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Abstract

Pervasive computing environments are populated by a large number of heterogeneous and dynamic

resources, encompassing devices, services and information sources. This number is set to radically

increase in the future; as a result, a mobile device will be able to contact a large number of service

providers and sensors that will enable it to perform any task at hand. Moreover, interaction with these

services and sensors will be made possible by means of various components, some located on the mobile

device, some available for download from remote hosts. We refer to services, sensors and components

as resources. In this paper we present Q-CAD, a resource discovery framework that enables pervasive

computing applications to discover and select the resource(s) best satisfying the user needs, taking

the current execution context and quality-of-service (QoS) requirements into account. The available

resources are screened, so that only those suitable to the current execution context of the application

will be considered; the shortlisted resources are then evaluated against the QoS needs of the application,

and a binding is established to the best available. The paper illustrates how we encode context and QoS

information, gives details of the Q-CAD model and of its mapping onto a component-based architecture,

and it finally reports on the implementation and on the experimental results.

1 Introduction

Technological advances, both in terms of wireless networking and portable device capabilities, have met

social popularity, so that we are now witnessing an increase in the number of devices and services we use

to accomplish our daily tasks. It will not be long before the commercially exploitable potentials of these

technologies will be apparent, resulting in a large number of interconnected devices, provided services

and publicly available information sources. Interaction with these services and devices will be enabled by

means of various components, some located on the mobile device, some available for download remotely.

We refer to these services, devices and components as resources. However, in order to bring Mark Weiser’s

vision of ubiquitous computing into reality, more efforts are needed to minimise the disruption of the user

in managing these resources, while maximising his/her satisfaction at the same time.

Research in the area of resource discovery for pervasive environments has been very intense in re-

cent years. The main focus of this research has been on the development of efficient algorithms that

take the network topology of pervasive scenarios into account when routing advertisements and queries

(e.g., [17][16]). However, most of these approaches do not take user preferences into account. We argue
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that, in order to improve the user experience, resource discovery and selection protocols for pervasive

environments should be aware of the user preferences. In particular, they should be able to discover and

bind to the resources that the user consider most suited in the current execution context and according to

his/her quality-of-service (QoS) needs. By context, we refer to any piece of information that is of interest

to the execution of the application itself. This definition includes: information that is local to a device,

such as available battery and memory; information that is external to the device, such as services and

other devices in reach; and information that is application-specific, such as the user mood, his/her current

activity, etc. With QoS needs, we refer to any non-functional requirement the user may express (i.e.,

proximity of a service provider, cost of a service, etc).

In this paper we present Q-CAD, a context and QoS aware resource discovery and selection framework

for pervasive environments. Each application encodes the way context should influence the discovery of

and the binding to resources in an application profile; Q-CAD uses this information to reduce the resources

available in the current context to a subset of ‘plausible’ ones. Each application also encodes the QoS

needs of the user into a utility function that Q-CAD applies to select the most suitable resource among

the plausible ones (i.e., the one that maximises the utility of the user). To cater for the varying execution

context and non-functional requirements of the user, both the application profile and utility function

can be changed dynamically. Q-CAD builds on top of already available protocols for routing resource

advertisements and discovery queries; in this paper, we do not bind to any in particular. Also, security

and privacy issues are beyond the scope of the paper.

The paper is further structured as follows: in Section 2 we introduce the running example of the paper.

Section 3 details the Q-CAD discovery model, focusing on application profiles, utility functions and the

discovery and selection protocol. In Section 4 we present the Q-CAD architecture and in Section 5 we

discuss the results of Q-CAD performance evaluation. Section 6 compares Q-CAD with other work in the

field. Finally, Section 7 concludes the paper and lists some future work.

2 Case Study

In this section we sketch an example of a pervasive computing application highlighting different cases of

resource discovery where both QoS and context awareness are needed. We then point out the major goals

of this work and summarize its assumptions.

Let us consider the case of Alice going on holiday to New York. We concentrate on two examples of

discovery: in the first scenario, Alice wishes to print the pictures she has taken with her digital camera.

In order to do so, she has to discover and select a photo development service provider, among the many

available. Different parameters may influence this choice: for example, location of the provider (Alice may

prefer a provider located close to her hotel, so to be able to collect the prints conveniently), cost of the

service, quality of the prints, and so on. In the second scenario, we imagine that a number of sensors1 have

been deployed in the most prominent locations of the city, providing tourist information to other devices in

proximity. While on a bus tour, Alice may use her PDA to dynamically discover and bind to these sensors;

however, different tourist companies may have deployed their own, providing different quality/amount of

information for different prices to potential customers. The non-functional requirements of Alice must thus
1In the reminder of the paper, we generally refer to very small devices with limited capabilities and resources (e.g.,

actuators and sensors) as sensors.
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be used to decide what sensor to bind to amongst the discovered ones. Context must be taken into account

too, as, for example, audio information may be preferred to both audio and video when running out of

battery. Moreover, the processing of the data may require components that are not installed on Alice’s

PDA, so that dynamic discovery, download and deployment of components from available repositories

may be part of the procedure too2.

We refer to the first scenario as proactive discovery, as the discovery and binding to a service provider

is a consequence of an explicit request of the user to locate such a service. The second scenario is an

instance of reactive discovery instead, as the discovery and binding to sensors and component repositories

is a result of context changes. Although discovery is triggered by different events in the two scenarios

(user action in the first scenario, context change in the second scenario), both types of discovery demand

a similar behaviour from the discovery framework: locating and binding to a resource (be it a service

provider, a sensor, or a component) that is best suited in the current context (context-awareness) and

according to the current non-functional requirements of the user (QoS-awareness).

In designing the Q-CAD discovery model for pervasive computing applications, we thus aimed to:

(1) provide applications with a means to explicitly state the context conditions of interest to their user

(i.e., context awareness); (2) provide applications with a means to explicitly state the non-functional

requirements of their user (i.e., QoS awareness); (3) develop a resource discovery and selection protocol

that takes the preferences of the user into account (both in terms of context and of QoS needs).

Q-CAD builds on the following assumptions: first, the existence of a shared ontology to refer to context

elements and conditions, resource names and characteristics, and non-functional requirements; second, the

integration with an existing discovery protocol for mobile ad-hoc networks on which Q-CAD relies to route

advertisements and queries; finally, the usage of a local component model to represent applications.

3 Q-CAD Model

Q-CAD achieves context and QoS awareness by means of application profiles and utility functions respec-

tively, that is, metadata that represent the preferences of the user. In this section, we first describe this

information and then illustrate how the discovery and selection protocol uses it. In our implementation

of the Q-CAD discovery model, we have chosen to encode both application profiles and utility functions

using XML [4]; although the concrete languages used are not fundamental to the model, we illustrate

examples written in XML, rather than using an abstract syntax, to ease presentation. The complete XML

Schema [12] specifications we defined are available online [7].

3.1 Q-CAD Resources, Descriptors and Binding

Central to our model is the notion of a resource. Before detailing what information is encoded in application

profiles and utility functions, we thus define what a resource is in this setting, what binding to a resource

implies and we introduce the concept of resource descriptor.

The resources that the Q-CAD model considers are: services provided by remote providers, sensors

from which an application may get data, and components located remotely and that can be downloaded

and deployed on the local host. We refer to these resources as remote resources, to distinguish them from

those local to a device (e.g., battery, memory, CPU, etc.).
2Although fictitious, this example is not too far from reality, as shown by the Urban Tapestry project [24].
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(component, displayVideo)

(code, display800600.jar)

(resolution, 800x600)

(version, 2.1)

(platform, JVM2)

(size, 70KB)

(cost, $10)

(memory, 2)

(battery, 4)

Figure 1: Example of Resource Descriptor.

We assume remote resources are uniquely identified by means of an addressable naming scheme that

is resolved by the underlying communication framework. The namespace used can be local, or global,

although we expect that, in practice, a combination of the two will be used. For example, considering a

device with a both cellular and an ad-hoc Bluetooth interface, a global naming scheme can be used in

the cellular interface, while a local one can be used in the Bluetooth interface. In our implementation, we

associated a unique Uniform Resource Identifier (URI) to each remote resource (e.g., a sensor can have the

//machine//sensor0 URI). We define the binding to a resource (i.e., the last step of a resource discovery

and selection process) as the association of the selected remote resource to a component that is local to

the device and that can interact with it. A remote resource could itself be a component: in this case,

binding refers to downloading and deploying the component on the local system.

Besides its URI, every remote resource is associated with a static specification, or resource descriptor,

that characterises the resource by means of a list of attribute/value pairs (in this paper, we are not

interested in the ontology these attributes and values belong to). Figure 1 illustrates an example of a

remote resource descriptor, for a component that displays video (attribute component) at a resolution of

800x600 (attribute resolution); information about the component implementation follows (e.g., version

number, platform required, size of the component, etc.). In addition, the descriptor contains information

that can be used to assess the quality of the resource itself; this includes, for example, estimates of local

resources (e.g., battery and memory) consumption. If we assume these estimates to vary in a range [0, 10],

then the descriptor in Figure 1 says that the component consumes much more energy than memory. Note

that these values do not aim to be precise estimates of actual consumptions; rather, they aim to enable

comparisons of resources of the same type (e.g., services, components, etc.). In this paper, we trust that

the estimates have not been maliciously altered. As we will detail in the following sections, this information

is crucial to perform QoS-aware resource discovery.

3.2 Application Profiles

Application profiles specify how the user wishes the context to influence the discovery of remote resources,

both in proactive and in reactive situations.

Proactive Discovery. For each remote resource the application may be willing to bind to, the proac-

tive encoding of its profile contains an association between the resource name (tag <BIND RESOURCE>)

and the context conditions that must hold for the binding to be enabled (tag <REMOTE CONTEXT>). For

example, the encoding shown in Figure 2 states that only printing service providers that give customers

at least 100MB of disk space should be considered during the discovery. This condition acts as a filter

over the possibly high number of providers of the same service. Only one context configuration (tag

<REMOTE CONTEXT id="1">), containing only one condition (tag <CONDITION>) is specified. More gen-
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<PROACTIVE id="1">

<LOCAL_CONTEXT/>

<REMOTE_CONTEXT/>

<BIND>

<BIND_RESOURCE name="printPicture">

<REMOTE_CONTEXT id="1">

<CONDITION name="diskSpace" op="greaterThan" value="100MB"/>

</REMOTE_CONTEXT>

</BIND_RESOURCE>

</BIND>

<ADAPT>

<ADAPT_COMPONENT id="1">

<LOCAL_CONTEXT id="2">

<CONDITION name="battery" op="greaterThan" value="30%"/>

</LOCAL_CONTEXT>

<REMOTE_CONTEXT/>

<ATTRIBUTES>

<ATTRIBUTE key="component" op="equals" value="encryptedUpload"/>

</ATTRIBUTES>

</ADAPT_COMPONENT>

<ADAPT_COMPONENT id="2">

<LOCAL_CONTEXT id="3">

<CONDITION name="battery" op="lessThan" value="30%"/>

</LOCAL_CONTEXT>

<REMOTE_CONTEXT/>

<ATTRIBUTES>

<ATTRIBUTE key="component" op="equals" value="plaintextUpload"/>

<ATTRIBUTE key="location" op="equals" value="local"/>

</ATTRIBUTES>

</ADAPT_COMPONENT>

</ADAPT>

</PROACTIVE>

Figure 2: Application Profile - Example of Proactive Encoding.

erally, multiple contexts can be associated to the same binding resource, and more conditions may be

associated to the same context; for example, another condition could be to consider only service providers

with load below a certain threshold. The semantics of this encoding are the following: the binding to the

remote resource is enabled if and only if at least one of the context configurations is enabled (or semantics);

a context configuration is enabled if and only if all the conditions associated to it hold (and semantics).

If more than one service provider passes the filtering, the actual provider to bind to will be selected using

the application’s utility function (see Section 3.3).

As Figure 2 shows, the proactive part of the application profile supports richer encodings than the

one illustrated so far. The additional information provides further support for dynamic adaptation to

context. In particular, the application may specify in which contexts (initial tags <LOCAL CONTEXT>

and <REMOTE CONTEXT>) the discovery and binding process should be enabled; for example, it may be

forbidden when running out of battery (local condition), or when the quality of the network connection is

too unstable (remote condition). In the above example, these contexts are not specified, thus indicating

no pre-condition to the discovery and binding process.

Once a remote service provider has been discovered and selected, the application has to decide how

to interact with it, as different behaviours/protocols may be available. We call binding the last step of

the resource discovery process that associates the remote service provider to the local component that

implements the desired behaviour/protocol. Such a component should be selected out of a list of desirable
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ones (tag <ADAPT COMPONENT>); the choice depends on the following information, that is attached to each

of these components: local context (tag <LOCAL CONTEXT>), remote context (tag <REMOTE CONTEXT>),

and application preferences (tag <ATTRIBUTES>). For example, the encoding of Figure 2 dictates that

pictures should be uploaded to the provider site using a component that supports an encryption proto-

col (<ATTRIBUTE key="component" op="equals" value="encryptedUpload"/>) when battery permits,

while using a simple, plaintext upload when battery is low (<ATTRIBUTE key="component" op="equals"

value="plaintextUpload"/>). As we will discuss later, application preferences can be evaluated by

comparing the values of the attributes listed in the profile (i.e., <ATTRIBUTE key=.../>) with those that

appear in the resource descriptors. More generally, in the <ADAPT> part of the application profile spec-

ification we may find: nothing, indicating that whatever component is able to support interaction with

the remote resource will be used; one single component, without any context associated, thus requiring

exactly a component that satisfies the given attributes (e.g., a component that implements an encrypted

upload, regardless of context) to be used; finally, a list of components with associated attributes and

contexts. If multiple components match the criteria given, the utility function will be used to select the

one that best satisfies the QoS needs of the user (see Section 3.3). Note that the chosen component may

not be available locally (e.g., it has not been loaded before due to memory limitations); in this case,

discovery, download and deployment of a component implementation is required; as we will illustrate

for reactive discovery, this process is almost identical to the one that has been discussed above, as com-

ponents are treated as just another type of resource. We may allow the download of components from

specific (i.e., trusted) sites only, by means of an attribute (<ATTRIBUTE key="location" op="equals"

value="http://www.trustedsite.org"/>); if the value of this attribute is set to local, as in Figure 2,

then only components that are available locally can be used.

Reactive Discovery. The reactive part of the profile describes how the application reacts to context

changes. The reactive encoding shown in Figure 3 states that, when the remaining battery power is

greater than 30% (<LOCAL CONTEXT>) and there is a video sensor in reach that broadcasts images at

a resolution of 800x600 in the JPEG format (<REMOTE CONTEXT>), a binding to that sensor should be

established (tag <BIND>). As the example shows, context can be composed of both local resources (e.g.,

battery) and remote resources (e.g., video sensor); we use the tag <CONDITION> for the former, and

<ATTRIBUTES> for the latter. Continuing with the example, after binding to a video sensor, the data

received should be displayed on the local device using a component (tag <ADAPT COMPONENT>) that can

display images at the specified resolution, and that can cache at least 1024KB of the data received; once

again, if a local implementation of that component is not available, one has to be discovered that satisfies

the listed conditions. If, after the screening performed using context conditions, there are still multiple

video sensors we may bind to, or multiple implementations of the desired component, the utility function

selects the one to be used (see Section 3.3).

Let us now step back from the specific examples and summarise the information encoded in an applica-

tion profile. First Part: the initial local and remote contexts act as pre-conditions to perform discovery

and adaptation. Context can be composed of local resources (e.g., memory, battery, CPU, etc.), and re-

mote resources (e.g., video sensor). The conditions associated to a remote resource (tags <ATTRIBUTE>) are

used during the discovery of the remote resource itself, to cut down the number of suitable answers. When

at least one local context is enabled and at least one remote context is enabled, then the pre-condition
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<REACTIVE id="1">

<LOCAL_CONTEXT id="1">

<CONDITION name="battery" op="greaterThan" value="30%"/>

</LOCAL_CONTEXT>

<REMOTE_CONTEXT id="2">

<ATTRIBUTES>

<ATTRIBUTE key="sensor" op="equals" value="videoSensor"/>

<ATTRIBUTE key="resolution" op="equal" value="800x600"/>

<ATTRIBUTE key="format" op="equals" value="jpeg"/>

</ATTRIBUTES>

</REMOTE_CONTEXT>

<BIND>

<BIND_RESOURCE name="videoSensor"/>

</BIND>

<ADAPT>

<ADAPT_COMPONENT id="3">

<LOCAL_CONTEXT/>

<REMOTE_CONTEXT/>

<ATTRIBUTES>

<ATTRIBUTE key="component" op="equals" value="displayVideo"/>

<ATTRIBUTE key="cache" op="greaterThan" value="1024KB"/>

<ATTRIBUTE key="resolution" op="greaterThan" value="800x600"/>

</ATTRIBUTES>

</ADAPT_COMPONENT>

</ADAPT>

</REACTIVE>

Figure 3: Application Profile - Example of Reactive Encoding.

to discovery and adaptation holds and a binding to a remote resource may be required. Note that this

‘context change-triggers-binding’ type of behaviour represents the very nature of reactive adaptation, that

demands monitoring of context and prompt reaction to changes; for proactive adaptation, instead, these

general local and remote context specifications will typically be left blank, and context conditions will

rather be associated to specific bindings (second part), so to be evaluated only on-demand, when resource

discovery is explicitly triggered. In other words, defining context conditions independently of a specific

binding, or associated to it, will lead to the same result; what changes is the semantics of the context

monitoring: continuous for independent conditions (thus typical of reactive adaptation), on-demand for

bind-related conditions (thus typical of proactive adaptation). Second Part: it specifies what bindings

are necessary (either as a consequence of context change, or as a result of an application service request),

and what context information should be used to reduce the number of plausible resources to bind to.

Reactive encoding will typically require a binding to the very same resource discovered during the pre-

condition, thus leaving the context associated to the binding empty; proactive encoding will specify here

the context conditions necessary to prune the binding instead. Third Part: it specifies what adaptation is

required on the device itself, in order to bind to the selected remote resource. Each adaptation alternative

may have a context associated to it, to state what alternative is most suited in different contexts.

The amount and complexity of information encoded in application profiles may seem to prescribe

implementations and protocol executions that are too heavy for portable devices. We will discuss in

Section 4 and demonstrate in Section 5 how the Q-CAD architecture makes smart use of this information

so that, for profiles of plausible complexity, the computational overhead is low.

Application profiles enable context-aware resource discovery; however, more than one resource (be it

a service provider, a component implementation or a sensor) may fit in the current context. In the next

section, we illustrate how to use utility functions to select exactly one resource out of the shortlisted ones.
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<UTILITY_FUNCTION id="uf1">

<RETURN>

<EVALUATE>

<ATTRIBUTE key="cost" op="greaterThan" value="10$"/>

</EVALUATE>

<FILTER>

<ATTRIBUTE key="cost"/>

</FILTER>

</RETURN>

<MAXIMISE>

<ATTRIBUTE key="battery" weight="10"/>

<ATTRIBUTE key="memory" weight="5"/>

</MAXIMISE>

</UTILITY_FUNCTION>

Figure 4: Example of a Utility Function.

3.3 Utility Functions

Utility functions are used to select the best resource out of the context-fit ones, according to the current

non-functional requirements of the user. As for profiles, there exists a utility function for each application,

so that user preferences may vary depending on the application under consideration.

Let us suppose we are looking for a component implementation to be downloaded and executed on our

device, in order to bind to a remote sensor. Figure 4 illustrates an example of a utility function encoding.

As shown, the encoding is divided into two parts: a <RETURN> part, and a <MAXIMISE> part. We discuss the

latter first. Under the tag <MAXIMISE>, the application lists the non-functional parameters it is interested

in, together with a weight that expresses their relative importance. Let us assume that these weights

vary in a range [0, 10]; the example indicates that the application is willing to select a component that

maximises battery and memory saving; also, saving energy is twice as important as saving memory. The

maximise part of the utility function is executed on a resource descriptor, as a summation of products

(i.e., normalised estimates multiplied by weights, as found in the resource descriptor and utility function

respectively); it returns a single value that can be used to compare the quality of different resources.

Note that high weights associated to parameters such as battery and memory mean that the user aims at

sparing them; however, resource descriptors estimate their consumption, rather than their saving. In order

to give higher scores to the remote resources that reduce consumption, we therefore use the value: saving

= maximum consumption - estimated consumption. The resource discovery concludes with the selection

of the resource that scored highest (i.e., the one that maximises the user utility). However, there are cases

in which we do not want the selection process to be fully automated. For example, we may not want

to download a component that maximises our non-functional requirements, in case it is too expensive.

We use the first part of the utility function specification (tag <RETURN>) when intervention on behalf of

the application or user is required. For example, Figure 4 dictates that discovery and selection can be

automated if the cost of the component is less than $10; otherwise, information has to be prompted to the

user to make the final decision. This information includes, besides the result of the maximisation part,

all the attributes listed in the <FILTER> part of the function (these attributes are a subset of those that

appear in the resource descriptor, and usually coincide with the ones used in the <EVALUATE> part).

3.4 Discovery Protocol

So far, we have illustrated the information upon which resource discovery is based, that is, application

profiles, utility functions and resource descriptors. In this section, we present a conceptual description of
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Figure 5: 3-Step Resource Discovery Protocol.

the discovery protocol that Q-CAD adopts in order to achieve QoS and context awareness.

As shown in Figure 5, Q-CAD discovery protocol consists of three main steps: matching, evaluation

and selection. These steps are exactly the same, regardless of the type of remote resource we are looking

for, and of whether we are performing a reactive or proactive search (the Q-CAD architecture will take

care of this aspect instead, as discussed later on).

Matching. The first step of the protocol uses the information encoded in the application profile to

perform context-aware resource discovery. On behalf of the application, Q-CAD sends out a discovery

message containing details about the wanted resource (e.g., component type, resolution, platform, etc.).

This information can be found in the application profile and is used to prune the number of potential

matches. Figure 6 illustrates an example of a discovery message associated to the reactive encoding of

Figure 3; as shown, we are looking for a component that displays images at a resolution of 800x600 or

higher, and that can cache 1024KB of the images received. The remote resources receiving this message

evaluate it locally against their resource descriptors, and only those matching the query reply (resources

2 to n in Figure 5). When composing a discovery message to locate a service provider, we also specify

the protocols the service provider must be able to talk (e.g., for the printing service of Figure 2, we would

require plaintextUpload and encryptedUpload to be implemented by the server).

<MATCH>

<ATTRIBUTE key="component" op="equals" value="displayVideo"/>

<ATTRIBUTE key="cache" op="greaterThan" value="1024KB"/>

<ATTRIBUTE key="resolution" op="greaterThan" value="800x600"/>

</MATCH>

Figure 6: Example of a Discovery Message.

Evaluation. Once the replies of the matching phase are received, the second step of the protocol

uses the information encoded in the utility function to perform QoS evaluation. The resources that

have survived the pruning receive a message containing the application’s utility function. Each remote

resource evaluates the function over the relevant resource descriptors and returns an answer to the querying

application. Note that a resource may refuse to perform this computation, either because it does not have

the capabilities to do so (as could be the case for a sensor), or because it does not want to consume

local resources. Viceversa, the application may not be willing, for privacy reasons, to disclose its utility

function. In these cases, the resource descriptor may be returned instead, and the application itself will

compute the utility function over the descriptor locally.
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Selection. If no user intervention is required, the application selects the resource that maximises

its utility based on the answers received and/or the local computation performed; if the intervention of

the user is required, the returned values are passed to the application to obtain a final choice. After the

selection has been made (either automatically or after user intervention), the protocol concludes.

The full potential of the language used to encode application profiles allows for a cascading execution

of the discovery protocol: for example, to bind to an arbitrary number of sensors that are relevant to the

application, then to find a service provider that can process the data coming from the sensors, and finally to

locate and download the components needed to talk to the sensors and service provider. Although possible

in principle, this situation is far from any realistic scenario we have experimented with. Furthermore, we

found the profiles illustrated in Section 3.2 to be already expressive and representatives of most realistic

situations. In these cases, the discovery protocol is repeated at most twice: first to discover a service

provider or sensor, and then to discover a component to talk to it.

We have now concluded the presentation of the Q-CAD model. In the following sections, we analyse

how this model has been mapped onto an efficient architecture and implementation.

4 Q-CAD Architecture

Q-CAD architecture is organised into four conceptual layers: the Application Meta-Interface layer, the

Information layer, the Decision layer and the Action layer. As shown in Figure 7, these layers sit in between

the Application layer and the Communication layer. As previously mentioned, we expect applications to

be defined and implemented as locally interconnected components; implementations can use any of the

component models geared for mobile devices, such as Beanome [8] and Gravity [9]. Also, we rely on

the routing capabilities of the Communication layer to route advertisements and queries. The Q-CAD

architecture is further refined in Figure 8 as a collection of interacting components. We now describe each

individual layer, the interaction between the components, and discuss issues related to their instantiations.

Hardware

Network OS

Communications

Q-CAD

Application Meta-Interface

Information Decision Action

Application

Figure 7: A High-Level Overview of the Q-CAD Architecture.

The Application Meta-Interface Layer. This layer encapsulates the interaction of the applications

with the Q-CAD architecture. It is composed of the PolicyRepo and NotificationService components, an

instance of which is given to each application upon starting up. PolicyRepo represents the reflective aspects

of the application, as it allows for the dynamic inspection and modification of the application profile and

utility function. The NotificationService is responsible for: extracting the information from the application

profile and passing it on to the components in the Information layer; notifying the Information layer of

changes that happened in the profile via the PolicyRepo component; and returning the result of a resource

discovery to the application.

10



The Information Layer. This layer is responsible for the management of all the local and re-

mote context-related information. Context information is mainly used for three purposes: during reactive

adaptation, to continuously monitor the status of the system and trigger the discovery and adaptation

process when a configuration of interest is entered; during proactive adaptation, to evaluate the status

of the system on-demand; and during the matching part of the discovery and selection protocol (both

for reactive and proactive encodings), to distribute the discovery message and prune the number of po-

tential matches for resource binding. The Information layer takes care of all these tasks. In particular,

the ContextSensing component is responsible for monitoring the state of the local system (e.g., available

memory, remaining battery power, etc.), while the Discovery component is responsible for detecting the

remote resources (in particular, services and sensors) currently available to the local host, that the appli-

cation is interested in (i.e., those listed in the application profile and that satisfy the specified constraints).

Together, these components are thus responsible for the conditions set in the various <LOCAL CONTEXT>

and <REMOTE CONTEXT> elements of the application profile. Note that the realisation of these components

may require the instantiation of multiple (sub)components, each monitoring different parts of the context,

using different techniques such as polling and interrupts. To avoid wasting local resources, only conditions

expressed in the profiles of running applications are monitored at each time; moreover, computationally

inexpensive conditions (e.g., remaining battery power) are checked first, and only when these are satisfied

will more expensive conditions (e.g., existence of a remote sensor) be monitored (and semantics of context

conditions). Note also that it is the responsibility of the Information layer to monitor the validity of the

bindings established to remote resources (e.g., sensors and services) and to re-establish them when they

are invalidated. The two repository components are responsible for encapsulating information about com-

ponents that are already deployed locally (LocalRepository component), or that are available for download

and deployment remotely (RemoteRepository component). These components are thus responsible for

evaluating the conditions set in the <ADAPT> elements of the application profile.

The Decision Layer. This layer encapsulates the evaluation and selection aspects of the Q-CAD

protocol. After the Information layer has performed its pruning, the Decision layer evaluates the utility

function against the shortlisted resource descriptors, and selects the one that maximises the application’s

utility. As previously mentioned, the utility function can be either evaluated remotely, on the host that

is offering the resource, or locally, provided that the remote resource sends its descriptor. The Evaluation

component of the Decision layer thus comprises both a Local and a Remote component, for local and

remote evaluation of the utility function respectively. More precisely, the Local component interacts with

the Information layer to get the resource descriptors against which to evaluate the utility function locally.

As we will discuss below, the Remote component uses the functionality provided by the Action layer

instead, to distribute the utility function to the hosts where it is going to be evaluated. The execution of

the Evaluation component may generate events that need application input, as defined when describing

utility functions (see Section 3.3). If that is the case, the NotificationService component in the Application

Meta-Interface layer is used to pass the events to the application and get the required input. Note that

realisations of the Q-CAD architecture may combine the discovery message and the utility function in a

single message. In this case, the Information layer and the Decision layer would work jointly to perform

the matching and evaluation parts of the discovery protocol in a single step. We have chosen to keep the

two layers conceptually separate while discussing the architecture; however, the implementation we have

realised to evaluate Q-CAD performance (Section 5) combines them.
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Figure 8: The Q-CAD Architecture.

The Action Layer. This layer encapsulates the logical mobility techniques [14] required by the De-

cision layer, that is, the code-on-demand and remote evaluation paradigms. It consists of the Deployer

component, which is composed of: the RemoteEvaluation component, used by the Remote component in

the Decision layer to deploy the utility function on a remote host, and the CodeOnDemand component,

that is responsible for downloading any remote component that is locally needed to perform adapta-

tion (tag <ADAPT> in the application profile). The downloaded components are also registered with the

LocalRepository component, so that the Information layer maintains an up to date status of the system.

5 Q-CAD Implementation and Evaluation

The Q-CAD architecture has been implemented using Java 2 Micro Edition (Connected Device Config-

uration, Personal Profile) [23]. More specifically, we used the satin component model and middleware

system for adaptive mobile systems [28]. satin provided us with an implementation of the Deployer com-

ponent in the Action layer, as well as the LocalRepository, RemoteRepository and Discovery components

in the Information layer. We used realisations of the Information layer employing both a multicast and a

centralised publish-subscribe system to advertise and discover remotely available resources. In monitoring

the status of the local system, we implemented two sample components which emulate the amount of

memory and battery power remaining. The former emulates a system with 64MB of RAM, and the latter

a system with a three hour battery. At the current stage, we assume that the power usage is linear and

that there are no different power management schemes. The functionality provided by the satin mid-

dleware system occupies 89KB as a Jar archive. On top of that, the implementations of the application

meta-interface and decision layers occupy 14KB as a Jar archive. We use the KXML2 [1] parser to access

the application profiles and utility functions, which occupies a further 24KB as a Jar archive. In total,

the Q-CAD implementation occupies 127KB (compressed), making it suitable for mobile devices.
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Using our architecture, we have also implemented a prototypical tour guide application. The appli-

cation is composed of an interface component, that can display information using a number of viewer

components. We implemented a component that is able to read and display plain ASCII text and one

that can parse and display basic html (text and images) from a sensor. For each of these components, we

wrote different resource descriptors, to emulate the existence of a larger number of component implemen-

tations; the sensors were implemented as http servers. The application and two components occupy 18KB

as a Jar archive. Developing the tour guide application on top of Q-CAD required minimum effort; at

the same time, we found both application profiles and utility functions very expressive for encoding user

preferences. As for resource descriptors, we realise that providing accurate consumption measures prior to

a component usage requires special care. Both analytical and statistical approaches have been suggested

in the literature; as we already pointed out, in Q-CAD these measures do not need to be precise, as their

only purpose it to enable meaningful comparisons.

We have used this implementation to evaluate Q-CAD performance in terms of: overhead imposed

by the evaluation of context information (as encoded in application profiles), and overhead imposed

by the evaluation of QoS information (as encoded in utility functions). All tests were performed with

laptops with 128MB RAM and 300MHz i686 processors, which were connected in an ad-hoc network

using 802.11b wireless (Wi-Fi) cards. The charts in this section display the average elapsed time over 20

resource discovery requests.
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Figure 9: Impact of Application Profiles. Three cases are considered (from top to bottom): 5 contexts

with 10 resources each, 3 contexts with 5 resources each, and 1 context with 1 resource each.

Figure 9 illustrates the impact of context-awareness, that is, the time taken by a mobile device to

evaluate application profiles of various complexities. In particular, we have varied the number of alternative

components (tag <ADAPT COMPONENT>) in a range [1..10]; each component was associated with a different

number of contexts (i.e., [1..5]), and each context was associated with a different number of local resources

(i.e., [1..10]). In our experience, application profiles with 5 alternative components, associated with 3

contexts of 5 resources each, already represented by far the maximum level of context-awareness we

needed (i.e., worst-case scenario). In this case, as the chart shows, the average amount of time to evaluate

context is below 1 second.

We have then evaluated the impact of QoS-awareness, that is, the time taken by a resource provider to

evaluate the utility function that the querying agent distributes. Regardless of the number of parameters

listed in the function, the elapsed time is constantly below 200ms.

Figure 10 illustrates the overall performance of the Q-CAD discovery protocol. We have varied the

number of devices involved in the discovery and selection process in a range [2..7]; we have then measured
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the time elapsed from the moment a discovery process is started on a client machine, to the time a

binding to a resource is established. This includes: the time taken to evaluate the application profile on

the requesting host, the time needed to send around the query message inclusive of the utility function, the

time taken to evaluate the utility function on each remote device, and the time needed to obtain answers

and make a final decision. As the chart shows, for plausible profile configurations, the average amount of

time is below 2 seconds, and it reaches 6 seconds for what we consider profiles of maximum complexity3.

Also, the elapsed time does not sensibly increase with the number of devices involved in the selection.

These results demonstrate that the Q-CAD model and architecture are suitable for pervasive environ-

ments, as the overhead imposed on the devices is fairly small. An important lesson learned during the

evaluation is that the most resource consuming task is, by far, the evaluation of context. In developing

pervasive computing applications, context descriptions should thus be as simple as possible, containing

only the needed information to discriminate between different adaptation components; utility functions

are much less resource consuming, and thus provide a powerful mechanism to further refine the selection

performed by application profiles.

6 Related Work

In recent years, research has been very active in the area of service discovery for mobile distributed systems.

To this extent, most of the work has concentrated on designing protocols and architectures that could fit

the mobile network topology, characterised by frequent disconnections and changes.

Directory-based approaches, either centralised or distributed, have been very popular in both tra-

ditional distributed systems and nomadic scenarios. Examples include Sun Microsystem’s Jini [3], Mi-

crosoft’s Universal Plug and Play (UPnP [25]), the Service Location Protocol [15], the Salutation Archi-

tecture [21], and the Bluetooth Service Discovery Protocol [22]. Their applicability is, however, limited in

highly dynamic mobile ad-hoc networks, where the existence of a service repository may not be assumed.

Totally decentralised approaches based on flooding algorithms have been suggested (e.g., the Simple Ser-

vice Discovery Protocol SSDP [13]); however, their heavy consumption of bandwidth and energy limits

their applicability on portable devices. IBM DEAPspace [20] proposes a discovery protocol for single-hop

ad-hoc networks, where each node caches service information locally; knowledge is built by broadcasting

the local cache to neighbors, while service lookup is accomplished by searching the local cache. In mobile,
3The results shown here do not consider peer failure; if peer failures are taken into account, the elapsed time depends also

on the timeout values used before acknowledging a peer is no longer within reach.
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multi-hop networks, Lanes [17] proposes protocols to efficiently manage the storage of service descriptions

and the routing of queries, based on their semantics; RUBI [16] describes an efficient resource discovery

framework that exploits routing algorithms to enable adaptation of the way information is disseminated

and retrieved, based on a local view of the structure of the network. In peer-to-peer systems, the JXTA-

Search [26] mechanism suggests a combination of broadcast and rendez-vous protocols to enable efficient

discovery both within a small group and in a wider community. A common limitation of these approaches

is that they concentrate on providing a communication infrastructure, while supporting only primitive

service matching mechanisms, based on the exact match of simple pre-defined attributes, or leaving the

format for information description and matching undefined. In pervasive environments, a generally-drawn

service request may return a very large number of candidate services, and it may require an unbearable

computation and/or cognitive load to select among them. Sophisticated models and protocols have to

be designed, on top of this communication infrastructure, that enable context and QoS aware service

description and matching. Q-CAD advances this goal by means of application profiles, utility functions,

and a protocol that performs context and QoS aware resource matching.

A technique that moves a step closer to our goal is semantic routing. It uses the flooding algorithm as

a basis; however, rather than forwarding a query message to every neighbour node, each node intelligently

chooses a subset of them based on the semantics of the request. This is usually achieved by means of an

application-layer overlay, as in the Intentional Naming Scheme (INS) [2] and in the agent-based discovery

framework Allia [11]. While moving a step in the right direction, these approaches are only able to handle

simple descriptions; Q-CAD, instead, supports richer and more complex descriptions and queries, while

keeping the computational overhead low.

MAGNET [18] is a trading framework that has been proposed to allow user-customised service match-

ing. Discovery is based on service types, rather than on service names; the criteria used to select the best

service provider (e.g., the nearest) can be customised by the user. Although interesting, this approach is

fairly limited: its tuple-space based matching mechanism, in fact, does not allow semantically rich inex-

act matching. In [19], a QoS-aware service selection framework for mobile ad-hoc networks is described,

that takes both the user perspective and resource consumption into account. However, the expressive-

ness of QoS issues is fairly limited: for example, only a small, fixed number of resources are considered;

moreover, users can only prioritise among them, without the possibility of binding these preferences to

context conditions. Q-CAD builds on top of our previous research in the area of context-awareness [6]

and component-based adaptation [28] to provide a unique resource discovery model that enables pervasive

computing applications to efficiently discover and select the resources that can best satisfy their user,

based on semantically rich descriptions of both the current execution context and QoS needs.

7 Conclusions

This paper has described Q-CAD, a QoS and context aware resource discovery framework for pervasive

environments. Q-CAD combines expressive specifications of the preferences of the user with efficient

processing. In particular, users specify the context conditions that should influence the discovery and

selection of resources in application profiles, while the non-functional requirements are encoded in utility

functions. Q-CAD discovery and selection protocol efficiently uses the information contained in application

profiles to prune the number of matches; it then uses utility functions to select the best resource out of
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the pruned ones. As shown in the Q-CAD evaluation section, application profiles and utility functions

allow semantically rich queries and matching, imposing only a low overhead on the device.

Our plans for the future point to three major directions. First, in this paper we concentrated on

evaluating Q-CAD performance; however, we realise the importance of assessing Q-CAD usability as well.

In order to do so, we plan to develop a broader number of applications on top of our architecture, and

thus gather enough experience to provide application developers with guidelines on how to use application

profiles and utility functions best. Second, in this paper, we used a language we defined to encode

both application profiles and utility functions. While it has been helpful to illustrate our model and to

experiment with it, the language used does not represent the focus of our research. Other works have

concentrated on defining precise ontologies to encode resource descriptors (e.g., [10]), and to capture the

preferences of a user into computer models (e.g., [27]). A common assumption to all these works is that

a universally accepted ontology is being used; however, we believe that such an ontology will never exist.

We thus plan to extend the Q-CAD framework so to be able to perform semantic translations between

different ontologies. We do not expect precise translations to be feasible: a new concept of ‘probable’

match will thus have to replace that of an ‘exact’ match. Finally, in this paper, we made the simplifying

assumption that all the entities involved in the discovery process were trustworthy; it is now our plan to

extend the Q-CAD framework with a trust management model we have developed [5] and that enables

mobile devices to dynamically assess the trustworthiness of the other entities they deal with, based on

their past interactions and recommendations sent by other entities in the pervasive setting.
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