A. We devise a real option-based model to value the
flexibility of the middleware-induced software architecture
in response to changes in non-functional requirements. We
describe how options theory can be used to inform the se-
lection of potentially more stable middleware-induced
software architectures. We argue that the problem of select-
ing a particular middleware to induce a given architecture
is an option problem. An option gives its owner the right
without the symmetric obligation to invest in the future
ending with an expiration date [Hull, 1997; Cox et al.,
1979; Schwartz and Trigeorgis, 2000]. From the evolution
perspective, the flexibility of the middleware induced-
architecture in coping with changes in non-functional re-
quirements has a value that can assist in predicting the sta-
bility of software architectures. More specifically, flexibil-
ity adds to the architecture values in the form of real op-
tions that give the right but not a symmetric obligation- to
evolve the software system and enhance the opportunities
for strategic growth. The added value is strategic in essence
and may not be immediate. It may take the form of (i) ac-
cumulated savings through coping with the change without
“breaking” the architecture, mostly these are changes in
non-functional requirements; (ii) extending the range of
services while leaving the architecture intact; and (iii) the
ability to respond to competitive forces and changing mar-
ket conditions that may pause higher Quality of Service
(QoS) requirements, such as the demands for higher avail-
ability, scalability, reliability and so forth. From an early
development perspective, given several middleware candi-
dates, the architect has the right without the symmetric ob-

 2

ligation to embark on a selection for inducing an architec-
ture. A “wise” selection could be regarded as an investment
to buy flexibility, which could be valued as future growth
options [Schwartz and Trigeorgis, 2000] on the architecture
of the software system. These options differ from one mid-
dleware to another.
 Our application of real options theory to inform the
selection of a “more” stable middleware-induced software
architectures is novel. The model, which we devise to value
the flexibility of the middleware-induced software architec-
ture, in response to likely changes in non-functional re-
quirements, builds on ArchOptions [Bahsoon and Em-
merich, 2003a; Bahsoon, 2003]. Given several middleware
candidates, the devised model informs the tradeoff analysis
and consequently the selection through a simple calcula-
tion.
 B. We have empirically simulated the model using a
case study that adequately represent a medium-size compo-
nent-based distributed architecture. We have instantiated
two versions of the core architecture; each induced by a
different middleware, one with CORBA and the other with
J2EE. We report on how a likely future change in scalabil-
ity, as a representative critical change in non-functional
requirements, could impact the architectural structure of the
two versions. The results of the case study could be sum-
marized as follows. Our hypothesis that middleware in-
duced software architecture differs in coping with changes
is verified to be true for the given change. On the method-
ology level, the results show that value-based reasoning
and real options can provide insights on the stability and
investment decisions related to the evolution the software.
On the discipline level, the study draws some preliminary
lessons and insights that could stimulate future research in
the area of relating requirements to software architectures
and consequently advance our understanding to the archi-
tectural stability problem, when addressed from a non-
functional requirements perspective.

The article is further structured as follows. In section 2,
we describe how we used options theory to inform the se-
lection of middleware-induced software architectures. In
Section 3, we empirically evaluate the model, verify our
hypothesis, and draw some observations that could simulate
future research in the area of relating requirements to soft-
ware architectures. In Section 4, we discuss related work.
Section 5 concludes.

2. Selecting Stable Middleware-Induced
Software Architectures with Real Options

Real options analysis recognizes that the value of the capi-
tal investment lies not only in the amount of direct reve-
nues that the investment is expected to generate, but also in
the future opportunities that flexibility creates [Erdogmus
et al., 2002; Erdogmus and Favaro, 2002]. These include
growth, abandonment or exit, delay, and learning options.

An option is an asset that provides its owner the right with-
out a symmetric obligation to make an investment decision
under given terms for a period of time into the future end-
ing with an expiration date [Hull, 1997; Cox et al., 1979;
Schwartz and Trigeorgis, 2000]. If conditions favourable to
investing arise, the owner can exercise the option by
investing the strike price defined by the option. A call
option gives the right to acquire an asset of uncertain future
value for the strike price.

ArchOptions [Bahsoon and Emmerich, 2003a;
Bahsoon, 2003; Bahsoon and Emmerich, 2004b] values the
growth options of an architecture relative to some future
changes, as a way for understanding the architectural flexi-
bility and its stability implications. A growth option is a
real option to expand with strategic importance [Myers,
1987; Schwartz and Trigeorgis, 2000]. Growth options are
common in all infrastructure-based (as it is the case with
software architectures) or strategic industries with multiple-
product generations or applications [Myers, 1987;
Schwartz and Trigeorgis, 2000]. In the architectural con-
text, growth options are linked to the flexibility of the ar-
chitecture to respond to future changes. Since the future
changes are generally unanticipated, the value of the
growth options lies in the enhanced flexibility of the archi-
tecture to cope with uncertainty; otherwise, the change may
be too expensive to pursue and opportunities may be lost.

Let us assume that the value of the system is V. As the
software evolves, a change in future requirement ii is as-
sumed to “buy” xi% of the “architectural potential” taking
the form of embedded flexibility, paying Cei, where Cei
corresponds to an estimate of the likely cost to accommo-
date the change on the given architecture of the software
system. This is analogous to a call option to buy (xi%) of
the base project, paying Cei as exercise price. The call op-
tions financial/real and their corresponding ArchOptions
analogy is depicted in table 1 and detailed in [Bahsoon and
Emmerich, 2003a].

Table 1. Financial/real options/ArchOptions analogy

Option on
stock

Real option on
a project

ArchOptions

Stock
Price

Value of the
expected cash
flows

value of the “architectural
potential” relative to the
change (xiV)

Exercise
Price

Investment cost Estimate of the likely cost to
accommodate the change
(Cei)

Time-to-
expiration

Time until oppor-
tunity disap-
pears

Time indicating the decision to
implement the change (t)

Volatility Uncertainty of
the project value

“Fluctuation” in the return of
value of V over a specified
period of time (σ)

Risk-free
interest
rate

Risk-free inter-
est rate

Interest rate relative to budget
and schedule (r)

 3

We view the investment opportunity in the system as a
base investment plus call options on the future opportuni-
ties, where a future opportunity corresponds to the invest-
ment to accommodate some future requirement(s). The
payoff of the constructed call option gives an indication of
how valuable the flexibility of an architecture is to endure
some likely changes in requirements. The value of the ar-
chitecture, is expressed in (1) accounting for V and both the
expected value and exercise cost to accommodate future
requirements ii, for i ≤ n. Valuing the expectation E of ex-
pression (1) uses the assumptions of [Black and Sholes,
1973] and detailed in [Bahsoon and Emmerich, 2003a]. We
assume that the interest rate, r, is zero for the simplicity of
exposition.

 n

 V + ∑ E [max (xiV - Cei, 0)] (1)
 i=0

It is worth noting that previous applications of ArchOp-
tions include (i) valuing the resulted architectural flexibil-
ity and its stability implications due to investing in a refac-
toring exercise [Bahsoon and Emmerich, 2004a], and (ii)
evaluating software architectures for stability to understand
the success (failure) of the software system’s evolution, in
response to likely changes in requirements [Bahsoon and
Emmerich, 2004b].

The model has the prospect of valuing the architectural
flexibility and its value potentials due to various types of
changes in requirements. These could be functional or non-
functional. However, the changes in non-functional re-
quirements are more critical and revealing for understand-
ing architectural stability problem. As the middleware real-
izes much of the non-functionalities, analyzing for architec-
tural stability in the face of changes in non-functional re-
quirements can’t be done in isolation of the middleware
induced. We tailor the ArchOptions model to value the
growth potentials of the middleware-induced software ar-
chitectures to respond to changes in non-functional re-
quirements.

As we have noted in [Bahsoon and Emmerich, 2003a;
Bahsoon 2003; Bahsoon and Emmerich 2004a; Bahsoon
and Emmerich 2004b], the search for a potentially stable
architecture requires finding an architecture that maximizes
the yield in the added value, relative to some future
changes in requirements. As we are assuming that the
added value is attributed to flexibility, the problem be-
comes maximizing the yield in the embedded or adapted
flexibility in a software architecture relative to these
changes. Given the choice of two or more middleware can-
didates, the selection has to maximize the yield in the em-
bedded flexibility, relatives to likely changes in non-
functional requirements.

Choosing a particular middleware to induce the archi-
tecture of the software system can be seen as an investment
to purchase flexibility in the software architecture-induced.
The middleware simplifies the construction of a distributed

system architecture by offering higher level programming
abstractions that shield application developers from distri-
bution complexities, thereby letting them concentrate on
the application instead of implementing the non-
functionalities and managing system resources. The choice
is influenced by the non-functional requirements from one
side and the “architectural potential” of the middleware to
respond to future changes in these requirements. In this
context, deciding on a particular middleware to induce the
software system architecture can be seen as an investment
to purchase future growth options that enhance the upside
potentials of the structure, paying an upfront cost Ie, which
corresponds to the cost of developing the architecture by
the given middleware. We extend ArchOptions to value the
worthwhile of the investment, given in (2):
 n

 V- Ie + ∑ E [max (xiV - Cei, 0)] (2)
 i=0

Let us assume that we are given the choice of two mid-
dleware M0 and M1 to induce the architecture of a particu-
lar system. Let us assume that S0, S1 are the architectures
obtained from inducing M0 and M1 respectively. Say, in-
ducing M1 is an economical choice, if it adds value to S1
relative to S0. We attribute the added value to the enhanced
flexibility of S1 over S0. If we are considering stability as a
criteria for understanding the value added on the system,
then future changes in non-functional requirements will tell
us how valuable S1 is relative to S0, as we are performing a
tradeoff between the architecture induced by M0 and M1.
But the added value is uncertain, as the demand and the
nature of the future changes are uncertain. Hence, using
option theory is a promising approach to inform the selec-
tion.

The selection has to be guided by the expected payoff
in (- Ie + ∑ i=1…n E [max (xiV - Cei, 0]) S1 relative to that of
S0. That is, if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 > ∑

i=1…n E [max (xiV - Cei, 0)] S0) for some likely changes, then
it is worth investing in M1, as the investment in M1 is likely
to generate more growth options for S1 than for S0. We
appeal to the use of future savings in maintenance effort as
a way to quantify the value added due to a selection. If we
assume that xiV S1 is the expected savings in S1over S0 due
to selection, it is reasonable to consider that if (- Ie + ∑
i=1…n E [max (xiV - Cei, 0)] S1 >=0), then investing in M1 is
said to payoff. An optimal payoff could be when the option
value (i.e., ∑ i=1…n E [max (xiV - Cei, 0)]) approaches the
maximum relative to some changes in non-functional re-
quirements, indicating an optimal payoff of the selection,
provided that (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >= 0).
We use sensitivity analysis to manipulate the model vari-
ables and analyze when such a situation is likely to occur.

Let us focus our attention on the payoff of the call op-
tions, as they are revealing for the flexibility of the archi-
tecture induced in responding to the likely future changes
in requirements.

 4

For a likely change in requirement k,
Call option in-the-money: if (E [max (xkV - Cek, 0)])S1

>0, then the flexibility of S1 is likely to payoff, relative to
S0, as the flexibility of the architecture in response to the
change is likely to add a value, if the change need to be
exercised. This means that inducing the architecture with
M1 has more promise than M0, as the flexibility of S1 in
responding to the likely change is more valuable for S1 than
for S0.

Call option out-of-the-money: if (E [max (xkV - Cek,
0)])S1=0, then M1 is not likely to payoff, relative to M0, as
the flexibility of the architecture in response to the change
is not likely to add a value for S1 if the change need to be
exercised. Two interpretations might be possible: (i) the
architecture is overly flexible in the sense that its response
to the change(s) has not “pulled” the options. This implies
that the embedded flexibility (or the resources invested in
implementing flexibility- if any) are wasted and unutilized
to reveal the options relative to the changes. In other
words, the degree of flexibility provided is much more than
the flexibility demanded for the change. This case has the
prospect in providing an insight on how much do we need
to invest in the adapted flexibility relative to the likely fu-
ture changes, while not sacrificing much of the resources;
(ii) the other case is when the architecture is inflexible rela-
tive to the change. This is when the cost of accommodating
the change on S1 is much more than the cumulative ex-
pected value of the architecture responsiveness to the
change.

The options model (2) requires the estimation of several
parameters. Most important are xiV, Ie, and Cei.

Estimating Cei, Ie. Estimating cost is a well-
established component in software engineering; it is out-
side the scope of our work. As a result of inducing the ar-
chitecture with the middleware, it is feasible to use existing
metrics to cost estimation (e.g. COCOMO-II [Boehm et al.,
1995]). This is due to the fact that a considerable part of the
distributed applications implementation is already avail-
able, when the architecture is defined, for example, during
the Elaboration phase of the Unified Process. Another ap-
proach is to build on architectural level dependency analy-
sis (e.g., [Stafford and Wolf, 2001]) research to extract cost
estimates of accommodating ii, guided by some structural
criteria.

Capturing and estimating xiV. The application of
Black and Scholes [1973] assumes that the stock option is a
function of the stochastic variables underlying stock’s price
and time. We assume that V moves stochastically bounded
to two extreme values: optimistic and pessimistic. This
assumption appears to be plausible: (i) it tends to account
for all possible values within the bound, yielding to a better
approximation when opposed to an ad-hoc type of estima-
tion; (ii) the value of an (evolvable) system changes over
time; it tends to change in uncertain way due to changes in
requirements.

 Black and Scholes is an arbitrage-based technique.
The technique requires knowledge of the value of the asset
in question in span of the market. Software architectures,
however, are (non-traded) real assets. Real options may be
valued similarly to financial options, though they are not
traded [Schwartz and Trigeorgis, 2000]. Real options
valuation based on arbitrage-based pricing techniques de-
termines the value of an asset in question in span of the
market value using a correlated twin asset [Schwartz and
Trigeorgis, 2000]. The twin asset is an asset that has the
same risks the asset in question will have when the invest-
ment has been completed [Schwartz and Trigeorgis, 2000].
In financial options, several proxies are available to predict
the value of the financial asset - the most obvious proxy is
simply the historical values of the asset. In real options,
such proxies rarely exist and the analyst may need to rely
on experience and judgment in his/her estimations
[Schwartz and Trigeorgis, 2000]. Real options valuation
(based on arbitrage) focuses on market value and uses the
rate of return on the twin asset as an input to the valuation
of the asset in question. If the asset value is not directly
observable, it is reasonable to use estimates of the revenues
on the asset to estimate the market value [Schwartz and
Trigeorgis, 2000]. For example, some aspects of the
architectural responsiveness to the change can be justified
in terms of the directly observable cash flows linked to
future operational benefits or the market- making it easy to
use the rate of return to value the options. However, many
others aspects may not be directly observable through cash
flows. Yet, their contribution to the added value is crucial.
If the analyst(s) relies on experience and judgment in
his/her estimation, the estimates tend to be subjective but
could make an implicit use of market information. How-
ever, back-of-the-envelope calculations, which are based
on value estimates (rather than on market value) are yet
revealing [Sullivan et al., 2001]. We note that it remains an
open challenge to strongly justify precise estimates for real
options in software [Sullivan et al., 1999]. As a compro-
mise, estimating xiV requires a comprehensive solution that
is flexible enough to incorporate multiple valuation tech-
niques; some with subjective estimates and others based on
market data, when available. The problem of how to guide
the valuation and introduce discipline in this setting, we
term as the multiple perspectives valuation problem. As the
added value may be relative to the market and/or the enter-
prise, the solution may be through a valuation framework
that captures the added value - of the “architectural poten-
tial” of the change- from different perspectives. The pur-
pose is to reach a comprehensive value of options from the
different perspectives. Also, the aim is to promote flexibil-
ity through incorporating both subjective estimates (may
implicitly use market information) and/or explicit market
value (when available). As the architecture is the artefact
that facilitates both technical and market reasoning, such an
approach seems to be viable. Addressing this problem and
its solution is outside the scope of this paper.

 5

Sensitivity analysis. Statistical questions on how the
uncertainty of the input parameters propagates to the model
output often require sensitivity analysis. The objective is to
provide an understanding of how the model response vari-
ables respond to changes, as the model’s underlying as-
sumptions or its parameters change. For example, the es-
timated parameters may be subject to uncertainty: the
valuation could have overestimated or underestimated the
value of the parameters. Further, the estimated value may
be liable to further adjustment to reflect the time value. We
support the model with sensitivity analysis to increase the
confidence in the model predictions and to provide a basis
for “what-if” analyses.

First derivative analysis is much used in the investment
arena for analyzing the sensitivity of the value of a finan-
cial option to changes in the variables. Delta and Vega pro-
vide the investment analyst with a ready means to discover
financial option’s sensitivity to changes in the estimated
value of the underlying asset; and increases and decreases
to the volatility of the underlying asset. Table 2 provides a
summary of the sensitivity parameters, their financial ex-
planation, mathematical formulation and the corresponding
ArchOptions analogy.

Table 2. Sensitivity parameters and ArchOptions
Para-
meter

Financial Explanation ArchOptions
Analogy

Math-
formula

Delta
(∆)

Option price rate of change
w.r.t. the underlying asset
(%)

Option value
rate of change
w.r.t. xiV

∂c

∂(xiV)

Vega
(ν)

Option price rate of change
w.r.t. the volatility of the
underlying asset (%)

Option price
rate of change
w.r.t. σ (%)

∂c

∂σ

The Delta (∆) of an option is defined as the rate of
change of the option price with respect to the underlying
asset. Suppose that the delta of a call option is 0.6. This
means that when the underlying asset price changes by a
small amount, the option price change by about 60% of that
amount. Mathematically, delta is the partial derivative of
the call price with respect to the underlying asset price
given by ∆= ∂C/∂S. In practice, volatilities may change
over time. This means that the value of the option is liable
to change because of the movement in volatility as well as
because of changes in the asset price and the passage of
time. The Vega (ν) of an option is the rate of change of the
value of the option with respect to the volatility of the un-
derlying asset. If Vega is high, the option value is very
sensitive to small changes in volatility. If Vega is low,
volatility changes have relatively little impact on the value
of the option.

 In the following section, we empirically evaluate the
theory, exercise the model, and verify its interpretations.
We use a case study that adequately represents a medium-
size component-based distributed architecture. We report
on how a likely future change in scalability could impact
the architectural structure of two versions, each induced

with a distinct middleware: one with CORBA and the other
with J2EE. We calculate the options on each structure and
draw some observations.

3. Case Study
We use Duke’s Bank application, an online banking appli-
cation provided by Sun [Sun Microsystems Inc.,
http://java.sun.com], as part of the J2EE reference applica-
tion. Given the software architecture of the Duke’s Bank,
we have instantiated from the core architecture two ver-
sions, each induced by a distinct middleware: one with
CORBA and the other with J2EE. We report on how a
likely future change in scalability could impact the archi-
tectural structure of each version. Scalability denotes the
ability to accommodate a growing future load, be it ex-
pected or not. The objective is to study how middleware-
induced software architectures may differ in coping with
changes in non-functional requirements. We look at the
changes in scalability demands as a representative of a
critical change in non-functional requirements that could
impact the architecture at its various levels: structure, to-
pology, and infrastructure. The ability to scale the software
system of a given architecture is revealing to its stability,
for the change may break the architecture and/or ripple to
impact other non-functionalities such as fault-tolerance,
performance, reliability, availability, when poorly accom-
modated by the middleware. Further, the challenge of
building a scalable system is to support changes in the allo-
cation of components to hosts without breaking the archi-
tecture of the software system, or changing the design and
code of a component [Emmerich, 2000b]. We note that the
stability notion is relative to the change. Hence, what we
observe is how the architecture of the given system, when
induced by a particular middleware cope with the scalabil-
ity change.

Architecturally, the Duke’s Bank has two clients: an
application client used by administrators to manage cus-
tomers and accounts and a Web client used by customers to
access account statements and perform transactions. The
server-side components perform the business methods:
these include managing customers, managing accounts, and
managing transactions. The clients access the customer,
account, and transaction information maintained in a data-
base. The architecture of the Duke’s Bank application is
given in Figure 1. Though the experiment is conducted in a
controlled environment, we regard the Duke’s bank appli-
cation to be adequately representative of medium-size
component-based distributed application.

The CORBA version of the Duke’s Bank is a straight-
forward implementation of the above description. In the
J2EE, the application consists of six EJB (Enterprise Java
Beans) components that handle operations issued by the
users of a hypothetic bank. The six components can be
associated with classes of operations that are related to
bank accounts, customers and transactions, respectively.

 6

http://java.sun.com/

For each of these classes of operations, a pair of session
bean and entity bean is provided. Session beans are respon-
sible for the interface towards the users and the entity
beans handle the mapping of stateful components to under-
lying database table. The EJBs that constitute the business
components are deployed in a single container within the
application server, which is part of the middleware.

D B

C u s to m er

A cco u n ts

T ra ns a c tion

S e rve rs

A ccou n t

C us to m e r

T ra n sa c tio n

W e b C lien t

A p p lica tio n

Figure 1. The Architecture of the Duke’s Bank

For the J2EE version, we use JBoss application server

[http://www.jboss.org], an open source. In one of the ex-
periments, we use WebLogic server [http://www.bea.com/]
with an average upfront payable license cost equal to
$25000/host. We use JacORB, version 2.0 to implement
the CORBA version. JacORB, is a CORBA implementa-
tion written in Java; it allows the communication of Java
objects. Our choice of JacORB makes the comparison be-
tween the two versions feasible and meaningful, as both
will be implemented in JAVA.
 We assume that the Duke’s Bank system needs to
scale up to accommodate the growing number of clients.

We consider scalability as a goal that needs to be achieved
by the architecture of the software system to be induced.
We adopt a goal-oriented approach to refining require-
ments (e.g., [Dardenne et al., 1993; Anton, 1996]). We
refine the goal, using guidance on how it could be opera-
tionalised by the architecture, when induced by a particular
middleware. In more abstract terms, the guidance was
given through the knowledge of the domain; vendor’s
specification, such as [Object Management Group, 1999-
2000; Sun Microsystems Inc., 2002]; related design and
implementation experience, mainly that of [Othman et al.,
2001a; Othman et al., 2001b]. We note that different archi-
tectural mechanisms may operationalise the scalability
goal. As an operationalisation alternative, we use replica-
tion as way for achieving scalability. The reason is due to
the fact that both CORBA and J2EE do provide the primi-
tives or guidelines for scaling a software system using rep-
lication, which make the comparison between the two ver-
sions feasible. In particular, the Object Management
Group’s CORBA specification [Object Management
Group, 1999-2001] defines a fault tolerance and a load
balancing support, both when combined provide the core
capability for implementing scalability through replication.
Similarly, J2EE provides the primitives for scaling the soft-
ware system through replication. Hence, the refinement and
its corresponding operationalisation are guided by the
solution domain (i.e., the middleware). Refinement of the
scalability goal is depicted in Figure 2. Detailing the re-
finements and the operationalisation of the goal is given in
sections 3.1 and 3.2.

ment

Manage
ge

tions

 Scalabil-
ity

through
Replica-

tion

Load
Balanc-

ing

Fault
Toler-
ance

Server
Trans-

parency

 Client
Trans-

parency

Support
Dy-

namic
Opera-

Equalize
Dynamic

Load
Distribu-

tion

Increase
System
Depend-

ability

Support
Administ

rative
Tasks

Incur
Minimal
Over-
head

Load
Metrics

and
Balanc-
ing Poli-

cies

Interop-
erability
and
Portabil-
ity

Logging
and

Recov-
ery

Manage

Fault

ment

Replica-
tion
Mana
ment

Figure 2. The Goal-oriented (high-level) refinement for achieving scalability through replication

 7

In subsequent sections, we investigate how scalability
could be achieved on both versions. We analyze the impact
of the change by looking at the structural changes and the
source lines of code (SLOC) that need to be modi-
fied/added for implementing the change, configuring, and
deploying the software system following the change. We
apply the model to understand the value added by inducing
the architecture by EJB relative to CORBA, if the change
needs to be applied. We use future savings in maintenance
cost (if any), as a way to quantify the value added. We
draw some observations and report on some preliminary
conclusions.

3.1 Scaling the CORBA-Induced Architec-
ture
In this subsection, we investigate how scalability could be
achieved in the CORBA-induced version through replica-
tion mechanisms.

CORBA’s object model [Object Management Group,
2000] relies to a large degree on the semantics of object
references. An object reference uniquely identifies a local
or remote object instance- clients can only invoke an opera-
tion on an object if they hold a reference to the object.
Managing scalability in CORBA, through replication, is
not straightforward, for object referencing makes it de-
manding. If several replicas of a server object are available,
providing an object reference to the client is uneasy task.
Hence, a CORBA implementation to the management of
scalability, through replication, has to incorporate the fol-
lowing: (i) Replication management (i.e., create, remove,
manage objects state in case of state retention, etc); (ii)
balancing load among replicas (i.e., when a client invokes a
request, it needs to get the object reference of the least
loaded replica) and (iii) a fault tolerance (i.e., when a
server object fails to handle a request, the request has to be
forwarded to a replica).

The Object Management Group’s CORBA specification
defines a fault tolerance support, which provides replica-
tion management. The specification also provides the core
capabilities needed to support load balancing. Othman et al.
[2001] introduces a CORBA load-balancing service, de-
signed on TAO- the ACE (Adaptive Communication Envi-
ronment) ORB [Schmidt et al., 1998]. The TAO-ORB is a
CORBA-compliant ORB that supports applications with
stringent Quality of Service (QoS) requirements. The de-
signed CORBA load-balancing service takes advantages of
the request forwarding mechanism the CORBA specifica-
tion mandates [Object Management Group, 1999]. A
CORBA server application can use this mechanism to for-
ward client requests to other servers transparently, porta-
bly, and interoperably. The combination of the CORBA
fault tolerance support and Othman’s CORBA load-
balancing service provides a strong example of implement-
ing scalability in CORBA. We use both the Object Man-
agement Group’s CORBA specification and the TAO’s

design and implementation of the services as guidelines for
understanding the structural impact of the change on the
Duke’s Bank architecture and the corresponding effort/cost
required to scale the system.

Subsection 3.1.1 describes the requirements and the ar-
chitecture for implementing fault-tolerance in CORBA,
based on the OMG specification [Object Management
Group, 1999]. Subsection 3.2.2 describes the requirements
and the architecture for implementing the load-balancing
support in CORBA, based on [Othman et al., 2001a; Oth-
man et al., 2001b]. Subsection 3.2.3 analyzes the structural
impact, when the fault-tolerance and the load-balancing
services need to be implemented to scale the CORBA-
induced Duke’s Bank architecture.

3.1.1 Achieving fault tolerance support and
replication management

The Fault Tolerant CORBA standard aims to provide ro-
bust support for applications that require a high level of
reliability, beyond the level provided by single backup
server. According to the CORBA specification, fault toler-
ance depends on entity redundancy (replication of objects),
fault detection, and recovery. To render an object fault-
tolerant, several replicas of the object are created and man-
aged as an object group. While each individual replica of
an object has its own object reference, an additional inter-
operable object group reference (IOGR) is introduced for
the object group as a whole. It is the object group reference
that the replicated server publishes for use by the client
objects. The client objects invoke methods on the server
object group, and the members of the server object group
execute the methods and return their responses to the cli-
ents, just like a conventional object. Because of the object
group abstraction, the client objects are not aware that the
server objects are replicated (replication transparency) and
are not aware of faults in the server replicas or of recovery
from faults (failure transparency).
 The standard provides support for fault detection, noti-
fication, and analysis for the object replicas. The standard
also supports a range of fault tolerance strategies, including
automatic check pointing; logging and recovery from
faults; request retry; redirection to an alternative server;
passive (primary/backup) replication and active replication,
which provides more rapid recovery from faults. The stan-
dard aims for minimal modifications to the application pro-
grams, and for transparency to both replication and faults.

3.1.2 The fault tolerance architecture
The requirements for implementing Fault Tolerance in
CORBA are detailed in the CORBA fault tolerance specifi-
cation of the OMG. Figure 3 presents an architectural strat-
egy that realizes these requirements and fully documented
in [Object Management Group, 1999]. Other architectural
strategies for realizing these requirements are possible.

 8

The basic blocks of the architecture are three: Replication
management; Fault Management; and Logging and Recov-
ery Management.

Replication Management. The Replication Manager
inherits three application program interfaces: the Proper-
tyManager, ObjectGroupManager, and the GenericFac-
tory. The PropertyManager provides operations that set
properties for object groups. The ObjectGroupManager
provides operations that allow an application to exercise
control over addition, removal, and locations of members
of an object group. It also provides operations for obtaining
the current reference and identifier for an object group. The
GenericFactory issues requests for replicating objects (ob-
ject groups), creating replicas (members of object groups),
and unreplicating objects.

Fault Management. The following components are
responsible for managing faults in the proposed fault toler-
ant architecture. These are fault detection, fault notifica-
tion, and fault analysis. The Fault detection component
detects the presence of a fault in the system and generates a
fault report. The fault notification component propagates
fault reports to entities that have registered for such notifi-
cations. The fault analysis component analyses a (poten-
tially large) number of related fault reports to generate a
condensed diagnosed report.

Logging and Recovery Management. The Logging
Mechanism records the state and actions of a member of an
object group in a log. The Recovery Mechanism sets the
state of a member, either after a fault when a backup mem-
ber of an object group is promoted to the primary member,
or alternatively when a new member is introduced into an
object group.

Components of the Fault Tolerance Infrastructure are
shown on the top of figure 3. These include Replication
Manager, Fault Notifier, and Fault Detector. The bottom
of figure 3 shows three hosts: H1, H2, and H3. The client
application object C on H1 invokes a replicated server ob-
ject with two replicas S1 on host H2, and S2 on host H3. The
figure shows Factory and Fault Detector objects that may
be present and specific for a host. The service objects are
replicated objects. The host-specific objects, however, are
not replicated. The figure also shows the Message Handler
and the Logging and Recovery Mechanisms that are pre-
sent on each host. Logically, a single instance of the Repli-
cation Manager and Fault Notifier shall exist in each fault
tolerance domain. Physically, however, they are replicated
to protect against faults, as any other application object are.
The architecture defines minimal modifications to the exist-
ing ORBs. These modifications allow non-replicated cli-
ents to derive fault tolerance benefits upon invoking repli-
cated server objects.

Figure 3. The CORBA fault-tolerance architecture [Object
Management Group, 1999].

3.1.3 Achieving load balancing
Load balancing helps improve system scalability by ensur-
ing that client application requests are distributed and proc-
essed equitably across a group of servers. Likewise, it helps
improve system dependability by adapting dynamically to
system configuration changes that arise from hardware or
software failures. According to [Othman et al., 2001a], the
design of an effective CORBA load balancing service
should be based on the following requirements. The inter-
ested reader may refer to [Othman et al., 2001a] for further
details.

Enable client application transparency. A CORBA
load balancing service should be as transparent as possible
to clients and servers and should require no changes to cli-
ents whose requests it balances.

Enable server application transparency. Implement-
ing a server object’s servant (a programming language en-
tity that implements object functionality in a server applica-
tion) should require no changes to support load balancing.
Yet changes to the server application might still be required
under certain conditions.

Support dynamic client operation request patterns.
The CORBA load balancer, however, shall focus on load
balancing techniques that do not require a priori scheduling
information, where client operation request patterns are
dynamic and the duration of each request might not be
known in advance, which is the case of the Duke’s Bank.

Maximize scalability and equalize dynamic load
distribution. CORBA load balancing service must enhance
system scalability by maximizing dynamic resource utiliza-

 9

tion in a group of servers that otherwise would be underuti-
lized.

Increase system dependability. Load balancer
should provide mechanisms to handle failures efficiently
when detected by administrators or other system compo-
nents. For example, the load balancer should migrate
crashed or failing servers to other servers until the failure is
resolved. However, there is still a need for a fault-tolerance
support, which we described in previous section based on
the [Object Management Group, 1999].

Support administrative tasks. A good CORBA load
balancing service should have facilities for dynamic addi-
tion/removal/upgrading of new replicas and should adjust
to the new load conditions rapidly, without disrupting or
suspending service for existing clients.

Incur minimal overhead. A CORBA load balancing
service should not introduce undue latency or networking,
which may reduce the overall system performance.

Support application-defined load metrics and bal-
ancing policies. A CORBA load balancing service should
let applications specify the semantics of metrics used to
measure load, such as CPU, I/O resources, communication
bandwidth, or memory load.

Rely on CORBA interoperability and portability. A
CORBA load balancer should not restrict the application
developers to single ORB providers.

3.1.4 The load balancing architecture
Othman et al. [2001b] suggest a CORBA adaptive balanc-
ing built on TAO to realize the above stated requirements.
The TAO’s load balancing solution is entirely based on
standard features in CORBA, without requiring severe ex-
tensions to the ORB or its communication protocols. The
suggested load balancing solution is based on the patterns
[Schmidt et. al., 2000] of the CORBA component model
(CCM) [BEA Systems, 1999] for minimizing the changes
on the application layer. In particular, the following pat-
terns are utilized to achieve the above stated transparency
requirements: these are the Portable Interceptors pattern,
Component Configuration pattern, Component Configura-
tor pattern, and the Asynchronous Completion Token pat-
tern [Schmidt et. al., 2000].

Figure 4 illustrates the components in TAO’s load bal-
ancing service. The design supports adaptive load balanc-
ing and on-demand request forwarding [Othman et al.
2001b] and outlined below:

The Replica Locator identifies which of the replicas
will be assigned a request. The Replica Locator component
forwards the requests to the Load Analyzer component. The
Load Analyzer component analyses the requests; it select
the replica to be assigned the request. The Replica Locator
obtains a reference to a replica from the load analyzer and
then forwards the request to that replica. The Replica Loca-
tor binds clients to the identified replicas. The Load Ana-
lyzer also allows explicit selection of a load balancing
strategy at runtime, while maintaining a simple and flexible

design. The replica locator is portably implemented using
servant locators implementing the interceptor pattern
[Schmidt et. al., 2000], abiding to standard CORBA port-
able object adapter mechanisms [Henning and Vinoski,
1999]. The Load Balancer component is a mediator that
integrates all the components. It provides an interface for
load balancing without exposing clients to the intricate
interactions between the components it integrates. The
Load Monitor component monitors loads on a given rep-
lica, reports replica load to a Load Balancer, and informs
replicas when they should accept requests versus forward
them back to the load balancer. Each object that TAO’s
load balancing service manages communicates with it
through a unique proxy. The load balancer uses the replica
proxies components to distinguish different replicas to
workaround CORBA’s so-called “weak” notion of object
identity [Object Management Group, 1999], where two
references to the same object might have different values.

 Figure 4. TAO Load Balancing [Othman et al., 2001b]

3.1.5 Change impact analysis
The combination of the CORBA fault tolerance support
and Othman’s CORBA load-balancing service provides a
strong example on how scalability could be achieved in the
CORBA-induced architectures of the Duke’s Bank. In this
section, we analyze the impact of the change by looking at
the structural changes and the source lines of code (SLOC)
that need to be modified/added for implementing the
change, configuring, and deploying the software system.
We use the design and the implementation of both services
(i.e., fault tolerance and load balancing) on TAO as a guide
to estimate the design impact and the effort required to re-
alize the scalability requirements in our given architecture.
The TAO design of these services is based on the CORBA
specification. We note that the TAO’s implementation of
both services is in C++. We list all the JAVA classes and
files necessary to build the equivalent JAVA implementa-
tion of both services.

 10

Considering the CORBA-induced architecture of the
Duke’s Bank, supporting scalability through replication
does not leave the middleware infrastructure and the appli-
cation layer intact. Though the use of both CORBA speci-
fication and design patterns, has simplified the task of real-
izing the requirements for achieving fault tolerance and
load balancing, implementation and integration overhead
have not been abandoned. In particular, the fault tolerance
and load balancing services need to be implemented. The
implementation needs to be integrated into the used mid-
dleware. The server application needs to be updated, so that
it will be able to support object group, described in section
3.1.1 and section 3.1.2. The client itself has to undergo
slight changes.

In particular, to support load balancing, the middleware
and the application need to be modified. The modifications
include the implementation of the Load Balancing Service
and integrating the service into the existing middleware
infrastructure. The server-side application, the main
CORBA services (mainly, the naming service and the
transaction Service), and the client-side needs to be up-
dated. In particular, the binding mechanism needs to be
modified to support the introduction of the object groups.
The server application, which initially binds instances of
server implementation to the naming service, has to be
changed. Instead, the client’s requests need to be bound to
the replica the load balancer selects. Hence, this requires
modifications to the standard CORBA services through
introducing ad hoc proprietary protocols and interface that
abides to the OMG standards. In an environment where
several hosts are used to store the server objects, different
object groups need to be created. The server application
needs to be modified to populate servant instances. Four
interfaces need to be implemented, describe in the IDL.
These are Strategy, LoadAlert, LoadMonitor and Load-
Manager. ORB interceptors and initializers have to be im-
plemented.

A List of classes and files necessary to implement the
fault tolerant service into the Duke’s Bank architecture is
depicted in table 4. Table 5 reports on the effort necessary
to develop and integrate the load balancing service into the
middleware. Table 3 provides an aggregated summary of
the over SLOC that need to be implemented.

On the client side, the client application needs to be
modified to look up the load balancer instead of the naming
service to get a replica object reference. The load balancer
will be then able to send an object reference by using the
CORBA ForwardRequest exception that the client can
catch. Thirty lines of codes are estimated to update the cli-
ent. To configure, all the instances of JacORB over the
different hosts have to be shutdown, which be unappreci-
ated for such a type of application. To compile and pack-
age the developed services, an Ant script has to be updated
for each service. This introduces additional 200 lines of
code. The main Ant script, which executes all the other Ant
scripts, has to be updated introducing and additional six

lines of codes/host. The properties file (i.e.,
jacorb.properties) has to be updated on each host requiring
seven SLOC/host. These updates concern the ORBInitRef
property and the interceptors ORBInitializer. All the
JacORB instances then need to be restarted.

Table 3. Aggregate results

Task SLOC

Fault Tolerant implementation 5117

Load Balancing implementation 3943

Server-side application (Server

objects Implementation and Server

application- on each host)

170

Client-side application 30

Configuration on each host Stop/restart, 200

SLOC+ 13/host

 11

Table 4. Implementing the fault tolerance service

Table 5. Implementing the load balancing service

File Name File
Type SLOC Description

CosFaultTolerance IDL 242 Interface description of remote meth-
ods

PropertyManager-
Impl

Java 273 Implementation of the PropertyMan-
ager interface

ObjectGroupMan-
agerImpl

Java 672 Implementation of the ObjectGroup-
Manager interface

GenericFactoryImpl Java 523 Implementation of the GenericFactory
interface

ReplicationMan-
agerImpl

Java 865 Implementation of the Replication-
Manager interface

FaultNotifier Java 611 Implementation of the FaultNotifier
interface

ClientPolicy Java 155 Implementations of the RequestDura-
tionPolicy interface

ServerPolicy Java 61 Implementation of the Heart-
beatEnabledPolicy

FTPolicy Java 207 Implementation of the HeartbeatPolicy
interface

FaultDetector Java 149 Class defining the component illus-
trated above

DefaultFaultAna-
lyzer

Java 113
The default fault analyzer

ReplicationMan-
agerFaultAnalyzer

Java 865
Replication Manager's fault analyzer

FaultConsumer Java 200 Connect to the fault notifier

PropertyValidator Java 29 Class providing static methods to
validate properties

MemberInfo Java 50 Structure that contains all member-
specific information

PropertyUtils Java 53 Provides some methods used to
manipulate properties

Operators Java 23 Class providing static methods related
to operators

ReplicationMan-
agerServer

Java 13 Class running the Replication Man-
ager server

FaultNotifierServer Java 13 Class running the Fault Notifier server

Total 5117

File Name File
Type

SLOC Description

CosLoadBalancing IDL 90 Interface description of remote methods

LoadAlertImpl Java 26 Implementation of LoadAlert interface.

LoadCPUMonitorImpl Java 138 LoadMonitor implementation that moni-
tors the overall CPU load on a given host

LoadManagerImpl Java 919 Implementation of LoadManager inter-
face

LeastLoaded Java 405 Implementations of Strategy interface

LoadAverage Java 305 Implementations of Strategy interface

LoadMinimum Java 389 Implementations of Strategy interface

RoundRobin Java 121 Implementations of Strategy interface

Random Java 128 Implementations of Strategy interface

MemberLocator Java 59 Class which defines the component
described above

LoadAlertHandler Java 40 This class handles all asynchronously
received replies from all registered
LoadAlert objects. It only exists to re-
ceive asynchronously sent exceptions

LoadAlertInfo Java 30 Structure that contains all LoadAlert-
specific information

LoadAlertMap Java 60 Maps a LoadAlertInfo with a location

LoadListMap Java 60 Maps a LoadList with a location

LoadMap Java 60 Maps a load with a location

MonitorMap Java 60 Maps a LoadMonitor with a location

PullHandler Java 58 Event handler used when the "pull" moni-
toring style configured

PushHandler Java 39 Event handler used when the "push"
monitoring style is configured

LB_ServerRequestInt
erceptor

Java 109 Responsible for redirecting the requests
back to the manager

LB_ORBInitializer Java 72 Creates and registers with the ORB the
LB_IORInterceptor and
LB_ServerRequestInterceptor

LB_ClientRequestInte
rceptor

Java 62 Handles transparent object group mem-
ber registration with the LoadManager,
and registration of the LoadAlert object
necessary for load shedding

LB_ClientORBInitializ
er

Java 33 Creates and registers with the ORB the
LB_ClientRequestInterceptor

LoadManagerServer Java 214 Class running the load balancer server

LoadMonitorServer Java 315 Class running the load monitor server

Total 3943

 12

3.2 Scaling the J2EE-Induced Architec-
ture
In subsequent sections, we investigate how scalability
could be achieved in the J2EE–induced version through
replication mechanisms. We analyze the impact of the scal-
ability change on the J2EE-induced architecture of the
Duke’s Bank.

3.2.1 Scalability in J2EE through Replication
Figure 5 depicts a common J2EE [Sun Microsystems Inc.,
2002] cluster architecture. Clustering enables a group of
(typically loosely coupled) servers to operate logically as a
single server. The advantages of clustering include the
elimination of a single point of failure; the high service
availability if multiple servers in the cluster can handle the
same service; and load balancing by diverting requests to
the least loaded server hosting the same service. We use
JBoss 3.0[http://www.jboss.org/], an open source J2EE
application server. JBoss clustering aims at improving scal-
ability and high availability using replication techniques.
JBoss relies on Jgroups [http://www.jgroups.org/] for the
clustering of its naming registry face- Java Naming and
Directory Inter (JNDI)-and its EJB container. JGroups is an
open source group communication middleware fully writ-
ten in Java. JGroups provides the following main features:
group creation and deletion, where group members can be
spread across LANs or WANs; joining and leaving of
groups; membership detection and notification including

joined/left/crashed members; detection and removal of
crashed members; sending and receiving of member-to-
group messages (point-to-multipoint); and Sending and
receiving of member-to-member messages (point-to-point).

Business Tier

Clustered Servers

DB

Data

Data

Presentation
Tier

Clients

Figure 5. Example of J2EE cluster architecture

JBoss uses a layered architecture to manage clustering. The
architecture relies on JGroups for clustering, which is ab-
stracted. Figure 6 describes the architecture using two
nodes. The term partition is used to refer to a cluster. A
node can be part of several partitions.

Figure 6. Clustering Architecture

 Partition
 Node 1 Node 2

HA-JNDI HA-RMI HA-EJB HA-JNDI HA-RMI HA-EJB
 HASession

State
Distributed
Replicant
Manager

Distributed
State

Distributed
Replicant
Manager

HASession
State

Distributed
State

JGroups JGroups

The HAPartition (i.e., High Availability Partition) ab-

stracts the communication framework; it provides access to
a set of communication primitives. Services need to register
with the HAPartition to use the HAPartition services. The
Distributed Replicant Manager manages the replicas by
providing methods to add or remove replicas from a parti-
tion. The HASessionState is used to manage the state of
Stateful Session Beans. The state of all Stateful Session
Beans are replicated and synchronised across the cluster
each time the state of a bean changes. The Distributed State

stores settings or parameters that should be used by the
containers in the cluster. Clients can use either the local
JNDI service or the HA-JNDI service to look up objects. If
the local JNDI service is used, the local JNDI namespace is
used to locate objects. HA-JNDI delegates the lookup to
the local JNDI, if it fails to find the object within global the
cluster-wide context. EJB homes are bound to the local
JNDI of the server on which the particular EJB is deployed.

HA-RMI provides load-balancing and fail-over facili-
ties for RMI servers. HA-EJB allows selecting the load-

 13

balancing policy to apply (e.g., Round Robin, First Avail-
able), when deciding on a replica that will respond to the
client request. The load-balancing policy is not adaptive.
JBoss provides clustering for the two main types of EJB:
Entity Bean and Session Bean (Stateful and Stateless).
Clustering for Message-Driven Bean is not provided yet.

Also, JBoss comes with a farming feature. Farming man-
ages cluster hot-deployment. Hot-deploying an application
(EAR, WAR or JAR application) on a machine causes the
application to be hot deployed on all instances within the
cluster.

3.2.2 Change impact analysis
An observable advantage of scaling the software architec-
ture induced by J2EE, using JBoss, is that no development
effort is required to realize the scalability requirements
through replication, as when compared to the CORBA ver-
sion. The clustered environment, which mainly includes the
HA-JNDI, the HA-EJB for Entity Bean and Stateful Ses-
sion Bean, and the farming do provide the primitives for
scaling the software system. That is, no development effort
is required to provide a clustering environment. However,
configuring and deploying the application in the clustered
environment are still required. Yet, the server need not
have to be shutdown for configuration. JBoss manages
dynamically the replicas, which means that nodes can be
added at run-time. The modifications made on the configu-
ration files are automatically taken into account by JBoss.
This is certainly appreciated in environments constrained
by high availability, as it is daunting to stop the server for
maintenance. Whereas in the CORBA implementation, all
the instances of JacORB which are running on the different
hosts has to be shutdown for updating JacORB.

In brief, configuration includes the following: configur-
ing clusters, HA-JNDI, HA-EJB, and farming. By default,
one partition exists. When adding a partition, the cluster
needs to be configured. This simply requires updating the
cluster service file (i.e., cluster-service.xml). 11 lines of
code are necessary to map a partition with a HA-JNDI ser-
vice. The property file (jndi.properties) on the client-side
has to be updated to enable the client to auto-discover the
HA-JNDI servers. One line of code is necessary to update
this file.

To cluster the EJBs, a special XML tag (clustered) has
to be added to the Jboss.xml. To specify the partition(s) to
be used, the (cluster-config) tag needs to be added to the
same file. More, the load-balancing mechanism may need
to be updated in the JBoss deployment descriptor. All of
these changes involve 10 lines/bean. For stateful session
beans, the cluster service file, cluster-service.xml, need to
be updated to add a partition to the HASessionState ser-
vice, involving 7 SLOC. Therefore, we need 39 SLOC to
enable farming for all our partitions. The file farm-
service.xml file, by default, enables the farming for one
partition. To enable the farming for all the partitions, farm-
service.xml file need to be updated; a link will need to be
added between the FarmMemberService and a partition.
For the Duke’s Bank architecture, we use four partitions:
two for the Account beans (Entity and Session) and two for
the Transactions beans (Entity and Session). Thirty two
SLOC need to be added for configuring a partition. This

results in 128 SLOC. Other 33 lines of code are necessary
to map a partition with the HA-JNDI service. Because four
kinds of beans exist in the system, configuring the HA-EJB
requires 40 lines to update the JBoss deployment descriptor
of the beans. Thirteen SLOC are required. We note that
Farming is not enabled by default, requiring the devel-
oper’s intervention.

Table 6. Scalability in the J2EE version
Changes to make 4 partitions Source

Lines of code (SLOC)

Install Jboss 1

Configuring clusters 96

Configuring HA-JNDI 34

Configuring HA-EJB 47

Configuring farming 39

Total for one host 217

3.3 Options Analysis and Discussion
In this section, we empirically evaluate the theory, the
model, and demonstrate its applicability.

In summary, to scale the architecture of the Duke’s
Bank, the requirements depicted in Figure 2 need to be
achieved. We have estimated their structural impact on
both the CORBA and the J2EE versions. We have esti-
mated the SLOC to be added for implementing the change
on both versions, as depicted in tables 3-5. An observable
advantage of scaling the software architecture induced by
EJB is that no development effort is required to realize the
scalability requirements through replication, as when com-
pared to the CORBA version. Our hypothesis that middle-
ware induced software architecture differs in coping with
changes is verified to be true for the given change in scal-
ability. Obviously, J2EE does provide the primitives for
scaling the software system, which result in making the
architecture of the software system more flexible in ac-
commodating the change in scalability, as when compared
to the CORBA version. However, a question of interest is
how valuable this embedded flexibility is? We use the
model developed in section 2 to answer this question. The
objective is to quantify the flexibility value as a way for
understanding the added value upon inducing the architec-
ture with J2EE relative to CORBA. We seek an under-

 14

standing of the added value on future savings in mainte-
nance including ease of deployment and configuration
upon accommodating the likely change in scalability.

The results could be summarized as follows. On the
methodology level, we verify the claim that flexibility of
the middleware-induced software architectures creates val-
ues in the form of real options. These options differ with
the middleware-induced. Our claim that these options are
revealing to the stability of the software architecture is
verified to be true for the given change in scalability. The
results show that value-based reasoning and real options
can provide insights into architectural stability and invest-
ment decisions related to the evolution the software system.
The options analysis confirms the validity of our claim that
middleware induced software architectures differs in cop-
ing with changes in non-functional requirements. We draw
some preliminary lessons and insights that could simulate
future research in the area of relating requirements to soft-
ware architectures and consequently advance our under-
standing to the architectural stability problem, when ad-

dressed from the evolution of the non-functional require-
ment perspective.

The Application of the ArchOptions Model. For this
example, we focus our attention on the payoff of the call
options (i.e., ∑ i=1…n E [max (xiV - Cei, 0)] S1 relative to ∑

i=1…n E [max (xiV - Cei, 0)] S0), as they are revealing for the
flexibility of the architecture-induced in responding to the
likely future changes. We construct a call option for the
future scalability goal, where the change is analogues to
buying an “architectural potential”, paying an exercise
price. The exercise price corresponds to the likely price to
accommodate the change. The application of the model is
thus done on the goal level, versus their corresponding re-
quirement-refinements. Following the discussion of section
2, CORBA and J2EE correspond to M0 and M1 respec-
tively. We refer to the architecture of the Duke’s Bank as
S0 when induced by M0 and S1 when induced M1. When
necessary, we use $6000 for man-month to cast the effort
into cost. We show how we have estimated the parameters.

 Table 7. Scaling the system using replication (1 Host): development, configuration, and deployment costs

 CORBA (JacORB) EJB (JBOSS)
 Optimistic Most Likely Pessimistic Optimistic Most Likely Pessimistic

Effort 24.1 30.2 37.7 0 0 0

Cost, Cei 96481 120602 150753 0 0 0

D
ev

el
op

m
en

t

SLOC 9240 0

Effort 0.4 0.5 0.6 0.4 0.5 0

Cost, Cei 1527 1909 2386 1558 1948 2435

C
on

fig
ur

a-
tio

n

SLOC 213 217

Effort 0 0 0 0 0 0

Cost, Cei 0 0 0 0 0 0

D
ep

lo
y-

m
en

t

SLOC 0 0

Estimating (Cei). The exercise price corresponds to the

cost of implementing scalability on each structure, given by
Cei for requirement i. As the replicas may need to be run on
different hosts, we devise a general model for calculating
Ce as a function of the number of hosts, given by:

Ce = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh,

Chardw)k, (3)

where, h corresponds to the number of hosts. Cdev, Ccon-

fig, and Cdeploy, respectively corresponds to the cost of de-
velopment(if any), configuration, and deployment for the
replica on host h. Clicesh and Chardw respectively correspond
to licenses and hardware costs, if any. All costs are given in
($). We provides three values: optimistic, likely, and pes-
simistic for each parameter. All are calculated using
COCOMO II [Boehm et al., 1995]. Upon varying the num-
ber of hosts, we only report on pessimistic values for this

study, as they are revealing. We also ignore any associated
hardware costs for the simplicity of exposition.

Capturing and estimating (xiV). To value the “archi-
tectural potential” of S1 relative to S0 given by (xiVS1/S0), we
take a structural approach to valuation. We use the ex-
pected savings (if-any) in development, configuration, and
deployment efforts, when the scalability change needs to be
accommodated on S1 relative to S0, and respectively de-
noted as ∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative sav-
ings in licenses and hardware may also be considered and
respectively denoted by ∆Clicesh, ∆Chardw. Below is a model
for calculating xiVS1/S0, for change in requirement i.

xiVS1/S0= ∑ h=1…k (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆

S1/S0Cdeploy, ∆ S1/S0 Clicesh, ∆ S1/S0Chardw)k (4)

Similar description applies for (xiVS0/S1). The savings (if

any), however, are uncertain and differ with the number of
hosts, as the replicas may need to be run on different hosts.

 15

Such uncertainty makes it even more appealing to use of
“options thinking”.

Calculating the volatility (σ). The volatility of the
stock price (σ) is a statistical measure of the stock price
fluctuation over a specific period of time; it is a measure of
how uncertain we are about the future of the stock price
movements. Volatility stands for the “fluctuation” in the
value of the estimated xiV. Intuitively, it “aggregates” the
“potential” values of the structure in response to the
change(s). We take the percentage of the standard deviation
of the three xiVs estimates-the optimistic, likely, and pessi-
mistic values to calculate σ.
 Exercise time (t) and free risk interest rate(r). As a
simulation assumption, we set the exercise time to one
year, assuming that the Duke’s Bank need to accommodate
the change in one year time. We set the free risk interest
rate to zero (i.e., assuming that the value of money today is
the same as that in one year’s time).

Results and Observations. Below, we report on
sample results and observations upon the application of the
model (refer to observations 1& 2). We verify our hypothe-
sis that the choice of a stable distributed software architec-
ture has to be guided by the choice of the underlying mid-
dleware and its flexibility in responding to future changes
in non-functional requirements (refer to observations 4 &
5).

Observation 1. Flexibility creates options: S1 is
more flexible than S0 (due to the embedded primitives
in J2EE); S1 has created more options when com-
pared to S0.

Let us consider the scenario where we consider one
host. For this scenario, we assume that the license cost
(Clicesh) is zero for M1 (e.g., the usage of JBoss an open
source). Table 7 reports on the effort (man-month) and cost
in ($); it provides three values: optimistic, likely, and pes-
simistic for each parameter. The xiVS1/S0 correspond to the
difference- as reported in Table 8a. The overall expected
savings of inducing the structure with S1 relative to S0 are
in the range of $96450(pessimistic) to $150704 (optimis-
tic). As far as the development effort is concerned, ex-
pected savings are in the range of $96481(pessimistic) to $
150753 (optimistic) for realizing the scalability require-
ments. As far as configuration effort is concerned, S1 has
not reported any expected savings relative to S0. However,
these figures are insignificant. As far as the effort of de-
ployment is concerned, both are comparable when it comes
to SLOC. However, as a limitation on this dimension, in-
terested reader may refer to section 3.4. We note that these
figures are based on COCOMO II: the number of man-
months is different from the time that will take for complet-
ing a project, termed as the development schedule. For ex-
ample, a project could be estimated to require 50 man-
months of effort but have a schedule of 11 months. Ac-
cordingly, the cost and relative savings, maybe adjusted
relative to the schedule. We have relaxed this, as the aim of

the exercise is to simulate the applicability of the model.
The xiVs will be used to quantify the added value, taking
the form of options, due to the embedded flexibility on S1
relative to S0.

Table 8a shows that S1 is in the money in response to
the changes in scalability, when compared to S0. Table 8a
shows that S1 is in the money relative to the development,
configuration, and the deployment. The results of table 8a
read that inducing the architecture with M1 is likely to en-
hance the option value by an excess of $96450 (pessimis-
tic) to $150704 (optimistic) over S0, if the change in scal-
ability need to be exercised in one year time. Thus, the re-
sults show that S1 induced by M1 is likely to add more
value in the form of options in response to the change,
when compared to S0. It is worth pointing out that though
S1 is flexible relative to the scalability change, it might not
necessarily mean that it might be flexible with respect to
other changes. Obviously, JBoss does provide the primi-
tives for scaling the software system, which result in mak-
ing the architecture of the software system more flexible in
accommodating the change in scalability, as when com-
pared to the CORBA version. This has lead to a notable
savings in maintenance cost. Calculating the options of S0
relative to S1, we can see that S0 is said to be out of the
money for this change. The CORBA version has not added
value, relative to J2EE, as the cost of implementing the
change was relatively significant to “pull” the options, as
reported in table 8b. The very low value of Vega means
that possible changes in volatility have relatively little im-
pact on the value of the options. The high value of Delta in
Tables 8a and Table 8b roughly means that changes in Xiv
could have high impact on the on the calculated options.

Observation 2. How worthwhile is the embed-

ded flexibility in S1 when induced in M1, relative to S0
when induced with M0?

For this experiment, we consider the case where we
use WebLogic server [http://www.bea.com/] as M1 with an
average upfront payable license cost Clicesh= $25000/h. As
an upfront license fee is incurred, increasing the number of
hosts may carry unnecessary expenditures that could be
avoided, if we use M0 instead. However, M0 does also in-
cur costs upon scaling the software system through the de-
velopment of both the load balancing and the fault toler-
ance services. Such a cost, however, maybe “diluted” as the
number of hosts increases. The cost is said to be distributed
across the hosts and incurred once, as the developed ser-
vices can be reused across other hosts. For this experiment,
we assume that developing the fault tolerance and load
services are upfront investments to buy growth options on
the structure. An additional configuration and deployment
cost materializes per host and sum up to the exercise price,
Ce as in equation (3), when an additional host is needed to
scale the software. xiVS0/S1 is calculated based on equation
(4). We calculate the options of S0 relative to S1. We adjust
the options by subtracting the upfront expenditure of de-

 16

veloping both services on M0, as reported in Table 8c. The
adjusted options reveal situations in which S0 is likely to
add value relative to S1, when the upfront cost is consid-
ered. These results may provide us with insights on the cost
effectiveness of implementing fault tolerance and load bal-
ancing support to scale the software system relative to S1,
where a licensing cost is incurred per host. Therefore, a
question of interest is: when is it cost effective to use M0
instead of M1? In other words, when the flexibility of M1
cease to create value relative to M0. We assume that for any
k hosts, S0 and S1 are said to support UkS0 and UkS1 con-
current users, respectively; where UkS0 could be different

or equal to UkS1. For the non-adjusted options results of
table 8c, the results of read that inducing the architecture
with M0 is likely to enhance the option value of S0 relative
to S1 (pessimistic) for the case of n hosts for n>0, under the
condition that UnS0 >>=UnS1 and under the assumption that
the upfront cost of developing fault tolerance and load bal-
ancing is relaxed. However, if we benchmark these options
values against the cost of developing the load balancing
and fault tolerance services (i.e., the upfront cost), we can
see that payoff following developing these services is far
from breaking even for less than 7 hosts, as depicted in
figure 7.

Options on S0 relative to S1

0

50000

100000

150000

200000

1 2 3 4 5 6 7

No of hosts

O
pt

io
ns

 ($
)

Options on
S0

Cost for
achieving
Scalability

Figure 7. Options on S0 relative S1 prior to adjustment

Options of S0 and S1 in ($)

0
20000
40000
60000
80000

100000
120000
140000

1 2 3 4 5 6 7

No of Hosts

O
pt

io
ns

 ($
)

S1

S0

Figure 8. Options on S0 and S1 upon varying the No of hosts

Hence, once we adjust the options to take care of the up-
front cost of investing to implement the both services, the
adjusted options for S0 relative to S1 reports values in the
money for the case of seven or more hosts, as shown in
table 8c and sketched in figure 8. For the case of seven or
more hosts, the M0 appears to be a better choice under the
condition that UnS0 >>=UnS1. These is due to the fact the
expenditures in M1 licenses increases with the number of
hosts, henceforth, the savings in adopting M1 cease to exist.

For less than 7 hosts, M1 has better potentials and appears
to be more cost-effective under the condition that UnS1
>>=UnS0. For 7 or more hosts, M0 appears to be of better
potentials under the conditions UnS0 >>=UnS1, as depicted
in figure 8. The use of this case to exercise the ArchOp-
tions model has the prospect in providing an insight on
how much do we need to invest in the adapted flexibility
relative to the likely future changes, while not sacrificing
much of the resources.

 17

Table 8a. The options in ($) on the architecture induced by S1relative to S0 for one host, with
S1license cost (Clicesh)=zero

 Ce Xv σ T Options Delta Vega

Opti-
mistic 1158 96450 94892 1 9.1149E-71

Likely 1948 120563 118615 1 1.1628E-70 Overall
Pes-

simis-
tic

2435 150704

22.7 1

148269 1 1.4533E-70

Opt 0 96481 96481 1 0

Likely 0 120602 120602 1 0 Devel-
opment

Pes. 0 150753

22.7 1

150753 1 0

Opt 1558 -31 0 0 0

Likely 1948 -39 0 0 0
Con-

figura-
tion Pes. 2435 -49

22.7 1

0 0 0

Opt 0 0 0 0 0

Likely 0 0 0 0 0
Deploy-

ment
Pes. 0 0

22.7 1

0 0 0

Table 8b. The options in ($) on the architecture induced by S0relative to S1 for one host, with
(Clicesh)=zero

 Ce Xv σ T Options Delta Vega

Opti-
mistic 96450 31 0 0 0

Likely 120563 39 0 0 0 Overall

Pes. 150704 49

22.7 1

0 0 0

Table 8c. Options in ($) on S0 relative to S1 with (Clicesh)= $25000 and σ=22.7 and pessimistic Ce

 Ce Xv Options
Adjusted
Options

Conc. Users

1 2386 25049 2343 0 U1S0 vs U1S1

2 4772 50049 4772 0 U2S0 vs U2S1

3 7158 75049 67891 0 U3S0 vs U3S1

4 9544 100049 90505 0 U4S0 vs U4S1

5 11930 125049 113119 0 U5S0 vs U5S1

6 14316 150049 135733 0 U6S0 vs U6S1

7 16702 175049 158347 7643 U7S0 vs U7S1

 18

Observation 3. Selecting a more stable architec-
ture

The change impact analysis has shown that the architec-
tural structure of S1 is left intact when the scalability
change needs to be accommodated. However, the structure
of S0 has undergone some changes, mostly on the architec-
tural infrastructure level to accommodate the scalability
requirements. From a value-based perspective, the search
for a potentially stable architecture requires finding an ar-
chitecture that maximizes the yield in the added value, rela-
tive to some future changes in requirements. As we are
assuming that the added value is attributed to flexibility,
the problem becomes selecting an architecture that maxi-
mize the yield in the embedded or adapted flexibility in a
software architecture relative to these changes. Even, if we
accept the fact that modifying the architecture or the infra-
structure is the only solution towards accommodating the
change, valuation the impact of the change becomes neces-
sary to see how far we are expending to “re-maintain” or
“re-achieve” architectural stability relative to the change.
Note that the economic interplay between evolving re-
quirements, the flexibility of the architecture to accommo-
date the change, the structural impact, and the correspond-
ing cost/value implications is the key towards selecting a
“more” stable architectures that tends to add value as the
requirements evolve. Though it might be appealing to the
intuition that the “intactness” of the structure is the defini-
tive criteria for selecting a “more” stable architectures, the
practice reveals a different trend; it nails down to the
potential added value upon exercising the change.

If you consider the case of S0 and S1 in response to the
change in scalability for one host (table 8a), the flexibility
has yielded a better payoff for S1 than for S0, while leaving
S1 intact. This implies that inducing the Duke’s Bank soft-
ware architecture with M1 is likely to be more stable rela-
tive to the future change in scalability, than when induced
with M0. However, the situation and the analysis have dif-
fered upon varying the number of hosts and upon factoring
a license costs for S1. Though S0 has undergone some
structural changes to accommodate the change, the case has
shown that it is still acceptable to modify the architecture
and to realize added value under the conditions that UnS0
>>=UnS1 for 7 or more hosts (Table 8c, Figure 8). Hence,
what matters is the added value upon either embarking on a
“more” flexible architecture, or investing to enhance flexi-
bility which is the case for implementing load balancing
and fault tolerance on S0. For the case of WebLogic,
Though M1 is in principle more flexible (the case of), the
flexibility comes with a price, where the flexibility turned
to be a liability rather than a value for 7 or more hosts, as
when compared with the JacORB, under the condition that
UnS0 >>=UnS1. The case verifies our claims that the value
of flexibility can guide towards the selection of architec-
tures that tend to add more value, as the requirements
evolve. These architectures have the potential of being po-
tentially stable.

The options analysis has complemented the structural
analysis to quantify the impact of the change on the soft-
ware architecture. The intuition is that complementing the
structural impact analysis with a value-based back-of-the-
envelope calculation, the combination provides the archi-
tect/analyst with a useful tool for understanding extent to
which the software system tend to be flexible relative to a
likely change in requirements, a cost/value indictors of the
impact of the change on the structure, the likely success
(failure) of the software system evolution, and conse-
quently the potential stability of the software architecture
relative to the change.

Observation 4. Understanding Architectural Sta-
bility has to be done in connection with the solution
domain

Our hypothesis that middleware induced-software ar-
chitectures differ in coping with changes is verified to be
true for the given change. Based on the pervious observa-
tions, we can see that the stability of S1 and S0 appears to
be dependent on the flexibility of the middleware in ac-
commodating the likely changes in the scalability require-
ments. For the category of distributed software systems that
are built on top of middleware, the results of the case study
affirm the belief that investigating the stability of the dis-
tributed software architecture could be fruitless, if done in
isolation of the middleware, where the middleware con-
straints and dominate much of the solution that relate to the
non-functionalities, managing system resources, and their
ability to smoothly evolve over the life time of the software
system. Hence, the development and the analysis for archi-
tectural stability and evolution shall consider the “cou-
pling” between the architecture and the middleware. This
addresses pragmatic needs and is feasible even at earlier
stages of the software development life cycle: a consider-
able part of the distributed system implementation could be
available, when the architecture is defined, for example,
during the Elaboration phase of the Unified Process. We
also note that the change in requirements could have been
addressed by other architectural mechanisms. However, the
middleware has guided the solution for evolving the soft-
ware system. For instance, the choice of replication as an
architectural mechanism for scaling the software system,
with a given architectures S1 and S0 was respectively
guided by the clustering primitives provided by M1 and the
core capabilities provided by M0 to support load balancing
and fault tolerance. Interestingly, Di Nitto and Rosenblum
[1999] state that “despite the fact that architectures and
middleware address different phases of software develop-
ment, the usage of middleware and predefined components
can influence the architecture of the system being devel-
oped. Conversely, specific architectural choices constrain
the selection of the underlying middleware used in the im-
plementation phase”. Medvidovic, Dashofy and Taylor
[2003] state the idea of coupling the modeling power of
software architectures with the implementation support
provided by middleware. They noted, “architectures and

 19

middleware address similar problems, that is large-scale
component-based development, but at different stages of
the development life cycle.” In more abstract terms, Ra-
panotti, Hall, Jackson, and Nuseibeh [2004] advocate the
use of information in the solution domain (e.g., the mid-
dleware-to be induced for our case) to inform the problem
space:

“Whereas Problem Frames are used only in the problem
space, we observe that each of these competing views uses
knowledge of the solution space: the first through the software
engineer’s domain knowledge; the second through choice of
domain-specific architectures, architectural styles, develop-
ment patterns, etc; the third through the reuse of past devel-
opment experience. All solution space knowledge can and
should be used to inform the problem analysis for new soft-
ware developments within that domain” [Rapanotti et al.,
2004].

The “coupling” between the middleware and the archi-
tecture becomes of higher interest in case of developing
and analyzing software systems for evolution. This is be-
cause the solution domain can guide the development and
evolution of the software system; provide more pragmatic
and deterministic knowledge on the potential success (fail-
ure) of evolution, and consequently assist in understanding
the stability of the software architectures from a pragmatic
perspective.

Observation 5. Understanding Architectural Sta-
bility: Intertwined with changes in non-functional re-
quirements, style, and the middleware

Following the definition of Di Nitto and Rosen-
blum[1999], a style defines a set of general rules that de-
scribe or constrain the structure of architectures and the
way their components interact. Styles are a mechanism for
categorizing architectures and for defining their common
characteristics. Though S1 and S0 have exhibited similar
styles (i.e., three-tier), they have differed in the way they
cope with the change in scalability. The difference was not
only due to the architectural style, but also due to the primi-
tives that are built-in in the middleware to facilitate scaling
the software system. The governing factor, hence, appears
to be to a large extent dependent on the flexibility of the
middleware (e.g., through its built-in primitives) in sup-
porting the change. The intuition and the preliminary ob-
servations, therefore, suggest that the style by itself is not
revealing for the stability of the software architecture when
the non-functional requirements evolve. It is, however, a
factor of the extent to which the middleware primitives can
support the change in non-functional requirements. Inter-
estingly, Sullivan et al. [1997] claims that for a system to
be implemented in a straightforward manner on top of a
middleware, the corresponding architecture has to be com-
pliant with the architectural constraints imposed by the
middleware. Sullivan et al. [1997] support this claim by
demonstrating that a style, that in principle seems to be
easily implementable using the COM middleware, is actu-

ally incompatible with it. Following a similar argument,
adopting an architectural style that is in principle appear to
be suitable for realizing the non-functionality and support-
ing its evolution, may not be complaint with the middle-
ware in the first place. And if the architectural style hap-
pens to be compliant with the middleware, there are still
uncertainties in the ability of the middleware primitives to
support the change. In fact, the middleware primitives real-
ize much of the non-functional requirements. Hence, the
architectural style by itself may not be revealing for poten-
tial threats that the architecture may face when the non-
functional requirements evolve. The evolution of non-
functionality maybe in principle easily supported by the
style, but could be uneasily accommodated by the middle-
ware. An observable advantage of scaling the software
architecture induced by S1, for example, is that no devel-
opment effort required to realize the scalability require-
ments through replication, as when compared to that of S0,
knowing that in principle the style of S1 and S0 exhibit
similar capabilities.

Engineering for stability and evolution, requirements
engineering has not only to be aware of the architecture
(e.g., the style), but also of the underlying middleware. For
example, if we take a goal-oriented approach to require-
ments engineering (e.g., [Dardenne et al., 1993]), we advo-
cate adjusting the non-functional requirements elicitation
and their corresponding refinements to be aware of both the
architectural style and the constraints imposed by middle-
ware. The operationalisation of these requirements in the
software architecture have to be guided by both the archi-
tectural style, the complaint middleware for the said style,
and guided by previous experience. This, we believe, is a
pragmatic need towards engineering requirements and de-
veloping “evolvable” software architectures that tend to be
stable as the non-functional requirements evolve.

3.4 Critical assessment of the results
We have used change in scalability, a representative critical
change in non-functional requirements, to apply the model
and steer the study. We have appealed to the use of struc-
tural criteria, combined with value-based analysis, to in-
form the tradeoff and select a “more” stable architecture.
Though the reported observations reveal a trend that agrees
with the intuition, research, and the state-of-practice, con-
firming the validity of the observations are still subject to
careful further empirical studies. These studies may need to
consider other non-functional requirements, their concur-
rent evolution, and their corresponding change impact on
different architectural styles and middleware. We note that
the primary aim of this case study is to exercise the model.
Under no considerations should the results be regarded as a
definite distinction of the merit of one technology over the
other, but yet still revealing on the scalability dimension.
The reason is due to the fact that we have only used “fla-

 20

vors” of CORBA and J2EE, respectively through JacORB;
and JBoss and WebLogic.

The options analysis is based on the likely effort for
scaling the software system. However, we note that the
flexibility value is underestimated for S1 relative to S0, as
we have relaxed considering: (i) the added value due to the
provision of hot deployment; JBoss provides hot-
deployment and clustered hot-deployment to deploy appli-
cation without needing to restart the server. Obviously, the
quantification of such a value is both business and domain
dependent; it can be quantified by estimating the losses
avoided from stopping the service; (ii) the added value due
to the ease of future maintainability and reduced complex-
ity in the J2EE version, when compared to the CORBA
one. For example, in J2EE all the configurations related to
the server objects are made in the deployment descriptor;
therefore, it results in a better code maintainability in con-
trary to CORBA where the server object configuration is
made in the code. However, relaxing the consideration of
the above does not affect the validity of our conclusions, as
the results are already in favour of the J2EE-induced ver-
sion.

Experts may question our use of [Black and Scholes,
1973] to options valuation, as the satisfaction of the span-
ning condition may be doubtful. We argue that our use for
the design and the corresponding implementation of scal-
ability on TAO as guidelines bear a resemblance to the
concept of a “twin asset”, for we are reusing a past devel-
opment experience to inform the valuation. We also argue
that valuation based on man-month does implicitly hold
market-based data and is still done in relation with the
market. Alternatively, we could have cast the options
model to use different options valuation (e.g., [Cox et al.,
1979]). However, the application of [Black and Scholes,
1973] offers a closed and an easy-to-compute solution, for
it assumes that xiV is lognormaly distributed, not requiring
xiV to be probability-adjusted for rise and drop in value, as
when compared to [Cox et al., 1979]. Following the argu-
ment of [Sullivan et al., 2001], such models need not be
perfect: what is essential is that they capture the most im-
portant terms; their assumptions and operation must be
known and understood so that the analyst can evaluate their
predictions.

4. Related Work
In this section, we provide a quick overview of closely
related research on: (i) architectural stability research; (ii)
the use of real options in software design and engineering;
(iii) related research on architectural evaluation, and (iv)
ongoing research on the “coupling” of software architec-
ture and middleware.

Architectural stability in perspective. Ongoing re-
search on the relation between requirements and software
architectures has considered the architectural stability prob-
lem as an open research challenge and difficult to handle

[van Lamsweerde, 2000; Finkelstein, 2000; Nuseibeh,
2001; Jazayeri, 2002; Emmerich, 2002]. In particular,
Finkelstein motivated research in architectural stability; he
described the problem in [Finkelstein, 2000]. Nuseibeh
proposed the “Twin Peaks” model, a partial and simplified
version of the spiral model [Nuseibeh, 2001]. The corner-
stone of this model is that a system’s requirements and its
architecture are developed concurrently; that is, they are
“inevitably intertwined” and their development are inter-
leaved. Nuseibeh advocated the use of various kinds of
patterns – requirements, architectures, and designs- to
achieve the model objectives. As far as architectural stabil-
ity is concerned, Nuseibeh had only exposed a tip of the
“iceberg” (as referred by Nuseibeh): development proc-
esses that embody characteristics of the Twin Peaks are the
first steps towards developing architectures that are stable
in the face of inevitable changes in requirements. Nuseibeh
noted that many architectural stability related questions are
difficult and remain unanswered. Examples include: What
software architectures (or architectural styles) are stable in
the presence of changing requirements, and how do we
select them? What kinds of changes are systems likely to
experience in their lifetime, and how do we manage re-
quirements and architectures (and their development proc-
esses) in order to manage the impact of these changes?
Our work addresses some of these questions.

Not far from the motivation of bridging the gaps be-
tween requirements and software architectures, van
Lamsweerde noted that the goal-oriented approach to re-
quirements engineering may support building and evolving
software architectures guaranteed to meet both its func-
tional and non-functional requirements [van Lamsweerde,
2000]. van Lamsweerde acknowledge that:

 “…. The conflict between requirements volatility and
architectural stability is a difficult one to handle” [van
Lamsweerde, 2000].

 Jazayeri has looked at the architectural stability prob-
lem from a software evolution perspective [Jazayeri, 2002].
Jazayeri motivated the use of retrospective approaches for
evaluating software architectures for stability and evolu-
tion. Retrospective evaluation looks at successive releases
of the software system to analyze how smoothly the evolu-
tion took place. The analysis relies on comparing properties
from one release of the software to the next. The intuition
is to see if the system’s architectural decisions remained
intact throughout the evolution of the system, that is,
through successive releases of the software. Jazayeri’s ap-
proach uses simple metrics such as software size metrics,
coupling metrics, and color visualization to summarize the
evolution pattern of the software system across its succes-
sive releases. The evaluation assumes that the system al-
ready exists and has evolved making this approach not pre-
ventive and unsuitable for early evaluation (unless the evo-
lution pattern is used to predict for the stability of the next
release). In the absence of dedicated tools, the evaluation
appears to be expensive and unpractical, for it requires in-

 21

formation to be kept for each release of the software. Yet,
such data is not commonly maintained, analyzed, or ex-
ploited, as noted by Jazayeri. Moreover, the problem of
architectural stability and the architecture “resilience” to
evolution is strategic in essence and not purely technical.
Jazayeri has addressed the problem from a purely technical
perspective. Instead, we aim at to assist in proactively en-
gineering stable architectures. We believe that the eco-
nomic interplay between evolving requirements and archi-
tectural stability needs to be addressed.

The use of real options in software engineering.
Economics approaches to software design appeal to the
concept of static Net Present Value (NPV) as a mechanism
for estimating value [Boehm and Sullivan, 2000]. These
techniques, however, are not readily suitable for strategic
reasoning of software development as they fail to factor
flexibility [Boehm and Sullivan, 2000; Erdogmus et al.,
1999]. The use of strategic flexibility to value software
design decisions has been explored in, for example, [Er-
dogmus and Vandergraff, 1999; Erdogmus and Favaro,
2002; Erdogmus 2000; Sullivan; 1996; Sullivan et al.,
1999; Sullivan 2001] and real options theory has been
adopted to value the strategic flexibility: Baldwin and
Clark [2001] studied the flexibility created by modularity
in design of components (of computer systems) connected
through standard interfaces. Sullivan et al. [1996; 1999;
2001] pioneered the use of real options in software engi-
neering. Sullivan et al. [1996; 1999] suggested that real
options analysis can provide insights concerning modular-
ity, phased projects structures, delaying of decisions and
other dynamic software design strategies. Sullivan et al.
[1999] formalized that option-based analysis, focusing in
particular on the flexibility to delay decisions making. An
interesting approach that has inspired the early stages of
our work is that of Sullivan et al. [2001]. Sullivan et al.
[2001] extended Baldwin and Clark’s theory [2001] that is
developed to account for the influence of modularity on the
evolution of the computer industry. Sullivan et al. [2001]
use the model developed in [Baldwin and Clark, 2001] to
treat the “evolovability” of software design using the value
of strategic flexibility. Specifically, they argued that the
structure and value of modularity in software design creates
value in the form of real options. A module creates an op-
tion to invest in a search for a superior replacement and to
replace the currently selected module with the best alterna-
tive discovered, or to keep the current one if it is still the
best choice. The value of such an option is the value that
could be realized by the optimal experiment-and-replace
policy. Knowing this value can help a designer to reason
about both investment in modularity and how much to
spend searching for alternatives. Erdogums [1999] de-
scribes how strategic flexibility in software development,
involving COTS components, can be valued using real
options. An interesting use of real options theory is that of
[Erdogums and Favaro, 2002]. Erdogmus and Favaro uses
real options to value the inherent flexibility in the Extreme

Programming (XP), where they have considered XP as a
lightweight process that is well positioned to respond to
change and future opportunities; hence, creating more
value than a heavy-duty process that tends to freeze devel-
opment decisions.
 Architectural evaluation. Interested reader may refer
to [Bahsoon and Emmerich, 2003b] in which we provide a
comprehensive survey on architectural evaluation methods.
In short, we have distinguished between two classes of
software architecture evaluation methods: (i) general-
purpose methods that evaluate software architectures for
qualities that need to be met by the system (e.g. perform-
ance, security, and modifiability) and (ii) an emerging class
of methods that explicate evaluation for stability and evolu-
tion. Apart from our work, the only evaluation method un-
der the latter category is the work of [Jazayeri, 2002] and
sufficiently detailed in the above subsection.
 Existing methods to architectural evaluation have ig-
nored any economic considerations, with CBAM [Asundi
and Kazman, 2001] being the notable exception. The
evaluation decisions using these methods tend to be driven
by ways that are not connected to, and usually not optimal
for value creation. Factors such as flexibility, time to mar-
ket, cost and risk reduction often have higher impacts on
value creation [Boehm and Sullivan, 2000]. Hence,
flexibility is in the essence. In our work, we link flexibility
to value, as a way to make the value of stability tangible.
 Relating CBAM to our work, the following distinc-
tions can be made: with the motivation to analyse the cost
and benefits of architectural strategies, where an architec-
ture strategy is subset of changes gathered from stake-
holders, CBAM does not address stability. Further, CBAM
does not tend to capture the long-term and the strategic
value of the specified strategy. ArchOptions, in contrast,
views stability as a strategic architectural quality that adds
to the architecture values in the form of growth options.
When CBAM complements ATAM [Kazman et al., 1998]
to reason about qualities related to change such as modifi-
ability, CBAM does not supply rigorous predictive basis
for valuing such impact. Plausible improvements of the
existing CBAM include the adoption of real options theory
to reason about the value of postponing investment deci-
sions. CBAM uses real options theory to calculate the value
of option to defer the investment into an architectural strat-
egy. The delay is based on cost and benefit information. In
the context of the real options theory, CBAM tends to rea-
son about the option to delay the investment in a specific
strategy until more information becomes available as other
strategies are met. ArchOptions, in contrast, uses real op-
tions to value the flexibility provided by the architecture to
expand in the face of evolutionary requirements; hence-
forth, referred to as the options to expand or growth op-
tions.
 On the “coupling” of software architectures and
middleware. There is only very little work on the “cou-
pling” of middleware and software architectures. Notable

 22

exceptions include [Jazayeri, 1995; Gall et al., 1997; Sulli-
van et al., 1997; Oreizy et al., 1998; Di Nitto and Rosen-
blum, 1999; Metha et al., 2000; Medvidovic et al., 2003;
Denaro et al., 2004].
 Jazayeri [1995] explores the relationship between
software architectures and component technologies. Gall et
al. [1997] have looked at an existing component frame-
work, the C ++ standard library, and identified the architec-
tural style induced. Sullivan et al. [1997] claims that for a
system to be implemented in a straightforward manner on
top of a middleware, the corresponding architecture has to
be compliant with the architectural constraints imposed by
the middleware. Sullivan et al. [1997] support this claim by
demonstrating that a style, that in principle seems to be
easily implementable using the COM middleware, is actu-
ally incompatible with it. Oreizy et al. [1998] discuss the
importance of complementing component interoperability
models with explicit architectural models. Di Nitto and
Rosenblum [1999] devised the term middleware-induced
architectural styles. Middleware-induced architectural
styles uses Architecture Definition Languages (ADLs) to
describe the assumptions and constraints that middleware
infrastructures impose on the architecture of system. They
have evaluated ADLs for their suitability in defining mid-
dleware-induced architectural styles. Metha et al. [2000]
propose a classification framework of software connectors.
They describe types of services provided by connectors for
enabling and facilitating component interactions. They aim
at building implementation topologies (e.g., bridging of
middleware) that preserve the properties of the original
architecture, under the motivation of coupling architectures
and middleware. Medvidovic et al. [2003] state the idea of
“coupling” the modelling power of software architectures
with the implementation support provided by middleware.
They have noticed that “architectures and middleware ad-
dress similar problems, that is large-scale component-based
development, but at different stages of the development life
cycle.” They have investigated the possibility of defining
systematic mappings between architectures and middle-
ware. Recently, Denaro et al. [2004] measures performance
attributes of an architecture based on the early available
implementation support provided by the middleware.

In summary, recent research effort on the relation be-
tween software architectures and middleware has been mo-
tivated by pragmatic needs. The effort has revolved on is-
sues such as investigating the compliancy of architectural
styles with middleware; capabilities that the middleware
and the architecture can bring when “coupled” to under-
stand quality attributes of the system such as performance;
mapping between middleware and software architectures;
and semantics and syntactical issues related to the mapping
process.

As it has been noted in several occasions [Emmerich
2000b; Emmerich 2002], research on software architectures
has over-emphasized functionality and not sufficiently ad-
dressed how global properties and non-functional require-

ments are achieved in an architecture, where these re-
quirements cannot be attributed to individual components
or connectors. Though we believe that ongoing research on
the “coupling” of middleware and architectures could have
an impact on understanding the relation between architec-
tures and non-functional requirements, their contributions
to such understanding is still insufficient. As far as the ar-
chitectural stability problem is concerned, no effort has
been devoted for understanding the evolution of non-
functional requirements in relation to both the architecture
and the middleware, when coupled. Our use of architec-
tural flexibility and its value as metric to inform the deci-
sion of selecting a “more” stable middleware-induced ar-
chitecture is novel and only a step toward such an under-
standing using a value-based [EDSR 1-6] reasoning.

5. Summary and Future Work
We have hypothesized that the choice of a stable distrib-
uted software architecture has to be guided by the choice of
the middleware-induced and its flexibility in responding to
future changes in non-functional requirements. We have
devised an option-based model to value such flexibility and
guide the selection. We have empirically evaluated the
model using a case that adequately represent a medium-size
component-based distributed architecture. We have used
change in scalability, a representative critical change in
non-functional requirements, to apply the model and steer
the study. We have reported on how a likely future change
in scalability could impact the architectural structure of two
versions, each induced with a distinct middleware, CORBA
and J2EE. We have appealed to the use of replication, as an
architectural mechanism to scale the software system. We
have estimated the structural impact of implementing this
mechanism on both the CORBA and the J2EE versions.
We have estimated the expected relative savings in mainte-
nance including development, deployment, and configura-
tion efforts. We have applied the ArchOptions model. Our
hypothesis that middleware induced software architecture
differs in coping with changes is verified to be true for the
given change in scalability. We have reported on some
observations that could stimulate future research in the area
of relating requirements to software architectures. Though
the reported observations reveal a trend that agrees with the
intuition, research, and the state-of-practice, confirming the
validity of the observations is still subject to careful further
empirical studies. These studies may need to consider other
non-functional requirements, their concurrent evolution,
and their corresponding change impact on different archi-
tectural styles and middleware, which we aim to investigate
as part of our ongoing research agenda. The contribution
demonstrates that using value-based reasoning, we can
analyze for architectural stability and support the develop-
ment (evolution) of software systems that need to adapt to
the inevitable evolving requirements.

 23

6. References

[1] Anton, A.: Goal-based Requirements Analysis. In: Proc. 2nd
IEEE Int. Conf. Requirements Engineering. April (1996)

[2] Asundi, J., Kazman, R.: A Foundation for the Economic
Analysis of Software Architectures. In: Proceedings of the
Third Workshop on Economics-Driven Software Engineer-
ing Research (2001)

[3] Bahsoon, R., Emmerich, W.: Evaluating Architectural Stabil-
ity with Real Options Theory. In: Proc. of the 20th IEEE Int.
Conference on Software Maintenance, Chicago, Illinois,
IEEE CS Press (2004b)

[4] Bahsoon, R., Emmerich, W.: Applying ArchOptions to
Value the Payoff of Refactoring. In: Proceedings of the Sixth
ICSE Workshop on Economics-Driven Software Engineering
Research (2004a)

[5] Bahsoon, R., Emmerich, W.: ArchOptions: A Real Options-
Based Model for Predicting the Stability of Software Archi-
tecture. In: Proceedings of the Fifth ICSE Workshop on Eco-
nomics-Driven Software Engineering Research (2003a)

[6] Bahsoon, R., Emmerich, W.: Evaluating Software Architec-
tures: Development, Stability, and Evolution. In: Proceed-
ings of IEEE/ACS Computer Systems and Applications,
IEEE CS Press (2003b)

[7] Bahsoon, R.: Evaluating Software Architectures for Stabil-
ity: A Real Options Approach. In: Proceedings of the Doc-
toral Symposium of the 25th International Conference on
Software Engineering (2003)

[8] Baldwin, C. Y., Clark, K. B.: Design Rules - The Power of
Modularity. MIT Press (2001)

[9] Black, F., Scholes, M.: The Pricing of Options and Corporate
Liabilities. Journal of Political Economy (1973)

[10] Boehm, B., Clark, B., Horowitz, E., Madachy,R., Shelby, R.,
Westland, C.: The COCOMO 2.0 Software Cost Estimation
Model. In: International Society of Parametric Analysts
(1995)

[11] Boehm, B., Sullivan, K. J.: Software Economics: A Road-
map. In: Finkelstein, A. (ed.): The Future of Software Engi-
neering (2000)

[12] Cox, J., Ross, S., Rubinstein, M.: Option Pricing: A Simpli-
fied Approach. Journal of Financial Economics. Vol.7 (3).
(1979) 229-264

[13] Dardenne, A., van Lamsweerde A., and Fickas, S.: Goal-
Directed Requirements Acquisition, Science of Computer
Programming, 20, pp. 3-50 (1993)

[14] Denaro, G., Polini A., Emmerich W.: Performance Testing of
Distributed Component Architectures. In: S. Beydeda and
V. Gruhn (eds), Building Quality into COTS Components -
Testing and Debugging. Springer (2004)

[15] Di Nitto, E. and Rosenblum, D.: Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures.
In: Proceedings of the 21st Int'l Conf. on Software Engineer-
ing, (1999) 13-22

[16] Sun Microsystems Inc.: Duke’s bank application,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html.

[17] Emmerich, W.: Distributed Component Technologies and
their Software Engineering Implications. In: Proceedings of
the 24th Int. Conference on Software Engineering, Orlando,
Florida (2002) 537-546

[18] Emmerich, W.: Engineering Distributed Objects. John Wiley
& Sons, Chichester, UK (2000a)

[19] Emmerich, W.: Software Engineering and Middleware: A
Road Map. In: A. Finkelstein, editor, Future of Software En-
gineering. ACM Press (2000b)

[20] Erdogmus, H. and Vandergraaf. J: Quantitative approaches
for assessing the value of COTS-centric development. In:
Proc. Sixth International Symposium on Software Metrics
(METRICS' 99), November 4-6, Boca Raton, FL (1999)

[21] Erdogmus, H., Boehm, B., Harriosn, W., Reifer, D. J., and
Sullivan, K. J.: Software Engineering Economics: Back-
ground, Current Practices, and Future Directions. In: Pro-
ceeding of 24th International Conference on Software Engi-
neering, Orlando, FL. (2002)

[22] Erdogmus, H., Favaro, J: Keep Your Options Open: Extreme
Programming and Economics of Flexibility, In: XP Perspec-
tive, Addison Wesley (2002)

[23] Erdogmus, H.: Value of Commercial Software Development
under Technology Risk. The Financier, vol. 7. (2000)

[24] Finkelstein, A.: Architectural Stability.
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html (2000)

[25] Gall, H., Jazayeri, M., Klösch, R., Trausmuth, G.: The Ar-
chitectural Style of Component Programming. COMPSAC
(1997)

[26] Gamma E. et al.: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley Longman, Read-
ing, Mass. (1995)

[27] Henning, M. and Vinoski, S: Advanced CORBA Program-
ming With C++, Addison-Wesley Longman, Reading, Mass
(1999)

[28] Hull, J. C.: Options, Futures, and Other Derivative Security.
Third edition, Prentice-Hall (1997)

[29] Jazayeri, M.: Component Programming - a Fresh Look at
Software Components, In: ESEC, 457-478 (1995)

[30] Jazayeri, M.: On Architectural Stability and Evolution. Lec-
ture Notes in Computer Science, Springer Verlag, Berlin
(2002)

[31] JGroups Website, http://www.jgroups.org.

[32] Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff,
T., and Carrière, S.J.: The Architecture Tradeoff Analysis
Method. In: Proceedings of ICECCS, Monterey, CA. (1998)

[33] Labourey, S. and Burke B.: JBoss clustering documentation,
JBoss Group LLC (2003)

[34] Medvidovic N, Dashofy E, Taylor R: On the Role of Mid-
dleware in Architecture-based Software Development. Inter-
national Journal of Software Engineering and Knowledge
Engineering 13(4) (2003)

[35] Mehta, N., Medvidovic, N., Phadke, S.: Towards a taxonomy
of software connectors. In: Proceedings of the 22nd Interna-

 24

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html
http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.html
http://www.jgroups.org/

tional Conference on Software Engineering, ACM Press
(2000)

[36] Myers, S. C.: Finance Theory and Financial Strategy. Corpo-
rate Finance Journal. Vol. 5(1) (1987) 6-13

[37] Nuseibeh, B.: Weaving the Software Development Process
Between Requirements and Architectures. In: Proceedings of
STRAW 01 the First International Workshop From Software
Requirements to Architectures, Toronto, Canada (2001)

[38] Object Management Group: The Common Object Request
Broker: Architecture and Specification, 2.4 ed., OMG,
Needham, Mass. (2000)

[39] Object Management Group: The Common Object Request
Broker: Architecture and Specification, 2.3 ed., Framingham,
Mass. (1999b)

[40] Object Management Group: Fault Tolerant CORBA Specifi-
cation, OMG document orbos/99-12-08 ed., OMG,
Needham, Mass. (1999a)

[41] Oreizy, P., Medvidovic, N., Taylor, R. and D. Rosenblum,
D.: Software Architecture and Component Technologies:
Bridging the Gap. In Digest of the OMG-DARPA-MCC
Workshop on Compositional Software Architectures, Mon-
terey, CA, January (1998)

[42] Othman, O., O’Ryan, C., Schmidt, D.C.: Designing an Adap-
tive CORBA Load Balancing Service Using TAO. IEEE
Distributed Systems Online 2(4) (2001b)

[43] Othman, O., O’Ryan, C., Schmidt, D.C.: Strategies for
CORBA Middleware-Based Load Balancing. IEEE Distrib-
uted Systems Online 2(3) (2001a)

[44] EDSER 1-6. Proceedings of the Workshops on Economics-
Driven Software Engineering Research: In conjunction with
the 21st through 26th International Conference on Software
Engineering (1999 - 2004)

[45] Rapanotti, L., Hall, J., Jackson, M., and Nuseibeh, B.: Ar-
chitecture Driven Problem Decomposition. In: Proceedings
of 12th IEEE International Requirements Engineering Con-
ference (RE'04), Kyoto, Japan (2004)

[46] Schmidt D.C. et.: Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects, Volume 2,
John Wiley & Sons, New York (2000).

[47] Schmidt, D.C., Levine, D.L., and Mungee, S.: The Design
and Performance of Real-Time Object Request Brokers,
Computer Communication, vol (21)(4), pp. 294-324 (Apr.
1998)

[48] Schwartz, S., Trigeorgis, L.: Real options and Investment
Under Uncertainty: Classical Readings and Recent Contri-
butions. MIT Press Cambridge, Massachusetts (2000)

[49] Stafford, J. A., Wolf, A. W.: Architecture-Level Dependence
Analysis for Software System. International Journal of Soft-
ware Engineering and Knowledge Engineering. Vol. 11(4)
(2001) 431-453

[50] Sullivan, K. J., Griswold, W., Cai, Y., Hallen, B.: The Struc-
ture and Value of Modularity in Software Design. In: Pro-
ceedings of ESEC/FSE-9, Vienna, Austria (2001) 99-108

[51] Sullivan, K. J., Socha, J., and Marchukov, M.: Using Formal
Methods to Reason about Architectural Standards. In: Pro-

ceedings of the 19th International Conference on Software
Engineering, Boston, MA (1997)

[52] Sullivan, K. J.: Chalasani, P., Jha, S., Sazawal, V.: Software
Design as an Investment Activity: A Real Options Perspec-
tive. In: Real Options and Business Strategy: Applications to
Decision-Making. Trigeorgis L.(ed.) Risk Books (1999)

[53] Sullivan, K. J.: Software Design: The Options Approach. In:
2nd International Software Architecture Workshop, Joint
Proceedings of the SIGSOFT '96 Workshops. San Francisco,
CA (1996) 15–18

[54] Sun MicroSystems Inc: Enterprise JavaBeans Specification
v2.1 (June 2002)

[55] van Lamsweerde, A.: Requirements Engineering in the Year
00: A Research perspective. In: Proc. 22nd International
Conference on Software Engineering, Limerick, Ireland
(2000).

 25

 26 26

	Abstract
	1. Introduction
	3.1.5 Change impact analysis
	SLOC
	Description

	4. Related Work
	6. References

