
Using Architectural Perspectives

Eoin Woods
Zuhlke Engineering Limited
49 Great Cumberland Place

London W1H 7TH
eoin.woods@zuhlke.com

Wolfgang Emmerich
University College London

Gower Street
London WC1E 6BT
w.emmerich@cs.ucl.ac.uk

Nick Rozanski
Marks and Spencer Limited

Stockley Park
Uxbridge UB11 1AW

nick@rozanski.com

Abstract

Many projects that aim to develop embedded or dis-
tributed systems need to address quality requirements,
such as performance, reliability and security. These
quality requirements are often not directly attributable
to individual components of the system but rather need
to be achieved by the overall software architecture. De-
signing the right software architecture for a system is
an inherently difficult problem. We have developed the
notion of architectural perspectives that assist software
architects in addressing such quality requirements by
guiding them with checklists, suggestions for activities
and indications of pitfalls towards choosing the right
software architecture. In [19], we provide a large num-
ber of architectural perspectives that assist, amongst
others, in addressing performance, scalability and se-
curity requirements. This paper gives an account of
the experience we gained when applying architectural
perspectives for defining the enterprise application in-
tegration architecture in a financial services firm.

1. Introduction

Designing a software architecture is a complex pro-
cess, involving the creation of solutions to complex,
multi-faceted problems, that often do not have a sin-
gle optimal solution, but only a number of acceptable
ones. One particularly difficult aspect of the architec-
tual process is ensuring that a system will meet its
quality requirements (for security, performance, avail-
ability and so on).

Most architects would agree that the quality prop-
erties their systems exhibit are crucial to meeting the
needs of the system’s stakeholders. Systems that are
too slow or that are unavailable at critical moments
simply are not used; systems that prove to be insecure
are quickly abandoned or never make it to production;

systems that cannot be changed easily quickly become
obsolete. While getting a system’s functionality correct
is obviously important, this point is moot for many sys-
tems that are considered to be failures because they are
lacking in one or more critical non-functional qualities.

Most software architects use an intuitive approach
to achieving quality properties, relying on a combina-
tion of instinct, background knowledge and experience
to guide them through the design process. This intu-
ition led process often works well, as the number of
useful, effective large-scale computer systems attests
to; indeed, we used to work in this intuitive way, which
served us reasonably well for a long time. However we
have found that it has its limitations. In particular:

• It is difficult to share knowledge between archi-
tects to allow successful approaches to be reused
and painful lessons avoided;

• Few architects can honestly claim deep expertise
across all of the possible quality property areas
that they have to work with and so there is al-
ways a danger of focusing on an arbitrary set of
properties because these are the ones that the ar-
chitect knows about; and

• The lack of a systematic approach increases the
risk that something important will be overlooked
until it is too late to address it.

It was a realisation of these limitations that led us
to try to create a simple, yet systematic approach to
guide architectural design for quality properties. The
approach is based on our experience working as prac-
tising software architects, across a wide variety of types
of information systems, for a combined total of about
45 years of professional software development practice.

We call our approach Architectural Perspectives and
it provides a framework for structuring knowledge
about how to design systems to achieve particular qual-
ity properties. In many ways, Perspectives are similar

1



to Architectural Viewpoints [10], but whereas a partic-
ular Viewpoint conventionally advises on how to create
and describe a particular type of architectural structure
[10, 14, 9, 18], a Perspective relates to the cross view
concerns of a particular architectural quality property.

We believe that Architectural Perspectives are a
novel approach because

• they are a knowledge sharing framework struc-
tured around quality properties, as opposed to
types of architectural structure;

• the approach does not mandate any particular ar-
chitectural structure or style;

• perspectives work well when combined with View-
points and so neatly extend an already proven ap-
proach [20];

• the approach is the product of practitioner expe-
rience and so is addressing a real need that prac-
titioners have; and

• The approach has proven to be useful in practice.

The remainder of this paper presents the Perspec-
tives approach and illustrates its use by means of a real
project example. Section 2 compares the approach to
related work; Section 3 explains the approach and how
to use it; Section 4 describes an application of the ap-
proach to an information systems development project;
Section 5 outlines the strengths and weaknesses of the
approach; Section 6 explains the lessons learned while
developing the approach; and Section 7 summarises the
paper and presents our conclusions.

2. Related Work

The notion of a viewpoint has been used to a consid-
erable extent, sometimes with slightly different mean-
ings. Finkelstein et al, who have coined the term view-
points, suggested them as a conceptual framework to
define templates whose instances describe software sys-
tems from different perspectives [8, 17]. Our use of
perspectives is similar in that we define a template
for addressing different quality properties. However,
instances of our templates then define how particular
perspectives need to be incorporated into a suitable ar-
chitectural description. The reference model included
in the ISO Open Distributed Processing standard [12]
suggests the use of five different viewpoints to capture
distributed systems. Kruchten [14] suggests the use of
4+1 views to define software architectures. Again both
of these are rather static approaches that do not em-
phasise the process of arriving at an architecture nor
do they focus on reusing architectural knowledge.

There has been a large body of work on architecture
description languages (ADLs), such as Darwin [16],
Wright [2], Rapide [15] and CHAM [11] to name but a
few. These languages support the definition of compo-
nents, their interfaces and sometimes the association of
behaviour to component interconnection. ADLs, how-
ever do not provide any guidance on how to define an
architecture in order to address a particular quality
property. Our work is more closely related architec-
tural styles [1] in that these too provide reusable de-
scriptions of architectures. In practice, however, we
found architectural styles to be of limited use; often
different perspectives need to be combined to arrive at
a suitable architecture and this process of combining
perspectives is not addressed by architectural styles.

Our work also exhibits conceptual similarities to
aspect-oriented programming [13]. Architectural per-
spectives are cross-cutting concerns that need to be
woven into an architecture. The majority of the work
on aspects though concerns itself with formal language
primitives that support the automatic weaving of con-
cerns into code. Our work on architectural perspectives
instead assumes that architectural perspectives are de-
scribed relatively informally and are woven manually
by the software architect into the target software ar-
chitecture.

Architectural perspectives are complementary to the
growing body of work in the area of software architec-
ture evaluation, characterised by evaluation methods
like ATAM [7]. While formal evaluation methods like
ATAM allow an architecture to be evaluated for suit-
ability with respect to stakeholder defined goals, archi-
tectural perspectives guide the architect through the
process of achieving these desired quality properties,
to allow a suitable candidate for evaluation to be pro-
duced.

Architectural perspectives are also closely related to
architectural tactics [4], embracing and extending this
work, by providing advice relating to what the architect
should know, do and be aware of as well as specific
solution tactics.

3. Description of the Approach

3.1 Defining Architectural Perspectives

We developed the concept of the Architectural Per-
spective (or just “Perspective”) in order to provide an
extensible framework, within which we could capture
knowledge about designing systems that need to ex-
hibit specific quality properties. From the outset, we
aimed to develop an approach that could be used with



existing viewpoint-based and architectural evaluation
approaches.

Our definition of Architectural Perspective is a col-
lection of activities, checklists, tactics and guidelines to
guide the process of ensuring that a system exhibits a
particular set of closely related quality properties that
require consideration across a number of the system’s
architectural views. In other words, a Perspective is a
collection of guidance on achieving a particular quality
property in a system.

This wording and structure of the definition is sim-
ilar to that used for the definition of an architectural
viewpoint in IEEE standard 1471 [10]. This similarity
is intentional, as it is meant to suggest, that Perspec-
tives are analogous to Viewpoints (in the 1471 sense of
the term) but rather than addressing an aspect of the
system’s structure the Perspective addresses an impor-
tant quality property.

This close analogy between Viewpoints and Perspec-
tives is intentional as it makes it easy to relate the
two concepts and use them together, with Perspectives
acting as an extension to an existing viewpoint-based
approach.

A Perspective has a standard suggested structure,
to make the use of sets of Perspectives easier and to
ensure that they all address a quality property in the
same general way. A Perspective contains the following
information:

• the Concerns that the perspective is addressing;

• the Applicability of the perspective to the differ-
ent possible architectural views of a system (and
the types of system to which the advice within it
relates, if this is not obvious);

• a set of possible Activities that are suggested as
part of the process of achieving the quality prop-
erty (ideally related to each other via a process to
follow);

• a set of proven Architectural Tactics (i.e. design
strategies) [4] that the architect can consider as
part of their design;

• a list of common Problems and Pitfalls that the
architect should be aware of and common solutions
to them; and finally

• a Checklist that the architect can use to ensure
that nothing has been forgotten.

As an example, consider what might be in a Security
Perspective, to guide an architect in achieving a secure
system.

The concerns for the Security Perspective would in-
clude:

• Policy (the actions that difference principals can
perform on sensitive resources);

• Threats (the security threats that the system
faces);

• Governance (the mechanisms for implementing the
policy securely, including authentication, authori-
sation, confidentiality, integrity and accountabil-
ity);

• Availability (ensuring that attackers cannot pre-
vent access to a system); and

• Detection and Recovery from Breach (allowing re-
covery when security fails).

The Security Perspective is particularly applicable
to the Physical and Development architectural views
(in “4+1” terminology), adding security related hard-
ware and software to the Physical view and setting sys-
tem wide security related standards within the Devel-
opment view. Changes could also be required to the
Logical view to support a secure implementation (e.g.
partitioning the system differently to allow access to
be controlled to sensitive parts of it).

The activities defined in the Security Perspective
would include:

• Identification of sensitive resources;

• Definition of a security policy;

• Creation of a threat model;

• Design of a security implementation; and

• Assessment of security risks.

The activities in the Security Perspective would be
inter-related by use of a process description (such as a
UML activity diagram) like the one in Figure 1.

The primary architectural tactics that the Security
Perspective would explain and suggest would include:

• Application of recognised security principles (least
privilege, separation of responsibilities, simplicity,
auditing, secure default behaviour, not relying on
obscurity and so on);

• Principal identification mechanisms;

• Access control mechanisms;

• Information protection mechanisms;



Identify
Sensitive

Resources

Define
Security
Policy

Identify
Threats to the

System

Design
Security

Implementation

Assess
Security

Risks

[not acceptable]

[acceptable]

Figure 1. Security Perspective Process

• How to ensure accountability via auditing and
non-repudiation mechanisms;

• How to protect availability with hardware and
software system protection mechanisms;

• Integration approaches for existing technology;

• Provision of security administration; and

• Use of 3rd party security technology.

The common problems and pitfalls that the Security
Perspective would list (and provide common solutions
for) would include:

• Complex security policies;

• Use of unproven security technology;

• Not designing for secure failure conditions;

• Not providing effective administration facilities;

• Driving the process by technology choice rather
than security threats;

• Ignoring the need for secure time sources;

• Leaving security as an afterthought;

• Embedding security policy in the application; and

• Use of ad-hoc technology to enforce security.

The Security Perspective would also include a check-
list containing points such as:

• Is there a clear security policy that defines which
principals are allowed to perform which operations
on which resources?

• Is the security policy as simple as possible?

• Have security requirements been reviewed with ex-
ternal experts?

• Has each threat identified in the threat model been
addressed to the extent necessary?

Space prevents us from presenting the entire Per-
spective, and it should be stressed that the above pre-
sentation is only an outline, as our real Security Per-
spective is 20 pages long, but hopefully this gives a
flavour of the content that a perspective contains.

There are a large number of potential Perspectives
that could be written and the set that will be of use to
an architect depends very much on the type of system
that they are working on: an architect working on ve-
hicle control systems is unlikely to use the same set of
Perspectives as an architect working on a credit card
billing system. Indeed, it is important that Perspec-
tives are written for a specific target audience so that
inappropriate advice is not included in them. That
said, as with viewpoints, we think it is likely that use-
ful Perspectives can be written for certain broad system
types.

For large scale information systems in particular
(which is the type of system that all of the authors
work with) we have found a good core set of Perspec-
tives to be:

• Security to ensure the ability of owners of re-
sources in the system to reliably control, monitor
and audit who can perform what actions on these
resources as well as the ability of the system to
detect and recover from failures in security mech-
anisms;

• Performance and Scalability to ensure the sys-
tem’s ability to predictably execute within its
mandated performance profile and to handle in-
creasing processing volumes;

• Availability and Resilience to ensure the system’s
ability to be fully or partly operational as and
when required, and to effectively handle failures
which could affect system availability; and

• Evolution ensuring system flexibility in the face
of the inevitable change that all systems experi-
ence after deployment, balanced against the costs
of providing such flexibility.



Other Perspectives that we have found applicable
to many information systems, but that are less widely
applicable than the core set suggested above, include:

• Internationalisation to ensure the systems inde-
pendence from any particular language, country
or cultural group;

• Accessibility to ensure the ability of the system to
be used by people with disabilities;

• Usability to ensure that people who interact with
the system can easily work effectively;

• Regulation to ensure the ability of the system to
comply with local and international laws, quasi-
legal regulations, company policies, and other
rules and standards;

• Location to ensure the ability of the system to
overcome problems brought about by the absolute
geographical location of its elements and the dis-
tances between them; and

• Development Resource to ensure that the system
can be designed, built, deployed and operated
within known constraints around people, budget,
time and materials.

Based on our experience as architects of large in-
formation systems, we have developed full definitions
of the first four Perspectives listed above, as well as
outline definitions of the remainder. The definitions
are presented in the form of a forthcoming book [19],
aimed at practising software architects and those in
training for the role.

3.2 Using Perspectives

We have found that a set of Perspectives can play
three distinct roles for a software architect.

Firstly, Perspectives act as a store of knowledge,
allowing knowledge related to achieving a particular
quality property to be gathered and represented in a
standardised way, so making it easy for the architect
to use them to extend their knowledge. It is important
to note that the Perspective is a much more flexible
and much less constrained source of knowledge than
a design pattern or an attribute based architectural
style. A perspective documents things the architect
should know and do as well as simply a set of techni-
cal solutions (although it can include these too, in the
Architectural Tactics section of the Perspective).

Secondly, Perspectives act as a guide to a novice
architect or an architect having to deal with a qual-
ity property that they are not an expert in (a situation

Create Candidate
Architecture Using

Viewpoints

Modify ArchitectureApply Perspectives

Analyse and
Understand Key
Requirements

Select Appropriate
Viewpoints and 
Perspectives

Perform Formal
Architectural

Evaluation

[unacceptable
properties]

[acceptable properties]

Figure 2. Using Perspectives

that many architects meet routinely, even if they do not
always feel that they can admit it!) The information
in the Perspective allows the architect to quickly learn
what is important about achieving the particular qual-
ity property under consideration, provides them with
a set of proven activities and tactics to use and points
out the likely problems that will be encountered.

Finally, Perspectives act as an aide memoir for the
experienced architect working in an area that they are
familiar with. However, even in such cases, it is very
valuable to have standardised reference material that
can be quickly and conveniently accessed. When used
in this way, Perspectives help the architect to work in
a systematic manner (in as much as they need to) and
help to avoid important details being overlooked.

The process of using a set of Perspectives within
a viewpoint-based architectural design process is illus-
trated by the UML activity diagram in Figure 2.

As can be seen in the diagram, the architect starts
by understanding the key system requirements, which
allows him to select the appropriate set of viewpoints
and perspectives to use to guide the architectural de-
sign process. Next, he produces a potential architec-
tural design to meet the system’s key requirements, at
this stage focusing primarily on the system’s functional
structure. Then, for each important quality property,
the architect uses the information in the correspond-
ing Perspective to drive the process of ensuring that
the system will exhibit that quality property satisfac-
torily. In most cases, this will mean changes to the
architecture, which are reflected by updating the views
describing the architecture. Then, when the architect
believes that they have a satisfactory architecture, it



can go forward for formal architectural evaluation, us-
ing a method like ATAM [7].

Obviously this description is a very idealised view
of the process, but it provides a useful mental model
for the architect and we have found it useful when ex-
plaining Perspectives to other architects. In reality of
course, the experienced architect is considering quality
properties continually, from the beginning of the design
process and so is using Viewpoints and Perspectives si-
multaneously, rather than in two distinct stages.

We term the process of using a Perspective “apply-
ing the perspective” to stress that the process of us-
ing a Perspective is primarily about making cross-view
changes to the architecture, rather than about creating
a new architectural design artefact. (This said, apply-
ing many perspectives can actually produce outputs
such as threat models, performance models and so on,
but these are really supporting information rather than
first-class architectural design artefacts.) We also use
this term to reinforce the point that using a Perspec-
tive is not just a review process but is an active part
of architectural design, performed by the architect in
order to produce an acceptable architecture.

It is worth noting that the process presented here
is quite similar to the architectural design process that
Jan Bosch defines in his book [5]. While Bosch ex-
plains that the Architect must modify the architecture
in order to achieve the system’s desired quality prop-
erties, there is no specific guidance on how to go about
this. The contribution that Perspectives make to the
process is providing structure and specific advice on
how to achieve the quality properties that the system
is lacking.

4. An Example Application of Perspec-
tives

4.1 The Project

Like many organisations, a UK-based financial insti-
tution had ended up with a large number of business
applications, many of which needed the same reference
information in order to perform their processing. The
types of information that needed to be shared between
systems included details of counterparties, countries,
financial exchanges, terms and conditions for financial
instruments, closing prices for financial products, hold-
ings of financial products and so on. This information
is characterised by changing relatively slowly (at least
for the uses that the systems this project was concerned
with put it to) with a daily or hourly update being suf-
ficient. However, when the information is duplicated

<<external>>
Source

System 'n'

<<external>>
Source

System 1

Source 'n'
Adapter

Source 1
Adapter

Target 1
Adapter

<<external>>
Target

System 1

Mapper and
Transformer

<<external>>
Target

System 'n'

Target 'n'
Adapter

Figure 3. Data Service Functional Structure

and maintained across a number of systems then in-
consistency nearly always occurs, maintaining the data
becomes very difficult and errors occur in business pro-
cessing. Where inter-system data integration had been
implemented, it had been done in a tactical “point
to point” manner, which had resulted in an inflexible
structure with many inter-system dependencies.

The solution identified for these problems was to
create an organisation-wide “Data Service” that could
provide reference information to any of the organisa-
tion’s systems on a regular schedule, in the format that
the target system required. An important benefit of the
Data Service is that it acts to totally decouple the sys-
tems supplying the data (the sources) from the systems
consuming it (the targets), without changing either.

The initial implementation of the system was batch
based, distributing data to the target systems accord-
ing to a regular schedule. The system was implemented
using Java and XML-based technologies, with all of the
data manipulation required being implemented using
XSLT [6], in order to isolate the data mapping in well
understood places and to allow it to be reused in other
possible future implementations.

When the system runs, it extracts data from a num-
ber of source systems using existing data-access inter-
faces, converts it into a system-neutral organisation-
wide data model and then supplies the subsets of the
data required by each target system to these systems
in their native formats. The functional structure of the
system is illustrated by the UML component diagram
in Figure 3.

The two key quality properties that this system had
to exhibit were:

• Performance, in terms of throughput, because
the system needed to handle a reasonably large



amount of data (several hundred Mb of raw data)
in a very limited amount of time; and

• Evolution, in terms of adding sources, targets and
data types easily, because without the ability to
add new data sources, target systems and data
types the system would rapidly become obsolete
as the business evolved.

4.2 The Use of Perspectives

A number of Perspectives were used on the project,
but due to space limitations, we will describe how one
particular Perspective – Performance and Scalability –
was applied and the effect that this had.

Although the project was relatively simple, it was a
critical system for the organisation, it was the first at-
tempt to apply the implementation technology in that
organisation and it had to meet quite stringent qual-
ity properties in order to be considered a success. For
these reasons, we found it involved enough to make a
useful case study for this paper.

Another interesting feature of this project was that
there were actually two architects, the architect respon-
sible for the project, who worked for the financial in-
stitution (“the Architect”) and one of the authors who
acted as a consultant to the organisation, advising on
the work to be performed, working full time in the
project team and mentoring the organisation’s archi-
tect during the project (“the Mentor”). This feature
of the project means that it also illustrates the differ-
ent uses that different architects can put Perspectives
to.

Due to the mentoring aspect of this project, Perspec-
tives were applied in a relatively simplistic way, with
the Architect being encouraged to understand the sys-
tem’s functional requirements thoroughly and design a
sound functional structure before focusing on achieving
particular quality properties. Once a candidate func-
tional structure was identified, the Perspectives were
used by the Architect and the Mentor to refine it to
meet the critical performance and evolution qualities.
Perspectives were a useful aid to process structuring,
as they encouraged the Architect to work in a system-
atic manner and provided the Mentor with a metaphor
to use when explaining the process to the Architect.

The Performance and Scalability Perspective defines
the relevant concerns as being response time, through-
put, scalability, predictability, hardware resource re-
quirements and peak load behavior. Using these con-
cerns at the start of the process helped the Architect
to understand what was included (and excluded) from
the performance exercise and allowed context and clear
objectives for the exercise to be defined.

The activities the Perspective suggests are capturing
performance requirements, creating and analysing per-
formance models and performance testing. The doc-
umentation of these activities in the Perspective pro-
vided the Architect with background information on
performance engineering (which he was not aware of
before) and acted as useful reference material to start
learning about them. Having said that, most of the
knowledge transfer was driven by the Mentor, referring
to the Perspective as needed.

A concrete result of following the process suggested
in the Perspective was the creation of a performance
model for the system. While the Perspective did not
contain enough detail for the Architect to do this to-
tally independently, the information in the Perspective
did help him to understand what he was doing and why
and so provided context for the additional information
and guidance provided interactively by the Mentor.

Once a performance model and some representative
performance testing had been completed, it was estab-
lished that the system was likely to run acceptably fast
and to complete its processing within the processing
schedule required of it. However, the exercise did re-
veal two important points. Firstly, 70% of the systems
runtime was consumed by the processing of two busi-
ness entities (out of a total of about 20) and secondly,
the execution time of the system was uncomfortably
close to its acceptable limit, considering that data vol-
umes were likely to increase in the future.

The insights gained by the performance modelling
and testing were valuable for two reasons. Firstly, they
allowed the Architect to set realistic expectations for
the throughput that could be achieved and secondly,
they revealed the need for contingency planning at the
architectural design level in case of slower throughput
than expected or an unexpected increase in data vol-
umes.

The Architectural Tactics section of the Perspec-
tive was used to consider possible design changes to
increase throughput, so that allowance could be made
in the architecture for their possible future implemen-
tation. The tactics in the Perspective included opti-
mizing common processing, decomposition and paral-
lelization of long operations, reducing contention via
replication, prioritizing processing, consolidation of re-
lated workload, distribution of processing in time, min-
imizing the use of shared resources and considering the
use of asynchronous processing. Particularly valuable
tactics in this particular situation were parallelization,
prioritizing processing and distributing processing in
time. Possible approaches for each were sketched to
ensure that the proposed architecture was compatible
with them.



Finally, the problems and pitfalls contained in the
Perspective were used to check that nothing important
had been overlooked. The problems and pitfalls doc-
umented in the Perspective include having imprecise
performance and scalability goals, an over-reliance on
modeling, using simple measures for complex cases, in-
appropriate partitioning, invalid environment and plat-
form assumptions, too much indirection, concurrency
related contention, careless allocation of resources and
ignoring network and in-process invocation differences.
While no serious problems were found, having reviewed
the list, we did decide that we had relied too heavily
on modelling (over testing) and that some of our test-
ing was assuming that results from simple cases scaled
linearly for more complex cases. Both of these possible
problems caused us to revisit some of our performance
work and in fact, we did find that we had made some in-
valid assumptions about XML processing performance
as document size increases.

Specific results of applying the Performance and
Scalability Perspective in this project were:

• a systematic approach being adopted to achieving
performance goals;

• the system’s Architect gaining a rapid understand-
ing of the process to use to ensure acceptable per-
formance (including concerns, techniques, tactics
and pitfalls);

• the creation of a performance model and support-
ing performance tests;

• an early understanding of the likely performance
that could be gained and the risks that this im-
plied;

• the identification of possible future solutions to
likely performance problems; and

• several potential problems being noted and recti-
fied during the process.

In summary, using this Perspective reduced perfor-
mance related risks on the project significantly and en-
couraged a systematic approach to achieving the re-
quired goals.

5. Strengths and Weaknesses of the Ap-
proach

The main strengths of Architectural Perspectives
that have been found in this and other projects are
described below.

• Perspectives provide a framework for organising
and using knowledge, which is often a major chal-
lenge for software architects, given the breadth of
the role.

• Using Perspectives helps an architect to work in a
systematic way to ensure that certain key quality
properties are exhibited by their system, so help-
ing to organise the work and ensure that nothing
is forgotten.

• Perspectives encourage architects to share and
reuse knowledge about achieving quality proper-
ties.

• We have found Perspectives to be useful to both
novice and experienced architects alike, due to the
different ways that they can be used. Indeed, we
wrote the set of Perspectives outlined above and
routinely use them ourselves in our own work and
well as when mentoring other architects.

• The approach works well with an architectural
design process that is using Viewpoints and a
quality-property-centric evaluation approach such
as ATAM. This means that the approach fits well
with the current state of the art in software archi-
tecture practice.

• The approach is very simple, can be explained in
a few minutes and we have found that people un-
derstand it very quickly.

• The approach does not dictate a particular style or
structure for the architecture and so can be used
with many types of system.

• Perspectives are the result of practitioner experi-
ence and solve a real problem that we had.

Like any approach, there are also weaknesses with
Perspectives, the more important of which are de-
scribed below.

• Each Perspective addresses a single quality prop-
erty, which means that for any complex system
the architect has to apply a number of them and
there is no guarantee that the advice in each will
be compatible. Indeed, you would expect the ad-
vice in a number of them to conflict (between per-
formance and flexibility concerns in different Per-
spectives for example) and the architect needs to
resolve these conflicts when they arise.

• The approach does not help the architect to make
the right decisions for their particular stakeholders
and this is still a difficult, risky, but key part of
the architect’s role.



• The approach does not help the architect to select
the right set of Perspectives to apply, as this is
totally dependent on the needs of their particular
system and so this is still a matter of the archi-
tect’s skill and judgment.

• The Perspectives just contain written advice
(rather than any sort of automated assistance such
as that provided by research tools like ArchE [3])
and the process of applying a Perspective is still a
skilled job that relies entirely upon the architect’s
abilities.

6. Lessons Learned

The primary lessons that we have learned as a result
of our work with Perspectives are summarised below.

6.1. Viewpoints and Quality Properties

We have found the viewpoint-oriented approach very
valuable for organising the software architecture pro-
cess. However, we have found it limited when consider-
ing how a system should be designed to meet particular
quality properties. The fundamental problem we have
found is that viewpoints are typically oriented around
a particular type of architectural structure (concur-
rency, information, modules) whereas achieving a qual-
ity property nearly always requires the consideration
of cross-cutting concerns that cross a number of struc-
tural dimensions. A number of people have disagreed
with us verbally on this point, with the core of the ar-
gument typically being that you can create any view-
point you like (for example a “Security” viewpoint) and
so our argument is moot. Our experience suggests that
creating quality property based viewpoints is not an ef-
fective approach, and in particular, when we have tried
to create quality property specific views of a system, we
have found that a significant problem is the amount of
redundancy introduced into the architectural model –
redundancy that often results in the architectural de-
scription being abandoned as it is too hard to maintain.
Intuitively, we also find a separation between design
advice for structures and qualities useful in organising
both information and the architectural design process,
particularly for novice architects.

6.2. The Value of Structure

When using Perspectives, for ourselves and with cus-
tomers, we have continually been struck by how useful
people find the simple and immediately understand-
able structure that both Viewpoints and Perspectives

implicitly impose on the architectural design process.
Having the process structured around a set of View-
points and Perspectives seems to help people to un-
derstand the process and organise their work within it.
This structuring is particularly valuable in the archi-
tectural design process as it is characterised by a large
number of important factors that all need to be con-
sidered simultaneously, making it difficult to organise
effectively.

6.3. The Importance of Simplicity of Approach

An important strength that we see in both View-
points and Perspectives is the simplicity of the ap-
proaches. The basics of both approaches can be ex-
plained with the help of a whiteboard in 10 or 15 min-
utes and we have found it rare for people not to un-
derstand the approaches within this time. We feel that
this indicates that the approaches are fairly intuitive
and they seem to reflect an idealisation of the way that
people work (or at least think they work). The im-
portance of this simplicity is hard to underestimate, as
it helps both adoption of the technique by practising
architects and the willingness of their managers to pay
for its adoption.

6.4. Sharing Architectural Knowledge is Valuable

When software architects meet, there is usually a
discussion of the architectural challenges that the ar-
chitects are dealing with at the time and it is usually
the case that the challenges are similar. Over time,
most architects develop a set of standard solutions to
problems that they encounter and build up background
knowledge that tells them what to focus on and what
to avoid in common design situations. However, this
sort of personal knowledge base takes a long time and
a lot of specific experience to develop. In many cases,
sharing architectural knowledge can help to circumvent
this learning process and both Viewpoints and Perspec-
tives can fulfil the role of the knowledge source to help
make this a reality.

6.5. Making Architectural Tradeoffs is Difficult

One of the limitations of the Perspectives approach
is that it only deals with a single quality property at a
time; this is intentional and is meant to keep the ap-
proach simple and usable. However, it does mean that
the architect still has to make the tradeoffs between
the demands of different quality properties. Given how
system specific the set of tradeoffs required normally is
and how dependent it is on the needs of a particular



collection of stakeholders, we are not particularly opti-
mistic that this problem will be solved by a generally
applicable approach in the near future. We view it
simply as one of the taxing but fascinating parts of the
architect’s role.

7. Summary and Conclusions

We have introduced an approach to capturing, man-
aging, using and sharing architectural knowledge for
achieving quality properties, that we term Architec-
tural Perspectives. Like architectural viewpoints, the
approach provides a standardised framework to cap-
turing architectural knowledge, but rather than be-
ing organised around types of architectural structure,
it is organised around the desired quality properties
of the system being designed. We have found that
the approach works well in practice and is compatible
with existing architectural approaches including archi-
tectural evaluation and architectural viewpoints.

Based on our experiences with the approach, we
would suggest that it can be a useful tool to encourage
the sharing of architectural knowledge between both
experienced and novice architects, although it does
not fundamentally alter the complex process of inter-
quality trade off that is at the core of the architectural
decision making process. However, as more perspec-
tives are developed, to address quality properties for
different types of systems, we feel that the approach
will become widely applicable to the problems that
software architects face in their work.

References

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing
Style to Understand Descriptions of Software Archi-
tecture. ACM Transactions on Software Engineering
and Methodology, 4(4):319–364, Oct. 1995.

[2] R. Allen and D. Garlan. A Formal Basis for Architec-
tural Connection. ACM Transactions on Software En-
gineering and Methodology, 6(3):213–249, June 1997.

[3] F. Bachmann, L. Bass, and M. Klein. Preliminary De-
sign of ArchE: A Software Architecture Design Assis-
tant. Technical Report CMU/SEI-2003-TR-004, Soft-
ware Engineering Institute, Carnegie Mellon Univer-
sity, March 2003.

[4] F. Bachmann, L. Bass, and M. Klein. Deriving Archi-
tectural Tactics: A Step Toward Methodical Architec-
tural Design. Technical Report CMU/SEI-2003-TR-
021, Software Engineering Institute, Carnegie Mellon
University, March 2004.

[5] J. Bosch. Design and Use of Industrial Software Ar-
chitectures. Addison-Wesley, Boston, MA, USA, 2000.

[6] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3c recommendation, http://www.w3.org/TR/xslt/,
1999.

[7] P. Clements, R. Kazman, and M. Kline. Evaluating
Software Architectures. Addison-Wesley, Upper Saddle
River, NJ, USA, 2001.

[8] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,
and M. Goedicke. Viewpoints: a framework for inte-
grating multiple perspectives in system development.
Int. Journal of Software Engineering and Knowledge
Engineering, 2(1):21–58, 1992.

[9] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley, Upper Saddle River,
NJ, USA, 1999.

[10] IEEE Standards Board. Standard 1471, Recommended
Practice for Architectural Description of Software-
Intensive Systems. IEEE Computer Society Press,
2000.

[11] P. Inverardi and A. L. Wolf. Formal Specification and
Analysis of Software Architectures using the Chemi-
cal Abstract Machine Model. IEEE Transactions of
Software Engineering, 21(6):373–386, 1995.

[12] ISO 10746-1. Open Distributed Processing – Refer-
ence model. Technical report, International Standard-
ization Organization, 1998.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopez, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Aksit and S. Matsuoka,
editors, Proc. of the European Conference on Object-
Oriented Programming (ECOOP 1997), volume 1241
of Lecture Notes in Computer Science, pages 220–242.
Springer, 1997.

[14] P. Kruchten. The 4+1 View Model of Architecture.
IEEE Software, 12(6):42–50, November 1995.

[15] D. Luckham, J. Kenney, L. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and Analysis
of System Architecture using Rapide. IEEE Transac-
tions on Software Engineering, 21(4):336–355, 1995.

[16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In Pro-
ceedings of the 5th European Software Engineering
Conference, pages 137–153, Barcelona, Spain, Septem-
ber 1995. Springer.

[17] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Frame-
work for Expressing the Relationships Between Mul-
tiple Views in Requirements Specification. IEEE
Transactions on Software Engineering, 20(10):760–
773, 1994.

[18] J. Putman. Architecting with RM-ODP. Prentice-Hall
PTR, Upper Saddle River, NJ, USA, 2000.

[19] N. Rozanski and E. Woods. Software Systems Ar-
chitecture: Viewpoint Oriented Software Development.
Addison-Wesley, Boston, MA, USA, 2004. to appear.

[20] E. Woods. Experiences Using Viewpoints for Informa-
tion Systems Architecture: An Industrial Experience
Report. volume 3047 of Lecture Notes in Computer
Science, pages 182–193. Springer, May 2004.


