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Abstract 
 

The requirements that force decisions towards building distributed system architectures are usually of non-functional nature.  Scal-
ability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to 
build distributed systems with middleware, which provide the application developer with primitives for managing the complexity 
of distribution, system resources, and for realizing many of the non-functional requirements. As non-functional requirements 
evolve, the “coupling” between middleware and architecture becomes the focal point for understanding the stability of the distrib-
uted software system architecture in the face of change. We hypothesise that the choice of a stable distributed software architecture 
depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional require-
ments. We devise an option-based model to value such flexibility and guide the selection. We empirically evaluate the model using 
a case study that adequately represents a medium-size component-based distributed architecture. We report on how a likely future 
change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with 
CORBA and the other with J2EE. Our hypothesis is verified to be true for the given change. We conclude with some observa-
tions that could stimulate future research in the area of relating requirements to software architectures.     
 
Keywords. Architectural economics; economics-driven software engineering; evolution of non-functional requirements; middle-
ware; real options theory; relating requirements to software architectures. 

 
 

1. Introduction  
Software requirements, whether functional or non-
functional, are generally volatile; they are likely to change 
and evolve over time. The change is inevitable as it reflects 
changes in stakeholders’ needs and the environment in 
which the software system works. A change may “break” 
the software system architecture necessitating changes to 
the architectural structure (e.g., changes to components and 
interfaces), architectural topology (e.g., architectural style), 
or even changes to the underlying architectural infrastruc-
ture (e.g., middleware). It may be expensive and difficult to 
change the architecture as requirements evolve [Finkel-
stein, 2000]. Consequently, failing to accommodate the 
change leads ultimately to the degradation of the usefulness 
of the system. Hence, there is a pressing need for flexible 
software architectures that tend to be stable as the require-
ments evolve. By a stable architecture, we refer to the ex-
tent to which a software system can endure changes in re-
quirements, while leaving the architecture of the software 
system intact. We refer to the presence of this “intuitive” 
phenomenon as architectural stability.    

The requirements that drive the decision towards build-
ing a distributed system architecture are usually of a non-
functional and global nature [Emmerich, 2000a]. Scalabil-
ity, openness, heterogeneity, and fault-tolerance are just 
examples. The current trend is to build distributed systems 
architectures with middleware technologies such as Java 2 
Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002] 
and the Common Object Request Broker Architecture 
(CORBA) [Object Management Group, 2000]. Middleware 
simplifies the construction of distributed systems by pro-
viding high-level primitives, which shield the application 
engineers from the distribution complexities, managing 
systems resources, and implementing low-level details, 
such as concurrency control, transaction management, and 
network communication. These primitives are often re-
sponsible for realizing many of the non-functional re-
quirements in the architecture of the software system in-
duced. Despite the fact that architectures and middleware 
address different phases of software development, the us-
age of middleware can influence the architecture of the 
system being developed. Conversely, specific architectural 
choices constrain the selection of the underlying middle-
ware [Di Nitto and Rosenblum, 1999]. Once a particular 

 1



middleware system has been chosen for a software archi-
tecture, it is extremely expensive to revert that choice and 
adopt a different middleware or a different architecture. 
The choice is influenced by the non-functional require-
ments. Unfortunately, the requirements tend to be unstable 
and evolve over time. Non-functional requirements often 
change with the setting in which the system is embedded, 
for example when new hardware or operating system plat-
forms are added as a result of a merger, or when scalability 
requirements increase as a result of having to build web-
based interfaces that customers use directly [Emmerich, 
2000b]. Hence, as the non-functional requirements of the 
software system evolve, the “coupling” between the mid-
dleware and the architecture becomes the focal point for 
understanding the stability of the distributed software sys-
tem architecture in the face of the change.  
 In an earlier paper [Emmerich, 2002], we reflected on 
the architectural stability problem with a particular focus 
on developing software architectures induced by middle-
ware. Specifically, we considered the architecture stability 
problem from the distributed components technology in the 
face of changes in non-functional requirements. We advo-
cated adjusting requirements elicitation and management 
techniques to elicit not just the current non-functional re-
quirements, but also to assess the way in which they will 
develop over the lifetime of the architecture. These ranges 
of requirements may then inform the selection of distrib-
uted components technology, and subsequently the selec-
tion of application server products. We argued that addition 
or changes in functional requirements could be easily ad-
dressed in distributed component-based architectures by 
adding or upgrading the components in the business logic. 
However, changes in non-functional requirements are more 
critical; they can stress an architecture considerably, lead-
ing to architectural “breakdown”. Such a “breakdown” 
often occurs at the middleware level and due to the incapa-
bility of the middleware to cope with the change(s), when 
the non-functional requirements evolve (e.g., increased 
scalability demands). This may drive the archi-
tect/developer to consider ad-hoc or propriety solutions to 
realize the change, such as modifying the middleware, ex-
tending the middleware primitives, implementing addi-
tional interfaces, modifying the client(s), and so forth. Such 
solutions could be problematic, costly, and unacceptable.  
 We argue that the choice of the distributed software 
system architecture has to be guided by the choice of the 
underlying middleware and its flexibility in responding to 
future changes in non-functional requirements. This is 
necessary to facilitate the evolution of the software system, 
to avoid unnecessary future investments (e.g., maintenance 
overhead, hardware investments, reverting the choice of the 
middleware etc.), and to ensure that future resources will 
be used efficiently as the requirements evolve (e.g., new 
servers are purchased or cycles are leased, only when nec-
essary).  As a motivating example, consider a distributed 
software architecture that is to be used for providing the 

back-end services of an organization. This architecture will 
be built on middleware. Depending on which middleware 
is chosen, different architectures may be induced [Di Nitto 
and Rosenblum, 1999]. These architectures will have dif-
ferences in how well the system is going to cope with 
changes. For example, a CORBA-based solution might 
meet the functional requirements of a system in the same 
way as a distributed component-based solution that is based 
on a J2EE application server. A notable difference between 
these two architectures will be that increasing scalability 
demands might be easily accommodated in the J2EE archi-
tecture because J2EE primitives for replication of Enter-
prise Java Beans can be used, while the CORBA-based 
architecture may not easily scale. The choice is not 
straightforward as the J2EE-based infrastructures usually 
incur significant upfront license costs.  Thus, when select-
ing an architecture, the question arises whether an organi-
zation wants to invest into an J2EE application server and 
its implementation within an organization, or whether it 
would be better off implementing a CORBA solution. An-
swering this question without taking into account the flexi-
bility that the J2EE solution provides and how valuable this 
flexibility will be in the future might lead to making the 
wrong choice. 
 The novel contribution of this article is in two interre-
lated folds:  
 A. We devise a real option-based model to value the 
flexibility of the middleware-induced software architecture 
in response to changes in non-functional requirements. We 
describe how options theory can be used to inform the se-
lection of potentially more stable middleware-induced 
software architectures. We argue that the problem of select-
ing a particular middleware to induce a given architecture 
is an option problem. An option gives its owner the right 
without the symmetric obligation to invest in the future 
ending with an expiration date [Hull, 1997; Cox et al., 
1979; Schwartz and Trigeorgis, 2000]. From the evolution 
perspective, the flexibility of the middleware induced-
architecture in coping with changes in non-functional re-
quirements has a value that can assist in predicting the sta-
bility of software architectures. More specifically, flexibil-
ity adds to the architecture values in the form of real op-
tions that give the right but not a symmetric obligation- to 
evolve the software system and enhance the opportunities 
for strategic growth. The added value is strategic in essence 
and may not be immediate. It may take the form of (i) ac-
cumulated savings through coping with the change without 
“breaking” the architecture, mostly these are changes in 
non-functional requirements; (ii) extending the range of 
services while leaving the architecture intact; and (iii) the 
ability to respond to competitive forces and changing mar-
ket conditions that may pause higher Quality of Service 
(QoS) requirements, such as the demands for higher avail-
ability, scalability, reliability and so forth. From an early 
development perspective, given several middleware candi-
dates, the architect has the right without the symmetric ob-
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ligation to embark on a selection for inducing an architec-
ture. A “wise” selection could be regarded as an investment 
to buy flexibility, which could be valued as future growth 
options [Schwartz and Trigeorgis, 2000] on the architecture 
of the software system. These options differ from one mid-
dleware to another.  
 Our application of real options theory to inform the 
selection of a “more” stable middleware-induced software 
architectures is novel. The model, which we devise to value 
the flexibility of the middleware-induced software architec-
ture, in response to likely changes in non-functional re-
quirements, builds on ArchOptions [Bahsoon and Em-
merich, 2003a; Bahsoon, 2003]. Given several middleware 
candidates, the devised model informs the tradeoff analysis 
and consequently the selection through a simple calcula-
tion.  
 B. We have empirically simulated the model using a 
case study that adequately represent a medium-size compo-
nent-based distributed architecture. We have instantiated 
two versions of the core architecture; each induced by a 
different middleware, one with CORBA and the other with 
J2EE. We report on how a likely future change in scalabil-
ity, as a representative critical change in non-functional 
requirements, could impact the architectural structure of the 
two versions. The results of the case study could be sum-
marized as follows. Our hypothesis that middleware in-
duced software architecture differs in coping with changes 
is verified to be true for the given change. On the method-
ology level, the results show that value-based reasoning 
and real options can provide insights on the stability and 
investment decisions related to the evolution the software. 
On the discipline level, the study draws some preliminary 
lessons and insights that could stimulate future research in 
the area of relating requirements to software architectures 
and consequently advance our understanding to the archi-
tectural stability problem, when addressed from a non-
functional requirements perspective.      

The article is further structured as follows. In section 2, 
we describe how we used options theory to inform the se-
lection of middleware-induced software architectures. In 
Section 3, we empirically evaluate the model, verify our 
hypothesis, and draw some observations that could simulate 
future research in the area of relating requirements to soft-
ware architectures. In Section 4, we discuss related work. 
Section 5 concludes. 
 
2. Selecting Stable Middleware-Induced 
Software Architectures with Real Options  
 
Real options analysis recognizes that the value of the capi-
tal investment lies not only in the amount of direct reve-
nues that the investment is expected to generate, but also in 
the future opportunities that flexibility creates [Erdogmus 
et al., 2002; Erdogmus and Favaro, 2002]. These include 
growth, abandonment or exit, delay, and learning options. 

An option is an asset that provides its owner the right with-
out a symmetric obligation to make an investment decision 
under given terms for a period of time into the future end-
ing with an expiration date [Hull, 1997; Cox et al., 1979; 
Schwartz and Trigeorgis, 2000]. If conditions favourable to 
investing arise, the owner can exercise the option by 
investing the strike price defined by the option. A call 
option gives the right to acquire an asset of uncertain future 
value for the strike price.  

ArchOptions [Bahsoon and Emmerich, 2003a; 
Bahsoon, 2003; Bahsoon and Emmerich, 2004b] values the 
growth options of an architecture relative to some future 
changes, as a way for understanding the architectural flexi-
bility and its stability implications. A growth option is a 
real option to expand with strategic importance [Myers, 
1987; Schwartz and Trigeorgis, 2000]. Growth options are 
common in all infrastructure-based (as it is the case with 
software architectures) or strategic industries with multiple-
product generations or applications [Myers, 1987; 
Schwartz and Trigeorgis, 2000]. In the architectural con-
text, growth options are linked to the flexibility of the ar-
chitecture to respond to future changes. Since the future 
changes are generally unanticipated, the value of the 
growth options lies in the enhanced flexibility of the archi-
tecture to cope with uncertainty; otherwise, the change may 
be too expensive to pursue and opportunities may be lost.  

Let us assume that the value of the system is V. As the 
software evolves, a change in future requirement ii is as-
sumed to “buy” xi% of the “architectural potential” taking 
the form of embedded flexibility, paying Cei, where Cei 
corresponds to an estimate of the likely cost to accommo-
date the change on the given architecture of the software 
system. This is analogous to a call option to buy (xi%) of 
the base project, paying Cei as exercise price. The call op-
tions financial/real and their corresponding ArchOptions 
analogy is depicted in table 1 and detailed in [Bahsoon and 
Emmerich, 2003a].  
 
Table 1. Financial/real options/ArchOptions analogy 

Option on 
stock 

Real option on 
a project 

ArchOptions 

Stock 
Price 

Value of the 
expected cash 
flows 

value of the “architectural 
potential” relative to the 
change (xiV) 

Exercise 
Price 

Investment cost Estimate of the likely cost to 
accommodate the change 
(Cei) 

Time-to-
expiration 

Time until oppor-
tunity disap-
pears 

Time indicating the decision to 
implement the change (t) 

Volatility Uncertainty of 
the project value 

“Fluctuation” in the return of 
value of V over a specified 
period of time (σ) 

Risk-free 
interest 
rate 

Risk-free inter-
est rate 

Interest rate relative to budget 
and schedule (r) 
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We view the investment opportunity in the system as a 
base investment plus call options on the future opportuni-
ties, where a future opportunity corresponds to the invest-
ment to accommodate some future requirement(s). The 
payoff of the constructed call option gives an indication of 
how valuable the flexibility of an architecture is to endure 
some likely changes in requirements. The value of the ar-
chitecture, is expressed in (1) accounting for V and both the 
expected value and exercise cost to accommodate future 
requirements ii, for i ≤ n. Valuing the expectation E of ex-
pression (1) uses the assumptions of [Black and Sholes, 
1973] and detailed in [Bahsoon and Emmerich, 2003a]. We 
assume that the interest rate, r, is zero for the simplicity of 
exposition.     

                                                     n 

    V + ∑ E [max (xiV - Cei, 0)]               (1)                    
                 i=0 

It is worth noting that previous applications of ArchOp-
tions include  (i) valuing the resulted architectural flexibil-
ity and its stability implications due to investing in a refac-
toring exercise [Bahsoon and Emmerich, 2004a], and (ii) 
evaluating software architectures for stability to understand 
the success (failure) of the software system’s evolution, in 
response to likely changes in requirements [Bahsoon and 
Emmerich, 2004b].  

The model has the prospect of valuing the architectural 
flexibility and its value potentials due to various types of 
changes in requirements. These could be functional or non-
functional. However, the changes in non-functional re-
quirements are more critical and revealing for understand-
ing architectural stability problem. As the middleware real-
izes much of the non-functionalities, analyzing for architec-
tural stability in the face of changes in non-functional re-
quirements can’t be done in isolation of the middleware 
induced. We tailor the ArchOptions model to value the 
growth potentials of the middleware-induced software ar-
chitectures to respond to changes in non-functional re-
quirements.  

As we have noted in [Bahsoon and Emmerich, 2003a; 
Bahsoon 2003; Bahsoon and Emmerich 2004a; Bahsoon 
and Emmerich 2004b], the search for a potentially stable 
architecture requires finding an architecture that maximizes 
the yield in the added value, relative to some future 
changes in requirements. As we are assuming that the 
added value is attributed to flexibility, the problem be-
comes maximizing the yield in the embedded or adapted 
flexibility in a software architecture relative to these 
changes. Given the choice of two or more middleware can-
didates, the selection has to maximize the yield in the em-
bedded flexibility, relatives to likely changes in non-
functional requirements.  

Choosing a particular middleware to induce the archi-
tecture of the software system can be seen as an investment 
to purchase flexibility in the software architecture-induced. 
The middleware simplifies the construction of a distributed 

system architecture by offering higher level programming 
abstractions that shield application developers from distri-
bution complexities, thereby letting them concentrate on 
the application instead of implementing the non-
functionalities and managing system resources. The choice 
is influenced by the non-functional requirements from one 
side and the “architectural potential” of the middleware to 
respond to future changes in these requirements. In this 
context, deciding on a particular middleware to induce the 
software system architecture can be seen as an investment 
to purchase future growth options that enhance the upside 
potentials of the structure, paying an upfront cost Ie, which 
corresponds to the cost of developing the architecture by 
the given middleware. We extend ArchOptions to value the 
worthwhile of the investment, given in (2): 
                                                       n 

    V- Ie  + ∑ E [max (xiV - Cei, 0)]               (2)                    
                    i=0 

Let us assume that we are given the choice of two mid-
dleware M0 and M1 to induce the architecture of a particu-
lar system. Let us assume that S0, S1 are the architectures 
obtained from inducing M0 and M1 respectively. Say, in-
ducing M1 is an economical choice, if it adds value to S1 
relative to S0. We attribute the added value to the enhanced 
flexibility of S1 over S0. If we are considering stability as a 
criteria for understanding the value added on the system, 
then future changes in non-functional requirements will tell 
us how valuable S1 is relative to S0, as we are performing a 
tradeoff between the architecture induced by M0 and M1. 
But the added value is uncertain, as the demand and the 
nature of the future changes are uncertain. Hence, using 
option theory is a promising approach to inform the selec-
tion.  

The selection has to be guided by the expected payoff 
in (- Ie + ∑ i=1…n E [max (xiV - Cei, 0]) S1 relative to that of 
S0. That is, if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 > ∑ 

i=1…n E [max (xiV - Cei, 0)] S0) for some likely changes, then 
it is worth investing in M1, as the investment in M1 is likely 
to generate more growth options for S1 than for S0. We 
appeal to the use of future savings in maintenance effort as 
a way to quantify the value added due to a selection.  If we 
assume that xiV S1 is the expected savings in S1over S0 due 
to selection, it is reasonable to consider that if (- Ie + ∑ 
i=1…n E [max (xiV - Cei, 0)] S1 >=0), then investing in M1 is 
said to payoff. An optimal payoff could be when the option 
value (i.e., ∑ i=1…n E [max (xiV - Cei, 0)]) approaches the 
maximum relative to some changes in non-functional re-
quirements, indicating an optimal payoff of the selection, 
provided that (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >= 0). 
We use sensitivity analysis to manipulate the model vari-
ables and analyze when such a situation is likely to occur. 

Let us focus our attention on the payoff of the call op-
tions, as they are revealing for the flexibility of the archi-
tecture induced in responding to the likely future changes 
in requirements.  
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For a likely change in requirement k,  
Call option in-the-money: if (E [max (xkV - Cek, 0)])S1 

>0, then the flexibility of S1 is likely to payoff, relative to 
S0, as the flexibility of the architecture in response to the 
change is likely to add a value, if the change need to be 
exercised. This means that inducing the architecture with 
M1 has more promise than M0, as the flexibility of S1 in 
responding to the likely change is more valuable for S1 than 
for S0.     

Call option out-of-the-money: if (E [max (xkV - Cek, 
0)])S1=0, then M1 is not likely to payoff, relative to M0, as 
the flexibility of the architecture in response to the change 
is not likely to add a value for S1 if the change need to be 
exercised. Two interpretations might be possible: (i) the 
architecture is overly flexible in the sense that its response 
to the change(s) has not “pulled” the options. This implies 
that the embedded flexibility (or the resources invested in 
implementing flexibility- if any) are wasted and unutilized 
to reveal the options relative to the changes. In other 
words, the degree of flexibility provided is much more than 
the flexibility demanded for the change. This case has the 
prospect in providing an insight on how much do we need 
to invest in the adapted flexibility relative to the likely fu-
ture changes, while not sacrificing much of the resources; 
(ii) the other case is when the architecture is inflexible rela-
tive to the change. This is when the cost of accommodating 
the change on S1 is much more than the cumulative ex-
pected value of the architecture responsiveness to the 
change. 

The options model (2) requires the estimation of several 
parameters. Most important are xiV, Ie, and Cei. 

Estimating Cei, Ie. Estimating cost is a well-
established component in software engineering; it is out-
side the scope of our work. As a result of inducing the ar-
chitecture with the middleware, it is feasible to use existing 
metrics to cost estimation (e.g. COCOMO-II [Boehm et al., 
1995]). This is due to the fact that a considerable part of the 
distributed applications implementation is already avail-
able, when the architecture is defined, for example, during 
the Elaboration phase of the Unified Process. Another ap-
proach is to build on architectural level dependency analy-
sis (e.g., [Stafford and Wolf, 2001]) research to extract cost 
estimates of accommodating ii, guided by some structural 
criteria.  

Capturing and estimating xiV. The application of 
Black and Scholes [1973] assumes that the stock option is a 
function of the stochastic variables underlying stock’s price 
and time. We assume that V moves stochastically bounded 
to two extreme values: optimistic and pessimistic. This 
assumption appears to be plausible: (i) it tends to account 
for all possible values within the bound, yielding to a better 
approximation when opposed to an ad-hoc type of estima-
tion; (ii) the value of an (evolvable) system changes over 
time; it tends to change in uncertain way due to changes in 
requirements. 

 Black and Scholes is an arbitrage-based technique. 
The technique requires knowledge of the value of the asset 
in question in span of the market. Software architectures, 
however, are (non-traded) real assets. Real options may be 
valued similarly to financial options, though they are not 
traded [Schwartz and Trigeorgis, 2000]. Real options 
valuation based on arbitrage-based pricing techniques de-
termines the value of an asset in question in span of the 
market value using a correlated twin asset [Schwartz and 
Trigeorgis, 2000]. The twin asset is an asset that has the 
same risks the asset in question will have when the invest-
ment has been completed [Schwartz and Trigeorgis, 2000]. 
In financial options, several proxies are available to predict 
the value of the financial asset - the most obvious proxy is 
simply the historical values of the asset. In real options, 
such proxies rarely exist and the analyst may need to rely 
on experience and judgment in his/her estimations 
[Schwartz and Trigeorgis, 2000]. Real options valuation 
(based on arbitrage) focuses on market value and uses the 
rate of return on the twin asset as an input to the valuation 
of the asset in question. If the asset value is not directly 
observable, it is reasonable to use estimates of the revenues 
on the asset to estimate the market value [Schwartz and 
Trigeorgis, 2000]. For example, some aspects of the 
architectural responsiveness to the change can be justified 
in terms of the directly observable cash flows linked to 
future operational benefits or the market- making it easy to 
use the rate of return to value the options.  However, many 
others aspects may not be directly observable through cash 
flows. Yet, their contribution to the added value is crucial. 
If the analyst(s) relies on experience and judgment in 
his/her estimation, the estimates tend to be subjective but 
could make an implicit use of market information. How-
ever, back-of-the-envelope calculations, which are based 
on value estimates (rather than on market value) are yet 
revealing [Sullivan et al., 2001]. We note that it remains an 
open challenge to strongly justify precise estimates for real 
options in software [Sullivan et al., 1999]. As a compro-
mise, estimating xiV requires a comprehensive solution that 
is flexible enough to incorporate multiple valuation tech-
niques; some with subjective estimates and others based on 
market data, when available. The problem of how to guide 
the valuation and introduce discipline in this setting, we 
term as the multiple perspectives valuation problem. As the 
added value may be relative to the market and/or the enter-
prise, the solution may be through a valuation framework 
that captures the added value - of the “architectural poten-
tial” of the change- from different perspectives. The pur-
pose is to reach a comprehensive value of options from the 
different perspectives. Also, the aim is to promote flexibil-
ity through incorporating both subjective estimates (may 
implicitly use market information) and/or explicit market 
value (when available). As the architecture is the artefact 
that facilitates both technical and market reasoning, such an 
approach seems to be viable. Addressing this problem and 
its solution is outside the scope of this paper. 
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Sensitivity analysis. Statistical questions on how the 
uncertainty of the input parameters propagates to the model 
output often require sensitivity analysis. The objective is to 
provide an understanding of how the model response vari-
ables respond to changes, as the model’s underlying as-
sumptions or its parameters change.  For example, the es-
timated parameters may be subject to uncertainty: the 
valuation could have overestimated or underestimated the 
value of the parameters. Further, the estimated value may 
be liable to further adjustment to reflect the time value. We 
support the model with sensitivity analysis to increase the 
confidence in the model predictions and to provide a basis 
for  “what-if” analyses. 

First derivative analysis is much used in the investment 
arena for analyzing the sensitivity of the value of a finan-
cial option to changes in the variables. Delta and Vega pro-
vide the investment analyst with a ready means to discover 
financial option’s sensitivity to changes in the estimated 
value of the underlying asset; and increases and decreases 
to the volatility of the underlying asset. Table 2 provides a 
summary of the sensitivity parameters, their financial ex-
planation, mathematical formulation and the corresponding 
ArchOptions analogy. 
 
Table 2. Sensitivity parameters and ArchOptions 
Para-
meter 

Financial Explanation ArchOptions 
Analogy 

Math-
formula 

Delta 
(∆) 

Option price rate of change 
w.r.t. the underlying asset 
(%) 

Option value 
rate of change 
w.r.t. xiV 

∂c 

∂(xiV) 

Vega 
(ν) 

Option price rate of change 
w.r.t. the volatility of the 
underlying asset (%) 

Option price 
rate of change 
w.r.t. σ (%) 

∂c 

∂σ 

 

The Delta (∆) of an option is defined as the rate of 
change of the option price with respect to the underlying 
asset. Suppose that the delta of a call option is 0.6. This 
means that when the underlying asset price changes by a 
small amount, the option price change by about 60% of that 
amount. Mathematically, delta is the partial derivative of 
the call price with respect to the underlying asset price 
given by ∆= ∂C/∂S. In practice, volatilities may change 
over time. This means that the value of the option is liable 
to change because of the movement in volatility as well as 
because of changes in the asset price and the passage of 
time. The Vega (ν) of an option is the rate of change of the 
value of the option with respect to the volatility of the un-
derlying asset. If Vega is high, the option value is very 
sensitive to small changes in volatility. If Vega is low, 
volatility changes have relatively little impact on the value 
of the option. 

 In the following section, we empirically evaluate the 
theory, exercise the model, and verify its interpretations. 
We use a case study that adequately represents a medium-
size component-based distributed architecture. We report 
on how a likely future change in scalability could impact 
the architectural structure of two versions, each induced 

with a distinct middleware: one with CORBA and the other 
with J2EE. We calculate the options on each structure and 
draw some observations. 
 

3. Case Study 
We use Duke’s Bank application, an online banking appli-
cation provided by Sun [Sun Microsystems Inc., 
http://java.sun.com], as part of the J2EE reference applica-
tion. Given the software architecture of the Duke’s Bank, 
we have instantiated from the core architecture two ver-
sions, each induced by a distinct middleware: one with 
CORBA and the other with J2EE. We report on how a 
likely future change in scalability could impact the archi-
tectural structure of each version. Scalability denotes the 
ability to accommodate a growing future load, be it ex-
pected or not. The objective is to study how middleware-
induced software architectures may differ in coping with 
changes in non-functional requirements. We look at the 
changes in scalability demands as a representative of a 
critical change in non-functional requirements that could 
impact the architecture at its various levels: structure, to-
pology, and infrastructure. The ability to scale the software 
system of a given architecture is revealing to its stability, 
for the change may break the architecture and/or ripple to 
impact other non-functionalities such as fault-tolerance, 
performance, reliability, availability, when poorly accom-
modated by the middleware. Further, the challenge of 
building a scalable system is to support changes in the allo-
cation of components to hosts without breaking the archi-
tecture of the software system, or changing the design and 
code of a component [Emmerich, 2000b]. We note that the 
stability notion is relative to the change. Hence, what we 
observe is how the architecture of the given system, when 
induced by a particular middleware cope with the scalabil-
ity change. 

Architecturally, the Duke’s Bank has two clients: an 
application client used by administrators to manage cus-
tomers and accounts and a Web client used by customers to 
access account statements and perform transactions. The 
server-side components perform the business methods: 
these include managing customers, managing accounts, and 
managing transactions. The clients access the customer, 
account, and transaction information maintained in a data-
base. The architecture of the Duke’s Bank application is 
given in Figure 1. Though the experiment is conducted in a 
controlled environment, we regard the Duke’s bank appli-
cation to be adequately representative of medium-size 
component-based distributed application.  

The CORBA version of the Duke’s Bank is a straight-
forward implementation of the above description. In the 
J2EE, the application consists of six EJB (Enterprise Java 
Beans) components that handle operations issued by the 
users of a hypothetic bank. The six components can be 
associated with classes of operations that are related to 
bank accounts, customers and transactions, respectively. 
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For each of these classes of operations, a pair of session 
bean and entity bean is provided. Session beans are respon-
sible for the interface towards the users and the entity 
beans handle the mapping of stateful components to under-
lying database table. The EJBs that constitute the business 
components are deployed in a single container within the 
application server, which is part of the middleware.  

D B

C u s to m er

A cco u n ts

T ra ns a c tion

S e rve rs

A ccou n t

C us to m e r

T ra n sa c tio n
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Figure 1. The Architecture of the Duke’s Bank  

 
For the J2EE version, we use JBoss application server 

[http://www.jboss.org], an open source. In one of the ex-
periments, we use WebLogic server [http://www.bea.com/] 
with an average upfront payable license cost equal to 
$25000/host. We use JacORB, version 2.0 to implement 
the CORBA version. JacORB, is a CORBA implementa-
tion written in Java; it allows the communication of Java 
objects. Our choice of JacORB makes the comparison be-
tween the two versions feasible and meaningful, as both 
will be implemented in JAVA.  
 We assume that the Duke’s Bank system needs to 
scale up to accommodate the growing number of clients. 

We consider scalability as a goal that needs to be achieved 
by the architecture of the software system to be induced. 
We adopt a goal-oriented approach to refining require-
ments (e.g., [Dardenne et al., 1993; Anton, 1996]). We 
refine the goal, using guidance on how it could be opera-
tionalised by the architecture, when induced by a particular 
middleware. In more abstract terms, the guidance was 
given through the knowledge of the domain; vendor’s 
specification, such as [Object Management Group, 1999-
2000; Sun Microsystems Inc., 2002]; related design and 
implementation experience, mainly that of [Othman et al., 
2001a; Othman et al., 2001b]. We note that different archi-
tectural mechanisms may operationalise the scalability 
goal. As an operationalisation alternative, we use replica-
tion as way for achieving scalability. The reason is due to 
the fact that both CORBA and J2EE do provide the primi-
tives or guidelines for scaling a software system using rep-
lication, which make the comparison between the two ver-
sions feasible. In particular, the Object Management 
Group’s CORBA specification [Object Management 
Group, 1999-2001] defines a fault tolerance and a load 
balancing support, both when combined provide the core 
capability for implementing scalability through replication. 
Similarly, J2EE provides the primitives for scaling the soft-
ware system through replication. Hence, the refinement and 
its corresponding operationalisation are guided by the 
solution domain (i.e., the middleware). Refinement of the 
scalability goal is depicted in Figure 2.  Detailing the re-
finements and the operationalisation of the goal is given in 
sections 3.1 and 3.2. 
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Figure 2. The Goal-oriented (high-level) refinement for achieving scalability through replication 
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In subsequent sections, we investigate how scalability 
could be achieved on both versions. We analyze the impact 
of the change by looking at the structural changes and the 
source lines of code (SLOC) that need to be modi-
fied/added for implementing the change, configuring, and 
deploying the software system following the change. We 
apply the model to understand the value added by inducing 
the architecture by EJB relative to CORBA, if the change 
needs to be applied. We use future savings in maintenance 
cost (if any), as a way to quantify the value added. We 
draw some observations and report on some preliminary 
conclusions.  
 

3.1 Scaling the CORBA-Induced Architec-
ture  
In this subsection, we investigate how scalability could be 
achieved in the CORBA-induced version through replica-
tion mechanisms.  

CORBA’s object model [Object Management Group, 
2000] relies to a large degree on the semantics of object 
references. An object reference uniquely identifies a local 
or remote object instance- clients can only invoke an opera-
tion on an object if they hold a reference to the object. 
Managing scalability in CORBA, through replication, is 
not straightforward, for object referencing makes it de-
manding. If several replicas of a server object are available, 
providing an object reference to the client is uneasy task. 
Hence, a CORBA implementation to the management of 
scalability, through replication, has to incorporate the fol-
lowing:  (i) Replication management (i.e., create, remove, 
manage objects state in case of state retention, etc); (ii) 
balancing load among replicas (i.e., when a client invokes a 
request, it needs to get the object reference of the least 
loaded replica) and (iii) a fault tolerance (i.e., when a 
server object fails to handle a request, the request has to be 
forwarded to a replica).  

The Object Management Group’s CORBA specification 
defines a fault tolerance support, which provides replica-
tion management.  The specification also provides the core 
capabilities needed to support load balancing. Othman et al. 
[2001] introduces a CORBA load-balancing service, de-
signed on TAO- the ACE (Adaptive Communication Envi-
ronment) ORB [Schmidt et al., 1998]. The TAO-ORB is a 
CORBA-compliant ORB that supports applications with 
stringent Quality of Service (QoS) requirements. The de-
signed CORBA load-balancing service takes advantages of 
the request forwarding mechanism the CORBA specifica-
tion mandates [Object Management Group, 1999]. A 
CORBA server application can use this mechanism to for-
ward client requests to other servers transparently, porta-
bly, and interoperably. The combination of the CORBA 
fault tolerance support and Othman’s CORBA load-
balancing service provides a strong example of implement-
ing scalability in CORBA. We use both the Object Man-
agement Group’s CORBA specification and the TAO’s 

design and implementation of the services as guidelines for 
understanding the structural impact of the change on the 
Duke’s Bank architecture and the corresponding effort/cost 
required to scale the system.  

Subsection 3.1.1 describes the requirements and the ar-
chitecture for implementing fault-tolerance in CORBA, 
based on the OMG specification [Object Management 
Group, 1999]. Subsection 3.2.2 describes the requirements 
and the architecture for implementing the load-balancing 
support in CORBA, based on [Othman et al., 2001a; Oth-
man et al., 2001b]. Subsection 3.2.3 analyzes the structural 
impact, when the fault-tolerance and the load-balancing 
services need to be implemented to scale the CORBA-
induced Duke’s Bank architecture.  
 
3.1.1 Achieving fault tolerance support and 
replication management  
 
The Fault Tolerant CORBA standard aims to provide ro-
bust support for applications that require a high level of 
reliability, beyond the level provided by single backup 
server. According to the CORBA specification, fault toler-
ance depends on entity redundancy (replication of objects), 
fault detection, and recovery. To render an object fault-
tolerant, several replicas of the object are created and man-
aged as an object group. While each individual replica of 
an object has its own object reference, an additional inter-
operable object group reference (IOGR) is introduced for 
the object group as a whole. It is the object group reference 
that the replicated server publishes for use by the client 
objects. The client objects invoke methods on the server 
object group, and the members of the server object group 
execute the methods and return their responses to the cli-
ents, just like a conventional object. Because of the object 
group abstraction, the client objects are not aware that the 
server objects are replicated (replication transparency) and 
are not aware of faults in the server replicas or of recovery 
from faults (failure transparency).  
  The standard provides support for fault detection, noti-
fication, and analysis for the object replicas. The standard 
also supports a range of fault tolerance strategies, including 
automatic check pointing; logging and recovery from 
faults; request retry; redirection to an alternative server; 
passive (primary/backup) replication and active replication, 
which provides more rapid recovery from faults. The stan-
dard aims for minimal modifications to the application pro-
grams, and for transparency to both replication and faults.  
 
3.1.2 The fault tolerance architecture  
The requirements for implementing Fault Tolerance in 
CORBA are detailed in the CORBA fault tolerance specifi-
cation of the OMG. Figure 3 presents an architectural strat-
egy that realizes these requirements and fully documented 
in [Object Management Group, 1999]. Other architectural 
strategies for realizing these requirements are possible. 
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The basic blocks of the architecture are three: Replication 
management; Fault Management; and Logging and Recov-
ery Management.  

Replication Management. The Replication Manager 
inherits three application program interfaces: the Proper-
tyManager, ObjectGroupManager, and the GenericFac-
tory. The PropertyManager provides operations that set 
properties for object groups. The ObjectGroupManager 
provides operations that allow an application to exercise 
control over addition, removal, and locations of members 
of an object group. It also provides operations for obtaining 
the current reference and identifier for an object group. The 
GenericFactory issues requests for replicating objects (ob-
ject groups), creating replicas (members of object groups), 
and unreplicating objects.  

Fault Management.  The following components are 
responsible for managing faults in the proposed fault toler-
ant architecture. These are fault detection, fault notifica-
tion, and fault analysis. The Fault detection component 
detects the presence of a fault in the system and generates a 
fault report. The fault notification component propagates 
fault reports to entities that have registered for such notifi-
cations. The fault analysis component analyses a (poten-
tially large) number of related fault reports to generate a 
condensed diagnosed report. 

Logging and Recovery Management. The Logging 
Mechanism records the state and actions of a member of an 
object group in a log. The Recovery Mechanism sets the 
state of a member, either after a fault when a backup mem-
ber of an object group is promoted to the primary member, 
or alternatively when a new member is introduced into an 
object group. 

Components of the Fault Tolerance Infrastructure are 
shown on the top of figure 3. These include Replication 
Manager, Fault Notifier, and Fault Detector. The bottom 
of figure 3 shows three hosts: H1, H2, and H3.  The client 
application object C on H1 invokes a replicated server ob-
ject with two replicas S1 on host H2, and S2 on host H3. The 
figure shows Factory and Fault Detector objects that may 
be present and specific for a host. The service objects are 
replicated objects. The host-specific objects, however, are 
not replicated. The figure also shows the Message Handler 
and the Logging and Recovery Mechanisms that are pre-
sent on each host. Logically, a single instance of the Repli-
cation Manager and Fault Notifier shall exist in each fault 
tolerance domain. Physically, however, they are replicated 
to protect against faults, as any other application object are. 
The architecture defines minimal modifications to the exist-
ing ORBs. These modifications allow non-replicated cli-
ents to derive fault tolerance benefits upon invoking repli-
cated server objects.  

 
Figure 3. The CORBA fault-tolerance architecture [Object 
Management Group, 1999]. 

 
3.1.3 Achieving load balancing  
Load balancing helps improve system scalability by ensur-
ing that client application requests are distributed and proc-
essed equitably across a group of servers. Likewise, it helps 
improve system dependability by adapting dynamically to 
system configuration changes that arise from hardware or 
software failures. According to [Othman et al., 2001a], the 
design of an effective CORBA load balancing service 
should be based on the following requirements. The inter-
ested reader may refer to [Othman et al., 2001a] for further 
details. 

Enable client application transparency. A CORBA 
load balancing service should be as transparent as possible 
to clients and servers and should require no changes to cli-
ents whose requests it balances. 

Enable server application transparency. Implement-
ing a server object’s servant (a programming language en-
tity that implements object functionality in a server applica-
tion) should require no changes to support load balancing. 
Yet changes to the server application might still be required 
under certain conditions.  

Support dynamic client operation request patterns. 
The CORBA load balancer, however, shall focus on load 
balancing techniques that do not require a priori scheduling 
information, where client operation request patterns are 
dynamic and the duration of each request might not be 
known in advance, which is the case of the Duke’s Bank.  

Maximize scalability and equalize dynamic load 
distribution. CORBA load balancing service must enhance 
system scalability by maximizing dynamic resource utiliza-
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tion in a group of servers that otherwise would be underuti-
lized.  

Increase system dependability. Load balancer 
should provide mechanisms to handle failures efficiently 
when detected by administrators or other system compo-
nents. For example, the load balancer should migrate 
crashed or failing servers to other servers until the failure is 
resolved. However, there is still a need for a fault-tolerance 
support, which we described in previous section based on 
the [Object Management Group, 1999].   

Support administrative tasks. A good CORBA load 
balancing service should have facilities for dynamic addi-
tion/removal/upgrading of new replicas and should adjust 
to the new load conditions rapidly, without disrupting or 
suspending service for existing clients.  

Incur minimal overhead. A CORBA load balancing 
service should not introduce undue latency or networking, 
which may reduce the overall system performance.  

Support application-defined load metrics and bal-
ancing policies. A CORBA load balancing service should 
let applications specify the semantics of metrics used to 
measure load, such as CPU, I/O resources, communication 
bandwidth, or memory load.  

Rely on CORBA interoperability and portability.  A 
CORBA load balancer should not restrict the application 
developers to single ORB providers. 
 
3.1.4 The load balancing architecture 
Othman et al. [2001b] suggest a CORBA adaptive balanc-
ing built on TAO to realize the above stated requirements. 
The TAO’s load balancing solution is entirely based on 
standard features in CORBA, without requiring severe ex-
tensions to the ORB or its communication protocols. The 
suggested load balancing solution is based on the patterns 
[Schmidt et. al., 2000] of the CORBA component model 
(CCM) [BEA Systems, 1999] for minimizing the changes 
on the application layer. In particular, the following pat-
terns are utilized to achieve the above stated transparency 
requirements: these are the   Portable Interceptors pattern, 
Component Configuration pattern, Component Configura-
tor pattern, and the Asynchronous Completion Token pat-
tern [Schmidt et. al., 2000].   

Figure 4 illustrates the components in TAO’s load bal-
ancing service. The design supports adaptive load balanc-
ing and on-demand request forwarding [Othman et al. 
2001b] and  outlined below: 

The Replica Locator identifies which of the replicas 
will be assigned a request. The Replica Locator component 
forwards the requests to the Load Analyzer component. The 
Load Analyzer component analyses the requests; it select 
the replica to be assigned the request. The Replica Locator 
obtains a reference to a replica from the load analyzer and 
then forwards the request to that replica. The Replica Loca-
tor binds clients to the identified replicas. The Load Ana-
lyzer also allows explicit selection of a load balancing 
strategy at runtime, while maintaining a simple and flexible 

design. The replica locator is portably implemented using 
servant locators implementing the interceptor pattern 
[Schmidt et. al., 2000], abiding to standard CORBA port-
able object adapter mechanisms [Henning and Vinoski, 
1999]. The Load Balancer component is a mediator that 
integrates all the components. It provides an interface for 
load balancing without exposing clients to the intricate 
interactions between the components it integrates. The 
Load Monitor component monitors loads on a given rep-
lica, reports replica load to a Load Balancer, and informs 
replicas when they should accept requests versus forward 
them back to the load balancer. Each object that TAO’s 
load balancing service manages communicates with it 
through a unique proxy. The load balancer uses the replica 
proxies components to distinguish different replicas to 
workaround CORBA’s so-called “weak” notion of object 
identity [Object Management Group, 1999], where two 
references to the same object might have different values.  
 

 
 Figure 4. TAO Load Balancing [Othman et al., 2001b] 

 

3.1.5 Change impact analysis 
The combination of the CORBA fault tolerance support 
and Othman’s CORBA load-balancing service provides a 
strong example on how scalability could be achieved in the 
CORBA-induced architectures of the Duke’s Bank. In this 
section, we analyze the impact of the change by looking at 
the structural changes and the source lines of code (SLOC) 
that need to be modified/added for implementing the 
change, configuring, and deploying the software system. 
We use the design and the implementation of both services 
(i.e., fault tolerance and load balancing) on TAO as a guide 
to estimate the design impact and the effort required to re-
alize the scalability requirements in our given architecture. 
The TAO design of these services is based on the CORBA 
specification. We note that the TAO’s implementation of 
both services is in C++. We list all the JAVA classes and 
files necessary to build the equivalent JAVA implementa-
tion of both services. 
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Considering the CORBA-induced architecture of the 
Duke’s Bank, supporting scalability through replication 
does not leave the middleware infrastructure and the appli-
cation layer intact. Though the use of both CORBA speci-
fication and design patterns, has simplified the task of real-
izing the requirements for achieving fault tolerance and 
load balancing, implementation and integration overhead 
have not been abandoned. In particular, the fault tolerance 
and load balancing services need to be implemented. The 
implementation needs to be integrated into the used mid-
dleware. The server application needs to be updated, so that 
it will be able to support object group, described in section 
3.1.1 and section 3.1.2. The client itself has to undergo 
slight changes.  

In particular, to support load balancing, the middleware 
and the application need to be modified. The modifications 
include the implementation of the Load Balancing Service 
and integrating the service into the existing middleware 
infrastructure. The server-side application, the main 
CORBA services (mainly, the naming service and the 
transaction Service), and the client-side needs to be up-
dated. In particular, the binding mechanism needs to be 
modified to support the introduction of the object groups. 
The server application, which initially binds instances of 
server implementation to the naming service, has to be 
changed. Instead, the client’s requests need to be bound to 
the replica the load balancer selects. Hence, this requires 
modifications to the standard CORBA services through 
introducing ad hoc proprietary protocols and interface that 
abides to the OMG standards. In an environment where 
several hosts are used to store the server objects, different 
object groups need to be created. The server application 
needs to be modified to populate servant instances. Four 
interfaces need to be implemented, describe in the IDL.  
These are Strategy, LoadAlert, LoadMonitor and Load-
Manager. ORB interceptors and initializers have to be im-
plemented.  

A List of classes and files necessary to implement the 
fault tolerant service into the Duke’s Bank architecture is 
depicted in table 4. Table 5 reports on the effort necessary 
to develop and integrate the load balancing service into the 
middleware. Table 3 provides an aggregated summary of 
the over SLOC that need to be implemented.  

On the client side, the client application needs to be 
modified to look up the load balancer instead of the naming 
service to get a replica object reference. The load balancer 
will be then able to send an object reference by using the 
CORBA ForwardRequest exception that the client can 
catch. Thirty lines of codes are estimated to update the cli-
ent. To configure, all the instances of JacORB over the 
different hosts have to be shutdown, which be unappreci-
ated for such a type of application.  To compile and pack-
age the developed services, an Ant script has to be updated 
for each service. This introduces additional 200 lines of 
code. The main Ant script, which executes all the other Ant 
scripts, has to be updated introducing and additional six 

lines of codes/host. The properties file (i.e., 
jacorb.properties) has to be updated on each host requiring 
seven SLOC/host. These updates concern the ORBInitRef 
property and the interceptors ORBInitializer. All the 
JacORB instances then need to be restarted.  
 

Table 3. Aggregate results 

Task  SLOC 

Fault Tolerant implementation 5117 

Load Balancing implementation 3943 

Server-side application (Server 

objects Implementation and Server 

application- on each host)  

170 

Client-side application 30 

Configuration on each host Stop/restart, 200 

SLOC+ 13/host 
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Table 4. Implementing the fault tolerance service 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Implementing the load balancing service 

 

 

 

 

 

File Name File 
Type SLOC Description 

CosFaultTolerance IDL 242 Interface description of remote meth-
ods  

PropertyManager-
Impl 

Java 273 Implementation of the PropertyMan-
ager interface 

ObjectGroupMan-
agerImpl 

Java 672 Implementation of the ObjectGroup-
Manager interface 

GenericFactoryImpl Java 523 Implementation of the GenericFactory 
interface 

ReplicationMan-
agerImpl 

Java 865 Implementation of the Replication-
Manager interface 

FaultNotifier Java 611 Implementation of the FaultNotifier 
interface 

ClientPolicy Java 155 Implementations of the RequestDura-
tionPolicy interface 

ServerPolicy Java 61 Implementation of the Heart-
beatEnabledPolicy 

FTPolicy Java 207 Implementation of the HeartbeatPolicy 
interface 

FaultDetector Java 149 Class defining the component illus-
trated above 

DefaultFaultAna-
lyzer 

Java 113 
The default fault analyzer 

ReplicationMan-
agerFaultAnalyzer 

Java 865 
Replication Manager's fault analyzer 

FaultConsumer Java 200 Connect to the fault notifier 

PropertyValidator Java 29 Class providing static methods to 
validate properties 

MemberInfo Java 50 Structure that contains all member-
specific information 

PropertyUtils Java 53 Provides some methods used to 
manipulate properties 

Operators Java 23 Class providing static methods related 
to operators 

ReplicationMan-
agerServer 

Java 13 Class running the Replication Man-
ager server 

FaultNotifierServer Java 13 Class running the Fault Notifier server

Total 5117 

File Name File 
Type 

SLOC Description 

CosLoadBalancing IDL 90 Interface description of remote methods 

LoadAlertImpl Java 26 Implementation of LoadAlert interface. 

LoadCPUMonitorImpl Java 138 LoadMonitor implementation that moni-
tors the overall CPU load on a given host

LoadManagerImpl Java 919 Implementation of LoadManager inter-
face 

LeastLoaded Java 405 Implementations of Strategy interface 

LoadAverage Java 305 Implementations of Strategy interface 

LoadMinimum Java 389 Implementations of Strategy interface 

RoundRobin Java 121 Implementations of Strategy interface 

Random Java 128 Implementations of Strategy interface 

MemberLocator Java 59 Class which defines the component 
described above 

LoadAlertHandler Java 40 This class handles all asynchronously 
received replies from all registered
LoadAlert objects.  It only exists to re-
ceive asynchronously sent exceptions 

LoadAlertInfo Java 30 Structure that contains all LoadAlert-
specific information 

LoadAlertMap Java 60 Maps a LoadAlertInfo with a location 

LoadListMap Java 60 Maps a LoadList with a location 

LoadMap Java 60 Maps a load with a location 

MonitorMap Java 60 Maps a LoadMonitor with a location 

PullHandler Java 58 Event handler used when the "pull" moni-
toring style configured 

PushHandler Java 39 Event handler used when the "push" 
monitoring style is configured 

LB_ServerRequestInt
erceptor 

Java 109 Responsible for redirecting the requests 
back to the manager 

LB_ORBInitializer Java 72 Creates and registers with the ORB the
LB_IORInterceptor and 
LB_ServerRequestInterceptor 

LB_ClientRequestInte
rceptor 

Java 62 Handles transparent object group mem-
ber registration with the LoadManager, 
and registration of the LoadAlert object 
necessary for load shedding 

LB_ClientORBInitializ
er 

Java 33 Creates and registers with the ORB the 
LB_ClientRequestInterceptor 

LoadManagerServer Java 214 Class running the load balancer server 

LoadMonitorServer Java 315 Class running the load monitor server 

Total                                        3943
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3.2 Scaling the J2EE-Induced Architec-
ture  
In subsequent sections, we investigate how scalability 
could be achieved in the J2EE–induced version through 
replication mechanisms. We analyze the impact of the scal-
ability change on the J2EE-induced architecture of the 
Duke’s Bank. 
 
3.2.1 Scalability in J2EE through Replication 
Figure 5 depicts a common J2EE [Sun Microsystems Inc., 
2002] cluster architecture. Clustering enables a group of 
(typically loosely coupled) servers to operate logically as a 
single server. The advantages of clustering include the 
elimination of a single point of failure; the high service 
availability if multiple servers in the cluster can handle the 
same service; and load balancing by diverting requests to 
the least loaded server hosting the same service. We use 
JBoss 3.0[http://www.jboss.org/], an open source J2EE 
application server. JBoss clustering aims at improving scal-
ability and high availability using replication techniques. 
JBoss relies on Jgroups [http://www.jgroups.org/] for the 
clustering of its naming registry face- Java Naming and 
Directory Inter (JNDI)-and its EJB container. JGroups is an 
open source group communication middleware fully writ-
ten in Java. JGroups provides the following main features: 
group creation and deletion, where group members can be 
spread across LANs or WANs; joining and leaving of 
groups; membership detection and notification including 

joined/left/crashed members; detection and removal of 
crashed members; sending and receiving of member-to-
group messages (point-to-multipoint); and Sending and 
receiving of member-to-member messages (point-to-point).  
 
 

Business Tier

Clustered Servers

DB

Data

Data

Presentation
Tier

Clients

 
 
Figure 5. Example of J2EE cluster architecture 

 
JBoss uses a layered architecture to manage clustering. The 
architecture relies on JGroups for clustering, which is ab-
stracted. Figure 6 describes the architecture using two 
nodes. The term partition is used to refer to a cluster. A 
node can be part of several partitions. 

 
 

Figure 6. Clustering Architecture 
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The HAPartition (i.e., High Availability Partition) ab-

stracts the communication framework; it provides access to 
a set of communication primitives. Services need to register 
with the HAPartition to use the HAPartition services. The 
Distributed Replicant Manager manages the replicas by 
providing methods to add or remove replicas from a parti-
tion. The HASessionState is used to manage the state of 
Stateful Session Beans. The state of all Stateful Session 
Beans are replicated and synchronised across the cluster 
each time the state of a bean changes. The Distributed State 

stores settings or parameters that should be used by the 
containers in the cluster. Clients can use either the local 
JNDI service or the HA-JNDI service to look up objects. If 
the local JNDI service is used, the local JNDI namespace is 
used to locate objects. HA-JNDI delegates the lookup to 
the local JNDI, if it fails to find the object within global the 
cluster-wide context. EJB homes are bound to the local 
JNDI of the server on which the particular EJB is deployed. 

HA-RMI provides load-balancing and fail-over facili-
ties for RMI servers. HA-EJB allows selecting the load-
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balancing policy to apply (e.g., Round Robin, First Avail-
able), when deciding on a replica that will respond to the 
client request. The load-balancing policy is not adaptive.  
JBoss provides clustering for the two main types of EJB: 
Entity Bean and Session Bean (Stateful and Stateless). 
Clustering for Message-Driven Bean is not provided yet. 

Also, JBoss comes with a farming feature. Farming man-
ages cluster hot-deployment. Hot-deploying an application 
(EAR, WAR or JAR application) on a machine causes the 
application to be hot deployed on all instances within the 
cluster. 

3.2.2 Change impact analysis 
An observable advantage of scaling the software architec-
ture induced by J2EE, using JBoss, is that no development 
effort is required to realize the scalability requirements 
through replication, as when compared to the CORBA ver-
sion. The clustered environment, which mainly includes the 
HA-JNDI, the HA-EJB for Entity Bean and Stateful Ses-
sion Bean, and the farming do provide the primitives for 
scaling the software system. That is, no development effort 
is required to provide a clustering environment. However, 
configuring and deploying the application in the clustered 
environment are still required. Yet, the server need not 
have to be shutdown for configuration. JBoss manages 
dynamically the replicas, which means that nodes can be 
added at run-time. The modifications made on the configu-
ration files are automatically taken into account by JBoss. 
This is certainly appreciated in environments constrained 
by high availability, as it is daunting to stop the server for 
maintenance. Whereas in the CORBA implementation, all 
the instances of JacORB which are running on the different 
hosts has to be shutdown for updating JacORB. 

In brief, configuration includes the following: configur-
ing clusters, HA-JNDI, HA-EJB, and farming. By default, 
one partition exists. When adding a partition, the cluster 
needs to be configured. This simply requires updating the 
cluster service file (i.e., cluster-service.xml). 11 lines of 
code are necessary to map a partition with a HA-JNDI ser-
vice. The property file (jndi.properties) on the client-side 
has to be updated to enable the client to auto-discover the 
HA-JNDI servers. One line of code is necessary to update 
this file. 

To cluster the EJBs, a special XML tag (clustered) has 
to be added to the Jboss.xml. To specify the partition(s) to 
be used, the (cluster-config) tag needs to be added to the 
same file. More, the load-balancing mechanism may need 
to be updated in the JBoss deployment descriptor.  All of 
these changes involve 10 lines/bean. For stateful session 
beans, the cluster service file, cluster-service.xml, need to 
be updated to add a partition to the HASessionState ser-
vice, involving 7 SLOC. Therefore, we need 39 SLOC to 
enable farming for all our partitions. The file farm-
service.xml file, by default, enables the farming for one 
partition. To enable the farming for all the partitions, farm-
service.xml file need to be updated; a link will need to be 
added between the FarmMemberService and a partition. 
For the Duke’s Bank architecture, we use four partitions: 
two for the Account beans (Entity and Session) and two for 
the Transactions beans (Entity and Session). Thirty two 
SLOC need to be added for configuring a partition. This 

results in 128 SLOC. Other 33 lines of code are necessary 
to map a partition with the HA-JNDI service. Because four 
kinds of beans exist in the system, configuring the HA-EJB 
requires 40 lines to update the JBoss deployment descriptor 
of the beans. Thirteen SLOC are required.  We note that 
Farming is not enabled by default, requiring the devel-
oper’s intervention.  
 

Table 6. Scalability in the J2EE version  
Changes to make 4 partitions Source 

Lines of code (SLOC) 

Install Jboss 1 

Configuring clusters 96 

Configuring HA-JNDI 34 

Configuring HA-EJB 47 

Configuring farming 39 

Total for one host 217 

 
3.3 Options Analysis and Discussion  
In this section, we empirically evaluate the theory, the 
model, and demonstrate its applicability.  

In summary, to scale the architecture of the Duke’s 
Bank, the requirements depicted in Figure 2 need to be 
achieved. We have estimated their structural impact on 
both the CORBA and the J2EE versions. We have esti-
mated the SLOC to be added for implementing the change 
on both versions, as depicted in tables 3-5. An observable 
advantage of scaling the software architecture induced by 
EJB is that no development effort is required to realize the 
scalability requirements through replication, as when com-
pared to the CORBA version. Our hypothesis that middle-
ware induced software architecture differs in coping with 
changes is verified to be true for the given change in scal-
ability. Obviously, J2EE does provide the primitives for 
scaling the software system, which result in making the 
architecture of the software system more flexible in ac-
commodating the change in scalability, as when compared 
to the CORBA version. However, a question of interest is 
how valuable this embedded flexibility is? We use the 
model developed in section 2 to answer this question. The 
objective is to quantify the flexibility value as a way for 
understanding the added value upon inducing the architec-
ture with J2EE relative to CORBA. We seek an under-
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standing of the added value on future savings in mainte-
nance including ease of deployment and configuration 
upon accommodating the likely change in scalability.  

The results could be summarized as follows. On the 
methodology level, we verify the claim that flexibility of 
the middleware-induced software architectures creates val-
ues in the form of real options. These options differ with 
the middleware-induced. Our claim that these options are 
revealing to the stability of the software architecture is 
verified to be true for the given change in scalability. The 
results show that value-based reasoning and real options 
can provide insights into architectural stability and invest-
ment decisions related to the evolution the software system. 
The options analysis confirms the validity of our claim that 
middleware induced software architectures differs in cop-
ing with changes in non-functional requirements. We draw 
some preliminary lessons and insights that could simulate 
future research in the area of relating requirements to soft-
ware architectures and consequently advance our under-
standing to the architectural stability problem, when ad-

dressed from the evolution of the non-functional require-
ment perspective.  

The Application of the ArchOptions Model. For this 
example, we focus our attention on the payoff of the call 
options (i.e., ∑ i=1…n E [max (xiV - Cei, 0)] S1 relative to ∑ 

i=1…n E [max (xiV - Cei, 0)] S0), as they are revealing for the 
flexibility of the architecture-induced in responding to the 
likely future changes. We construct a call option for the 
future scalability goal, where the change is analogues to 
buying an “architectural potential”, paying an exercise 
price. The exercise price corresponds to the likely price to 
accommodate the change.  The application of the model is 
thus done on the goal level, versus their corresponding re-
quirement-refinements. Following the discussion of section 
2, CORBA and J2EE correspond to M0 and M1 respec-
tively. We refer to the architecture of the Duke’s Bank as 
S0 when induced by M0 and S1 when induced M1. When 
necessary, we use $6000 for man-month to cast the effort 
into cost. We show how we have estimated the parameters.  

 
 

 
         Table 7. Scaling the system using replication (1 Host): development, configuration, and deployment costs 

  CORBA (JacORB) EJB (JBOSS) 
 Optimistic Most Likely Pessimistic Optimistic Most Likely Pessimistic 

Effort 24.1 30.2 37.7 0 0 0 

Cost, Cei 96481 120602 150753 0 0 0 

D
ev

el
op

m
en

t 

SLOC 9240 0 

Effort 0.4 0.5 0.6 0.4 0.5 0 

Cost, Cei 1527 1909 2386 1558 1948 2435 

C
on

fig
ur

a-
tio

n 
 

SLOC 213 217 

Effort 0 0 0 0 0 0 

Cost, Cei 0 0 0 0 0 0 

D
ep

lo
y-

m
en

t 

SLOC 0 0 

 
Estimating (Cei). The exercise price corresponds to the 

cost of implementing scalability on each structure, given by 
Cei for requirement i. As the replicas may need to be run on 
different hosts, we devise a general model for calculating 
Ce as a function of the number of hosts, given by:    

 
Ce = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh, 

Chardw)k,             (3) 
 

where, h corresponds to the number of hosts. Cdev, Ccon-

fig, and Cdeploy, respectively corresponds to the cost of de-
velopment(if any), configuration, and deployment for the 
replica on host h. Clicesh and Chardw respectively correspond 
to licenses and hardware costs, if any. All costs are given in 
($). We provides three values: optimistic, likely, and pes-
simistic for each parameter. All are calculated using 
COCOMO II [Boehm et al., 1995]. Upon varying the num-
ber of hosts, we only report on pessimistic values for this 

study, as they are revealing. We also ignore any associated 
hardware costs for the simplicity of exposition.  

Capturing and estimating (xiV). To value the “archi-
tectural potential” of S1 relative to S0 given by (xiVS1/S0), we 
take a structural approach to valuation. We use the ex-
pected savings (if-any) in development, configuration, and 
deployment efforts, when the scalability change needs to be 
accommodated on S1 relative to S0, and respectively de-
noted as ∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative sav-
ings in licenses and hardware may also be considered and 
respectively denoted by ∆Clicesh, ∆Chardw. Below is a model 
for calculating xiVS1/S0, for change in requirement i.   

 
xiVS1/S0= ∑ h=1…k  (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ 

S1/S0Cdeploy, ∆ S1/S0 Clicesh, ∆ S1/S0Chardw)k                (4) 
 
Similar description applies for (xiVS0/S1). The savings (if 

any), however, are uncertain and differ with the number of 
hosts, as the replicas may need to be run on different hosts. 
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Such uncertainty makes it even more appealing to use of 
“options thinking”.  

Calculating the volatility (σ). The volatility of the 
stock price (σ) is a statistical measure of the stock price 
fluctuation over a specific period of time; it is a measure of 
how uncertain we are about the future of the stock price 
movements. Volatility stands for the “fluctuation” in the 
value of the estimated xiV. Intuitively, it “aggregates” the 
“potential” values of the structure in response to the 
change(s). We take the percentage of the standard deviation 
of the three xiVs estimates-the optimistic, likely, and pessi-
mistic values to calculate σ. 
 Exercise time (t) and free risk interest rate(r). As a 
simulation assumption, we set the exercise time to one 
year, assuming that the Duke’s Bank need to accommodate 
the change in one year time. We set the free risk interest 
rate to zero (i.e., assuming that the value of money today is 
the same as that in one year’s time). 

Results and Observations. Below, we report on 
sample results and observations upon the application of the 
model (refer to observations 1& 2). We verify our hypothe-
sis that the choice of a stable distributed software architec-
ture has to be guided by the choice of the underlying mid-
dleware and its flexibility in responding to future changes 
in non-functional requirements (refer to observations 4 & 
5).   
 

Observation 1. Flexibility creates options: S1 is 
more flexible than S0 (due to the embedded primitives 
in J2EE); S1 has created more options when com-
pared to S0. 

Let us consider the scenario where we consider one 
host. For this scenario, we assume that the license cost 
(Clicesh) is zero for M1 (e.g., the usage of JBoss an open 
source). Table 7 reports on the effort (man-month) and cost 
in ($); it provides three values: optimistic, likely, and pes-
simistic for each parameter. The xiVS1/S0 correspond to the 
difference- as reported in Table 8a. The overall expected 
savings of inducing the structure with S1 relative to S0 are 
in the range of $96450(pessimistic) to $150704 (optimis-
tic). As far as the development effort is concerned, ex-
pected savings are in the range of $96481(pessimistic) to $ 
150753 (optimistic) for realizing the scalability require-
ments. As far as configuration effort is concerned, S1 has 
not reported any expected savings relative to S0. However, 
these figures are insignificant. As far as the effort of de-
ployment is concerned, both are comparable when it comes 
to SLOC. However, as a limitation on this dimension, in-
terested reader may refer to section 3.4. We note that these 
figures are based on COCOMO II: the number of man-
months is different from the time that will take for complet-
ing a project, termed as the development schedule. For ex-
ample, a project could be estimated to require 50 man-
months of effort but have a schedule of 11 months.  Ac-
cordingly, the cost and relative savings, maybe adjusted 
relative to the schedule. We have relaxed this, as the aim of 

the exercise is to simulate the applicability of the model.  
The xiVs will be used to quantify the added value, taking 
the form of options, due to the embedded flexibility on S1 
relative to S0. 

Table 8a shows that S1 is in the money in response to 
the changes in scalability, when compared to S0. Table 8a 
shows that S1 is in the money relative to the development, 
configuration, and the deployment. The results of table 8a 
read that inducing the architecture with M1 is likely to en-
hance the option value by an excess of $96450 (pessimis-
tic) to $150704 (optimistic) over S0, if the change in scal-
ability need to be exercised in one year time. Thus, the re-
sults show that S1 induced by M1 is likely to add more 
value in the form of options in response to the change, 
when compared to S0. It is worth pointing out that though 
S1 is flexible relative to the scalability change, it might not 
necessarily mean that it might be flexible with respect to 
other changes. Obviously, JBoss does provide the primi-
tives for scaling the software system, which result in mak-
ing the architecture of the software system more flexible in 
accommodating the change in scalability, as when com-
pared to the CORBA version. This has lead to a notable 
savings in maintenance cost. Calculating the options of S0 
relative to S1, we can see that S0 is said to be out of the 
money for this change. The CORBA version has not added 
value, relative to J2EE, as the cost of implementing the 
change was relatively significant to “pull” the options, as 
reported in table 8b. The very low value of Vega means 
that possible changes in volatility have relatively little im-
pact on the value of the options. The high value of Delta in 
Tables 8a and Table 8b roughly means that changes in Xiv 
could have high impact on the on the calculated options. 

 
Observation 2. How worthwhile is the embed-

ded flexibility in S1 when induced in M1, relative to S0 
when induced with M0?  

For this experiment, we consider the case where we 
use WebLogic server [http://www.bea.com/] as M1 with an 
average upfront payable license cost Clicesh= $25000/h. As 
an upfront license fee is incurred, increasing the number of 
hosts may carry unnecessary expenditures that could be 
avoided, if we use M0 instead. However, M0 does also in-
cur costs upon scaling the software system through the de-
velopment of both the load balancing and the fault toler-
ance services. Such a cost, however, maybe “diluted” as the 
number of hosts increases. The cost is said to be distributed 
across the hosts and incurred once, as the developed ser-
vices can be reused across other hosts. For this experiment, 
we assume that developing the fault tolerance and load 
services are upfront investments to buy growth options on 
the structure. An additional configuration and deployment 
cost materializes per host and sum up to the exercise price, 
Ce as in equation (3), when an additional host is needed to 
scale the software.  xiVS0/S1  is calculated based on equation 
(4). We calculate the options of S0 relative to S1. We adjust 
the options by subtracting the upfront expenditure of de-
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veloping both services on M0, as reported in Table 8c. The 
adjusted options reveal situations in which S0 is likely to 
add value relative to S1, when the upfront cost is consid-
ered. These results may provide us with insights on the cost 
effectiveness of implementing fault tolerance and load bal-
ancing support to scale the software system relative to S1, 
where a licensing cost is incurred per host. Therefore, a 
question of interest is: when is it cost effective to use M0 
instead of M1? In other words, when the flexibility of M1 
cease to create value relative to M0. We assume that for any 
k hosts, S0 and S1 are said to support UkS0 and UkS1 con-
current users, respectively; where UkS0 could be different 

or equal to UkS1. For the non-adjusted options results of 
table 8c, the results of read that inducing the architecture 
with M0 is likely to enhance the option value of S0 relative 
to S1 (pessimistic) for the case of n hosts for n>0, under the 
condition that UnS0 >>=UnS1 and under the assumption that 
the upfront cost of developing fault tolerance and load bal-
ancing is relaxed. However, if we benchmark these options 
values against the cost of developing the load balancing 
and fault tolerance services (i.e., the upfront cost), we can 
see that payoff following developing these services is far 
from breaking even for less than 7 hosts, as depicted in 
figure 7.   
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Figure 7. Options on S0 relative S1 prior to adjustment                   
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Figure 8. Options on S0 and S1 upon varying the No of hosts 

 
Hence, once we adjust the options to take care of the up-
front cost of investing to implement the both services, the 
adjusted options for S0 relative to S1 reports values in the 
money for the case of seven or more hosts, as shown in 
table 8c and sketched in figure 8. For the case of seven or 
more hosts, the M0 appears to be a better choice under the 
condition that UnS0 >>=UnS1. These is due to the fact the 
expenditures in M1 licenses increases with the number of 
hosts, henceforth, the savings in adopting M1 cease to exist. 

For less than 7 hosts, M1 has better potentials and appears 
to be more cost-effective under the condition that UnS1 
>>=UnS0.  For 7 or more hosts, M0 appears to be of better 
potentials under the conditions   UnS0 >>=UnS1, as depicted 
in figure 8. The use of this case to exercise the ArchOp-
tions model has the prospect in providing an insight on 
how much do we need to invest in the adapted flexibility 
relative to the likely future changes, while not sacrificing 
much of the resources. 
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Table 8a. The options in ($) on the architecture induced by S1relative to S0 for one host, with 
S1license cost (Clicesh)=zero 

 
     Ce Xv σ T Options Delta Vega 

Opti-
mistic 1158 96450 94892 1 9.1149E-71 

Likely 1948 120563 118615 1 1.1628E-70 Overall  
Pes-

simis-
tic  

2435 150704

22.7 1

148269 1 1.4533E-70 

Opt 0 96481 96481 1 0 

Likely 0 120602 120602 1 0 Devel-
opment  

Pes. 0 150753

22.7 1

150753 1 0 

Opt 1558 -31 0 0 0 

Likely 1948 -39 0 0 0 
Con-

figura-
tion Pes. 2435 -49 

22.7 1

0 0 0 

Opt 0 0 0 0 0 

Likely 0 0 0 0 0 
Deploy-

ment 
Pes. 0 0 

22.7 1

0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Table 8b. The options in ($) on the architecture induced by S0relative to S1 for one host, with 
(Clicesh)=zero 

 
     Ce Xv σ T Options Delta Vega 

Opti-
mistic 96450 31 0 0 0 

Likely 120563 39 0 0 0 Overall  

Pes. 150704 49 

22.7 1

0 0 0 

 
 
 
 
 

 
 

Table 8c. Options in ($) on S0 relative to S1 with  (Clicesh)= $25000 and σ=22.7 and pessimistic Ce 
  

 Ce Xv Options 
Adjusted 
Options 

Conc. Users 

1 2386 25049 2343 0 U1S0 vs U1S1  

2 4772 50049 4772 0 U2S0 vs U2S1 

3 7158 75049 67891 0 U3S0 vs U3S1 

4 9544 100049 90505 0 U4S0 vs U4S1 

5 11930 125049 113119 0 U5S0 vs U5S1 

6 14316 150049 135733 0 U6S0 vs U6S1 

7 16702 175049 158347 7643 U7S0 vs U7S1 
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Observation 3. Selecting a more stable architec-
ture 

The change impact analysis has shown that the architec-
tural structure of S1 is left intact when the scalability 
change needs to be accommodated. However, the structure 
of S0 has undergone some changes, mostly on the architec-
tural infrastructure level to accommodate the scalability 
requirements. From a value-based perspective, the search 
for a potentially stable architecture requires finding an ar-
chitecture that maximizes the yield in the added value, rela-
tive to some future changes in requirements. As we are 
assuming that the added value is attributed to flexibility, 
the problem becomes selecting an architecture that maxi-
mize the yield in the embedded or adapted flexibility in a 
software architecture relative to these changes. Even, if we 
accept the fact that modifying the architecture or the infra-
structure is the only solution towards accommodating the 
change, valuation the impact of the change becomes neces-
sary to see how far we are expending to “re-maintain” or 
“re-achieve” architectural stability relative to the change. 
Note that the economic interplay between evolving re-
quirements, the flexibility of the architecture to accommo-
date the change, the structural impact, and the correspond-
ing cost/value implications is the key towards selecting a 
“more” stable architectures that tends to add value as the 
requirements evolve.  Though it might be appealing to the 
intuition that the “intactness” of the structure is the defini-
tive criteria for selecting a “more” stable architectures, the 
practice reveals a different trend; it nails down to the 
potential added value upon exercising the change.   

If you consider the case of S0 and S1 in response to the 
change in scalability for one host (table 8a), the flexibility 
has yielded a better payoff for S1 than for S0, while leaving 
S1 intact. This implies that inducing the Duke’s Bank soft-
ware architecture with M1 is likely to be more stable rela-
tive to the future change in scalability, than when induced 
with M0. However, the situation and the analysis have dif-
fered upon varying the number of hosts and upon factoring 
a license costs for S1. Though S0 has undergone some 
structural changes to accommodate the change, the case has 
shown that it is still acceptable to modify the architecture 
and to realize added value under the conditions that UnS0 
>>=UnS1 for 7 or more hosts (Table 8c, Figure 8). Hence, 
what matters is the added value upon either embarking on a 
“more” flexible architecture, or investing to enhance flexi-
bility which is the case for implementing load balancing 
and fault tolerance on S0. For the case of WebLogic, 
Though M1 is in principle more flexible (the case of  ), the 
flexibility comes with a price, where the flexibility turned 
to be a liability rather than a value for  7 or more  hosts, as 
when compared with the JacORB, under the condition that 
UnS0 >>=UnS1. The case verifies our claims that the value 
of flexibility can guide towards the selection of architec-
tures that tend to add more value, as the requirements 
evolve. These architectures have the potential of being po-
tentially stable.    

The options analysis has complemented the structural 
analysis to quantify the impact of the change on the soft-
ware architecture. The intuition is that complementing the 
structural impact analysis with a value-based back-of-the-
envelope calculation, the combination provides the archi-
tect/analyst with a useful tool for understanding extent to 
which the software system tend to be flexible relative to a 
likely change in requirements, a cost/value indictors of the 
impact of the change on the structure, the likely success 
(failure) of the software system evolution, and conse-
quently the potential stability of the software architecture 
relative to the change. 

Observation 4. Understanding Architectural Sta-
bility has to be done in connection with the solution 
domain 

Our hypothesis that middleware induced-software ar-
chitectures differ in coping with changes is verified to be 
true for the given change. Based on the pervious observa-
tions, we can see that the stability of S1 and S0 appears to 
be dependent on the flexibility of the middleware in ac-
commodating the likely changes in the scalability require-
ments. For the category of distributed software systems that 
are built on top of middleware, the results of the case study 
affirm the belief that investigating the stability of the dis-
tributed software architecture could be fruitless, if done in 
isolation of the middleware, where the middleware con-
straints and dominate much of the solution that relate to the 
non-functionalities, managing system resources, and their 
ability to smoothly evolve over the life time of the software 
system. Hence, the development and the analysis for archi-
tectural stability and evolution shall consider the “cou-
pling” between the architecture and the middleware. This 
addresses pragmatic needs and is feasible even at earlier 
stages of the software development life cycle: a consider-
able part of the distributed system implementation could be 
available, when the architecture is defined, for example, 
during the Elaboration phase of the Unified Process. We 
also note that the change in requirements could have been 
addressed by other architectural mechanisms. However, the 
middleware has guided the solution for evolving the soft-
ware system. For instance, the choice of replication as an 
architectural mechanism for scaling the software system, 
with a given architectures S1 and S0 was respectively 
guided by the clustering primitives provided by M1 and the 
core capabilities provided by M0 to support load balancing 
and fault tolerance. Interestingly, Di Nitto and Rosenblum 
[1999] state that “despite the fact that architectures and 
middleware address different phases of software develop-
ment, the usage of middleware and predefined components 
can influence the architecture of the system being devel-
oped. Conversely, specific architectural choices constrain 
the selection of the underlying middleware used in the im-
plementation phase”. Medvidovic, Dashofy and Taylor 
[2003] state the idea of coupling the modeling power of 
software architectures with the implementation support 
provided by middleware. They noted, “architectures and 
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middleware address similar problems, that is large-scale 
component-based development, but at different stages of 
the development life cycle.” In more abstract terms, Ra-
panotti, Hall, Jackson, and Nuseibeh [2004] advocate the 
use of information in the solution domain (e.g., the mid-
dleware-to be induced for our case) to inform the problem 
space: 

“Whereas Problem Frames are used only in the problem 
space, we observe that each of these competing views uses 
knowledge of the solution space: the first through the software 
engineer’s domain knowledge; the second through choice of 
domain-specific architectures, architectural styles, develop-
ment patterns, etc; the third through the reuse of past devel-
opment experience. All solution space knowledge can and 
should be used to inform the problem analysis for new soft-
ware developments within that domain” [Rapanotti et al., 
2004].  

The “coupling” between the middleware and the archi-
tecture becomes of higher interest in case of developing 
and analyzing software systems for evolution. This is be-
cause the solution domain can guide the development and 
evolution of the software system; provide more pragmatic 
and deterministic knowledge on the potential success (fail-
ure) of evolution, and consequently assist in understanding 
the stability of the software architectures from a pragmatic 
perspective. 
 

Observation 5. Understanding Architectural Sta-
bility: Intertwined with changes in non-functional re-
quirements, style, and the middleware   

Following the definition of Di Nitto and Rosen-
blum[1999], a style defines a set of general rules that de-
scribe or constrain the structure of architectures and the 
way their components interact. Styles are a mechanism for 
categorizing architectures and for defining their common 
characteristics. Though S1 and S0 have exhibited similar 
styles (i.e., three-tier), they have differed in the way they 
cope with the change in scalability. The difference was not 
only due to the architectural style, but also due to the primi-
tives that are built-in in the middleware to facilitate scaling 
the software system. The governing factor, hence, appears 
to be to a large extent dependent on the flexibility of the 
middleware (e.g., through its built-in primitives) in sup-
porting the change. The intuition and the preliminary ob-
servations, therefore, suggest that the style by itself is not 
revealing for the stability of the software architecture when 
the non-functional requirements evolve. It is, however, a 
factor of the extent to which the middleware primitives can 
support the change in non-functional requirements. Inter-
estingly, Sullivan et al. [1997] claims that for a system to 
be implemented in a straightforward manner on top of a 
middleware, the corresponding architecture has to be com-
pliant with the architectural constraints imposed by the 
middleware. Sullivan et al. [1997] support this claim by 
demonstrating that a style, that in principle seems to be 
easily implementable using the COM middleware, is actu-

ally incompatible with it. Following a similar argument, 
adopting an architectural style that is in principle appear to 
be suitable for realizing the non-functionality and support-
ing its evolution, may not be complaint with the middle-
ware in the first place. And if the architectural style hap-
pens to be compliant with the middleware, there are still 
uncertainties in the ability of the middleware primitives to 
support the change. In fact, the middleware primitives real-
ize much of the non-functional requirements. Hence, the 
architectural style by itself may not be revealing for poten-
tial threats that the architecture may face when the non-
functional requirements evolve. The evolution of non-
functionality maybe in principle easily supported by the 
style, but could be uneasily accommodated by the middle-
ware. An observable advantage of scaling the software 
architecture induced by S1, for example, is that no devel-
opment effort required to realize the scalability require-
ments through replication, as when compared to that of S0, 
knowing that in principle the style of S1 and S0 exhibit 
similar capabilities.  

Engineering for stability and evolution, requirements 
engineering has not only to be aware of the architecture 
(e.g., the style), but also of the underlying middleware. For 
example, if we take a goal-oriented approach to require-
ments engineering (e.g., [Dardenne et al., 1993]), we advo-
cate adjusting the non-functional requirements elicitation 
and their corresponding refinements to be aware of both the 
architectural style and the constraints imposed by middle-
ware. The operationalisation of these requirements in the 
software architecture have to be guided by both the archi-
tectural style, the complaint middleware for the said style, 
and guided by previous experience. This, we believe, is a 
pragmatic need towards engineering requirements and de-
veloping  “evolvable” software architectures that tend to be 
stable as the non-functional requirements evolve. 
 

3.4 Critical assessment of the results 
We have used change in scalability, a representative critical 
change in non-functional requirements, to apply the model 
and steer the study. We have appealed to the use of struc-
tural criteria, combined with value-based analysis, to in-
form the tradeoff and select a “more” stable architecture. 
Though the reported observations reveal a trend that agrees 
with the intuition, research, and the state-of-practice, con-
firming the validity of the observations are still subject to 
careful further empirical studies. These studies may need to 
consider other non-functional requirements, their concur-
rent evolution, and their corresponding change impact on 
different architectural styles and middleware.  We note that 
the primary aim of this case study is to exercise the model. 
Under no considerations should the results be regarded as a 
definite distinction of the merit of one technology over the 
other, but yet still revealing on the scalability dimension. 
The reason is due to the fact that we have only used “fla-
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vors” of CORBA and J2EE, respectively through JacORB; 
and JBoss and WebLogic. 

The options analysis is based on the likely effort for 
scaling the software system. However, we note that the 
flexibility value is underestimated for S1 relative to S0, as 
we have relaxed considering: (i) the added value due to the 
provision of hot deployment; JBoss provides hot-
deployment and clustered hot-deployment to deploy appli-
cation without needing to restart the server. Obviously, the 
quantification of such a value is both business and domain 
dependent; it can be quantified by estimating the losses 
avoided from stopping the service; (ii) the added value due 
to the ease of future maintainability and reduced complex-
ity in the J2EE version, when compared to the CORBA 
one. For example, in J2EE all the configurations related to 
the server objects are made in the deployment descriptor; 
therefore, it results in a better code maintainability in con-
trary to CORBA where the server object configuration is 
made in the code. However, relaxing the consideration of 
the above does not affect the validity of our conclusions, as 
the results are already in favour of the J2EE-induced ver-
sion. 

Experts may question our use of [Black and Scholes, 
1973] to options valuation, as the satisfaction of the span-
ning condition may be doubtful. We argue that our use for 
the design and the corresponding implementation of scal-
ability on TAO as guidelines bear a resemblance to the 
concept of a “twin asset”, for we are reusing a past devel-
opment experience to inform the valuation. We also argue 
that valuation based on man-month does implicitly hold 
market-based data and is still done in relation with the 
market.  Alternatively, we could have cast the options 
model to use different options valuation (e.g., [Cox et al., 
1979]). However, the application of [Black and Scholes, 
1973] offers a closed and an easy-to-compute solution, for 
it assumes that xiV is lognormaly distributed, not requiring 
xiV to be probability-adjusted for rise and drop in value, as 
when compared to [Cox et al., 1979]. Following the argu-
ment of [Sullivan et al., 2001], such models need not be 
perfect: what is essential is that they capture the most im-
portant terms; their assumptions and operation must be 
known and understood so that the analyst can evaluate their 
predictions. 

4. Related Work 
In this section, we provide a quick overview of closely 
related research on: (i) architectural stability research; (ii) 
the use of real options in software design and engineering; 
(iii) related research on architectural evaluation, and (iv) 
ongoing research on the “coupling” of software architec-
ture and middleware. 

Architectural stability in perspective. Ongoing re-
search on the relation between requirements and software 
architectures has considered the architectural stability prob-
lem as an open research challenge and difficult to handle 

[van Lamsweerde, 2000; Finkelstein, 2000; Nuseibeh, 
2001; Jazayeri, 2002; Emmerich, 2002]. In particular, 
Finkelstein motivated research in architectural stability; he 
described the problem in [Finkelstein, 2000]. Nuseibeh 
proposed the “Twin Peaks” model, a partial and simplified 
version of the spiral model [Nuseibeh, 2001]. The corner-
stone of this model is that a system’s requirements and its 
architecture are developed concurrently; that is, they are 
“inevitably intertwined” and their development are inter-
leaved. Nuseibeh advocated the use of various kinds of 
patterns – requirements, architectures, and designs- to 
achieve the model objectives. As far as architectural stabil-
ity is concerned, Nuseibeh had only exposed a tip of the 
“iceberg” (as referred by Nuseibeh): development proc-
esses that embody characteristics of the Twin Peaks are the 
first steps towards developing architectures that are stable 
in the face of inevitable changes in requirements. Nuseibeh 
noted that many architectural stability related questions are 
difficult and remain unanswered. Examples include: What 
software architectures (or architectural styles) are stable in 
the presence of changing requirements, and how do we 
select them?  What kinds of changes are systems likely to 
experience in their lifetime, and how do we manage re-
quirements and architectures (and their development proc-
esses) in order to manage the impact of these changes?  
Our work addresses some of these questions.  

Not far from the motivation of bridging the gaps be-
tween requirements and software architectures, van 
Lamsweerde noted that the goal-oriented approach to re-
quirements engineering may support building and evolving 
software architectures guaranteed to meet both its func-
tional and non-functional requirements [van Lamsweerde, 
2000]. van Lamsweerde acknowledge that:  

 “…. The conflict between requirements volatility and 
architectural stability is a difficult one to handle” [van 
Lamsweerde, 2000]. 

 Jazayeri has looked at the architectural stability prob-
lem from a software evolution perspective [Jazayeri, 2002]. 
Jazayeri motivated the use of retrospective approaches for 
evaluating software architectures for stability and evolu-
tion.  Retrospective evaluation looks at successive releases 
of the software system to analyze how smoothly the evolu-
tion took place. The analysis relies on comparing properties 
from one release of the software to the next. The intuition 
is to see if the system’s architectural decisions remained 
intact throughout the evolution of the system, that is, 
through successive releases of the software. Jazayeri’s ap-
proach uses simple metrics such as software size metrics, 
coupling metrics, and color visualization to summarize the 
evolution pattern of the software system across its succes-
sive releases. The evaluation assumes that the system al-
ready exists and has evolved making this approach not pre-
ventive and unsuitable for early evaluation (unless the evo-
lution pattern is used to predict for the stability of the next 
release). In the absence of dedicated tools, the evaluation 
appears to be expensive and unpractical, for it requires in-
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formation to be kept for each release of the software. Yet, 
such data is not commonly maintained, analyzed, or ex-
ploited, as noted by Jazayeri. Moreover, the problem of 
architectural stability and the architecture “resilience” to 
evolution is strategic in essence and not purely technical. 
Jazayeri has addressed the problem from a purely technical 
perspective. Instead, we aim at to assist in proactively en-
gineering stable architectures. We believe that the eco-
nomic interplay between evolving requirements and archi-
tectural stability needs to be addressed. 

The use of real options in software engineering. 
Economics approaches to software design appeal to the 
concept of static Net Present Value (NPV) as a mechanism 
for estimating value [Boehm and Sullivan, 2000]. These 
techniques, however, are not readily suitable for strategic 
reasoning of software development as they fail to factor 
flexibility [Boehm and Sullivan, 2000; Erdogmus et al., 
1999]. The use of strategic flexibility to value software 
design decisions has been explored in, for example, [Er-
dogmus and Vandergraff, 1999; Erdogmus and Favaro, 
2002; Erdogmus 2000; Sullivan; 1996; Sullivan et al., 
1999; Sullivan 2001] and real options theory has been 
adopted to value the strategic flexibility: Baldwin and 
Clark [2001] studied the flexibility created by modularity 
in design of components (of computer systems) connected 
through standard interfaces. Sullivan et al. [1996; 1999; 
2001] pioneered the use of real options in software engi-
neering. Sullivan et al. [1996; 1999] suggested that real 
options analysis can provide insights concerning modular-
ity, phased projects structures, delaying of decisions and 
other dynamic software design strategies. Sullivan et al. 
[1999] formalized that option-based analysis, focusing in 
particular on the flexibility to delay decisions making. An 
interesting approach that has inspired the early stages of 
our work is that of Sullivan et al. [2001].  Sullivan et al. 
[2001] extended Baldwin and Clark’s theory [2001] that is 
developed to account for the influence of modularity on the 
evolution of the computer industry. Sullivan et al. [2001] 
use the model developed in [Baldwin and Clark, 2001] to 
treat the “evolovability” of software design using the value 
of strategic flexibility. Specifically, they argued that the 
structure and value of modularity in software design creates 
value in the form of real options. A module creates an op-
tion to invest in a search for a superior replacement and to 
replace the currently selected module with the best alterna-
tive discovered, or to keep the current one if it is still the 
best choice. The value of such an option is the value that 
could be realized by the optimal experiment-and-replace 
policy. Knowing this value can help a designer to reason 
about both investment in modularity and how much to 
spend searching for alternatives.  Erdogums [1999] de-
scribes how strategic flexibility in software development, 
involving COTS components, can be valued using real 
options. An interesting use of real options theory is that of 
[Erdogums and Favaro, 2002]. Erdogmus and Favaro uses 
real options to value the inherent flexibility in the Extreme 

Programming (XP), where they have considered XP as a 
lightweight process that is well positioned to respond to 
change and future opportunities; hence, creating more 
value than a heavy-duty process that tends to freeze devel-
opment decisions.  
 Architectural evaluation. Interested reader may refer 
to [Bahsoon and Emmerich, 2003b] in which we provide a 
comprehensive survey on architectural evaluation methods. 
In short, we have distinguished between two classes of 
software architecture evaluation methods:  (i) general-
purpose methods that evaluate software architectures for 
qualities that need to be met by the system (e.g. perform-
ance, security, and modifiability) and (ii) an emerging class 
of methods that explicate evaluation for stability and evolu-
tion. Apart from our work, the only evaluation method un-
der the latter category is the work of [Jazayeri, 2002] and 
sufficiently detailed in the above subsection.  
 Existing methods to architectural evaluation have ig-
nored any economic considerations, with CBAM [Asundi 
and Kazman, 2001] being the notable exception. The 
evaluation decisions using these methods tend to be driven 
by ways that are not connected to, and usually not optimal 
for value creation. Factors such as flexibility, time to mar-
ket, cost and risk reduction often have higher impacts on 
value creation [Boehm and Sullivan, 2000]. Hence, 
flexibility is in the essence. In our work, we link flexibility 
to value, as a way to make the value of stability tangible. 
 Relating CBAM to our work, the following distinc-
tions can be made: with the motivation to analyse the cost 
and benefits of architectural strategies, where an architec-
ture strategy is subset of changes gathered from stake-
holders, CBAM does not address stability. Further, CBAM 
does not tend to capture the long-term and the strategic 
value of the specified strategy. ArchOptions, in contrast, 
views stability as a strategic architectural quality that adds 
to the architecture values in the form of growth options. 
When CBAM complements ATAM [Kazman et al., 1998] 
to reason about qualities related to change such as modifi-
ability, CBAM does not supply rigorous predictive basis 
for valuing such impact. Plausible improvements of the 
existing CBAM include the adoption of real options theory 
to reason about the value of postponing investment deci-
sions. CBAM uses real options theory to calculate the value 
of option to defer the investment into an architectural strat-
egy. The delay is based on cost and benefit information. In 
the context of the real options theory, CBAM tends to rea-
son about the option to delay the investment in a specific 
strategy until more information becomes available as other 
strategies are met. ArchOptions, in contrast, uses real op-
tions to value the flexibility provided by the architecture to 
expand in the face of evolutionary requirements; hence-
forth, referred to as the options to expand or growth op-
tions. 
 On the “coupling” of software architectures and 
middleware. There is only very little work on the “cou-
pling” of middleware and software architectures. Notable 
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exceptions include [Jazayeri, 1995; Gall et al., 1997; Sulli-
van et al., 1997; Oreizy et al., 1998; Di Nitto and Rosen-
blum, 1999; Metha et al., 2000; Medvidovic et al., 2003; 
Denaro et al., 2004]. 
  Jazayeri [1995] explores the relationship between 
software architectures and component technologies. Gall et 
al. [1997] have looked at an existing component frame-
work, the C ++ standard library, and identified the architec-
tural style induced. Sullivan et al. [1997] claims that for a 
system to be implemented in a straightforward manner on 
top of a middleware, the corresponding architecture has to 
be compliant with the architectural constraints imposed by 
the middleware. Sullivan et al. [1997] support this claim by 
demonstrating that a style, that in principle seems to be 
easily implementable using the COM middleware, is actu-
ally incompatible with it. Oreizy et al. [1998] discuss the 
importance of complementing component interoperability 
models with explicit architectural models. Di Nitto and 
Rosenblum [1999] devised the term middleware-induced 
architectural styles. Middleware-induced architectural 
styles uses Architecture Definition Languages (ADLs) to 
describe the assumptions and constraints that middleware 
infrastructures impose on the architecture of system.  They 
have evaluated ADLs for their suitability in defining mid-
dleware-induced architectural styles.  Metha et al. [2000] 
propose a classification framework of software connectors. 
They describe types of services provided by connectors for 
enabling and facilitating component interactions. They aim 
at building implementation topologies (e.g., bridging of 
middleware) that preserve the properties of the original 
architecture, under the motivation of coupling architectures 
and middleware. Medvidovic et al. [2003] state the idea of 
“coupling” the modelling power of software architectures 
with the implementation support provided by middleware. 
They have noticed that “architectures and middleware ad-
dress similar problems, that is large-scale component-based 
development, but at different stages of the development life 
cycle.” They have investigated the possibility of defining 
systematic mappings between architectures and middle-
ware. Recently, Denaro et al. [2004] measures performance 
attributes of an architecture based on the early available 
implementation support provided by the middleware. 

In summary, recent research effort on the relation be-
tween software architectures and middleware has been mo-
tivated by pragmatic needs. The effort has revolved on is-
sues such as investigating the compliancy of architectural 
styles with middleware; capabilities that the middleware 
and the architecture can bring when “coupled” to under-
stand quality attributes of the system such as performance; 
mapping between middleware and software architectures; 
and semantics and syntactical issues related to the mapping 
process. 

As it has been noted in several occasions [Emmerich 
2000b; Emmerich 2002], research on software architectures 
has over-emphasized functionality and not sufficiently ad-
dressed how global properties and non-functional require-

ments are achieved in an architecture, where these re-
quirements cannot be attributed to individual components 
or connectors. Though we believe that ongoing research on 
the “coupling” of middleware and architectures could have 
an impact on understanding the relation between architec-
tures and non-functional requirements, their contributions 
to such understanding is still insufficient. As far as the ar-
chitectural stability problem is concerned, no effort has 
been devoted for understanding the evolution of non-
functional requirements in relation to both the architecture 
and the middleware, when coupled. Our use of architec-
tural flexibility and its value as metric to inform the deci-
sion of selecting a “more” stable middleware-induced ar-
chitecture is novel and only a step toward such an under-
standing using a value-based [EDSR 1-6] reasoning.  

 
5. Summary and Future Work 
We have hypothesized that the choice of a stable distrib-
uted software architecture has to be guided by the choice of 
the middleware-induced and its flexibility in responding to 
future changes in non-functional requirements. We have 
devised an option-based model to value such flexibility and 
guide the selection. We have empirically evaluated the 
model using a case that adequately represent a medium-size 
component-based distributed architecture. We have used 
change in scalability, a representative critical change in 
non-functional requirements, to apply the model and steer 
the study. We have reported on how a likely future change 
in scalability could impact the architectural structure of two 
versions, each induced with a distinct middleware, CORBA 
and J2EE. We have appealed to the use of replication, as an 
architectural mechanism to scale the software system. We 
have estimated the structural impact of implementing this 
mechanism on both the CORBA and the J2EE versions. 
We have estimated the expected relative savings in mainte-
nance including development, deployment, and configura-
tion efforts. We have applied the ArchOptions model. Our 
hypothesis that middleware induced software architecture 
differs in coping with changes is verified to be true for the 
given change in scalability. We have reported on some 
observations that could stimulate future research in the area 
of relating requirements to software architectures. Though 
the reported observations reveal a trend that agrees with the 
intuition, research, and the state-of-practice, confirming the 
validity of the observations is still subject to careful further 
empirical studies. These studies may need to consider other 
non-functional requirements, their concurrent evolution, 
and their corresponding change impact on different archi-
tectural styles and middleware, which we aim to investigate 
as part of our ongoing research agenda. The contribution 
demonstrates that using value-based reasoning, we can 
analyze for architectural stability and support the develop-
ment (evolution) of software systems that need to adapt to 
the inevitable evolving requirements. 
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