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Abstract

SLAng is a language for expressing Service Level Agree-
ments (SLAs), specified using technologies of the Model
Driven Architecture approach (MDA), including the Meta-
Object Facility model (MOF) and Object Constraint Lan-
guage (OCL). In this paper we describe our motivation and
experience in applying additional MDA technologies, in-
cluding the Java Meta-data Interface (JMI) mapping and an
OCL evaluator, to the automated generation of a software
component for detecting SLA violations in service perfor-
mance data. We highlight correctness and ease of imple-
mentation as particular benefits of the approach. These
are significant as SLAs may form part of legal contracts
and are expressed in a language that is subject to a de-
gree of change. We include an evaluation of the component,
employed to check the performance of an Enterprise Jav-
aBeans (EJB) application. We discuss scalability issues re-
sulting from immaturities in the applied technologies, lead-
ing to recommendations for their future development.

1 Introduction

In [16] we introduced SLAng, a language for Service Level
Agreements (SLAs). An SLA is the part of a contract be-
tween the client and provider of a service that defines the
parties’ obligations with respect to the qualities of the ser-
vice, usually taken to mean its performance and reliability.

The principle requirement of an SLA is to define unam-
biguously the obligations of the parties in a particular ser-
vice provision scenario. When a party fails to meet these
obligations, a violation is said to have occurred. Clearly, if
disagreements over violations are possible, then the utility
of an SLA is significantly diminished. Financial penalties
are often associated with violations, in order to mitigate the
risk to the injured party that such violations imply. Fraud,
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either accidental or malicious, is possible if violations can-
not be proven to have occurred with a high degree of confi-
dence.

As described in [22] we have identified the need for
SLAng to have rigorously defined semantics, to eliminate
the possibility of parties disagreeing over the meaning of
an SLA. We chose to apply a meta-modelling technique to
the definition of the language, in which both the syntax and
semantic domain of the language are explicitly modelled
using a Meta-Object Facility (MOF) model [17] (similar
to a UML class diagram [20]). The syntactic part of the
model defines the format of SLAng SLAs. The semantic
part of the model can be interpreted as describing the ob-
jects and events in the real world to which the syntactic ele-
ments refer, in this case service infrastructure and the events
associated with service provision. SLAs may be associ-
ated with services, and Object Constraint Language (OCL)
constraints embedded in the model assert that service be-
haviours should be consistent with the values specified in
associated SLAs, hence defining the violation semantics for
SLAng SLAs.

MOF and OCL are standards maintained by the Ob-
ject Management Group (OMG), and are technical compo-
nents of the emerging development strategy that it promotes
called the Model Driven Architecture (MDA) [19]. In this
approach, systems are developed by first modelling them in
a technologically neutral manner, then refining models by
adding platform-specific information, and finally deploying
systems by automatically generating platform artefacts such
as source code and deployment descriptors from models.

The fact that the SLAng language is described using
MDA modelling language technologies presents the oppor-
tunity to apply the MDA approach of generating source
code from models to generate the implementation of an
SLA checker. The meta-model provides a specification of
the data structures needed to store the pertinent SLA and
service usage data, and the OCL constraints in the meta-
model define what it means for this data to be considered
free from violations. In this paper we describe how we have
used the Java Metadata Interface (JMI) standard to generate
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classes to store the data, and applied a free implementation
of an OCL interpreter to interpret the OCL constraints from
the SLAng meta-model over these data, and therefore detect
violations if any exist.

This paper is an extended version of [21], adding an eval-
uation of the generated component employed to check the
performance of an Enterprise JavaBeans (EJB) application
running in the application server JBoss [8].

The main contributions of this paper are: firstly, to ob-
serve that the explicit meta-modelling approach used to de-
fine SLAng also effectively delivers the specification of
a component for storing and interpreting data relevant to
SLAs, eliminating the cost of reimplementing the checker
when the language changes; secondly, to observe that by
generating a component for interpreting a language auto-
matically from the language specification we expect to re-
duce the chance of semantic errors being introduced dur-
ing the implementation process; and thirdly to describe and
evaluate our experience and the practical issues arising from
taking this approach to producing the checker.

In outline, our paper reads as follows: In Section 2 we
briefly review the features of the SLAng language and its
specification. In Section 3 we describe in more detail the
motivation for generating a checker component automati-
cally, and the approach taken to achieve this. In Section 4
we discuss the design and implementation of a tool for gen-
erating the checker. In Section 5 we describe the archi-
tecture of the resulting checker. In Section 6 we describe
the deployment of the checker to monitor an EJB service,
and present our evaluation. In Section 7 we discuss related
work. Finally, in Section 8 we make some concluding re-
marks, and discuss future work.

2 Overview of the SLAng language

The SLAng language syntax and semantics are defined by
a MOF (version 1.1) model [17]. The model provides a for-
mal definition of the structure of the syntax of the language,
and of the semantic domain in which SLAs apply. These
are modelled in terms of classes of objects with attributes
and associations. Constraints in the model restrict the sets
of objects described so that SLAs are only ever associated
with services that are consistent with their terms and which
meet their conditions. In this way the semantics of the lan-
guage are formally defined. This approach was inspired by
the work of the Precise UML group (pUML), who used the
approach to define the semantics for their UML 2 submis-
sions [12].

When SLAng was initially presented in [16] it could ex-
press SLAs for a range of different types of service includ-
ing application service provision, component hosting, stor-
age service provision and Internet service provision. How-
ever, since adopting the meta-modelling approach described

in [22], we have only completed the meta-model for Elec-
tronic Service SLAs, which cover the provision of an ap-
plication service over a network. The models and discus-
sions in this paper therefore pertain to ES SLAs only. In fu-
ture we intend to expand the formal definition for the other
types of services listed above. The development of the SLA
checker component was intended to assist with the devel-
opment of the language by providing a platform for exper-
imenting with different types of obligations, and for veri-
fying that the meta-model constraints are both syntactically
correct and appropriate.

MOF models are very similar to UML class models [20].
A view of the meta-model showing the syntax of the ES
SLA is shown in Figure 1. The SLA is divided into a sec-
tion for defining terms, and another for conditions. The con-
ditions section is further subdivided between conditions on
the behaviour of the service provider, and conditions on the
behaviour of the client.

The use of a MOF meta-model to define the syntax of
SLAng confers the advantages of the XML Metadata In-
terchange (XMI) [18] standard, a standard for serialising
MOF-defined metadata. The XMI mapping of the SLAng
syntactic model constitutes the concrete syntax of the lan-
guage.

A fragment of a SLAng contract is shown below. It
shows aServerPerformanceClause that places con-
straints on the login operation of the EJB application
described in Section 6, and forms part of the SLA
used in the evaluation of the component. The at-
tribute values of the clause, such asmaximumLatency

and reliability are defined using references to typed
objects defined elsewhere in the SLA, identified us-
ing their mofid . At the end of the fragment, the
Duration object associated with themaximumLatency

attribute can be seen. TheServerPerformanceClause

is also associated with anOperationDefinition , and
a Schedule . These attributes and associations of the
ServerPerformanceClause can be seen to correspond
to those expressed in the model in Figure 1.

<SLAng:ServerPerformanceClause
xmi.id="mofid:4328595"
name="Login performance"
maximumLatency="mofid:12499840"
reliability="mofid:19485920"
maxTimeToRepair="mofid:517215">
<SLAng:ServerPerformanceClause.operation>

<SLAng:OperationDefinition
xmi.id="mofid:12947963"
description="Login performance measured

at EJB container boundary"
failureCriteria="Any exception">
...

</SLAng:OperationDefinition>
</SLAng:ServerPerformanceClause.operation>
...
<SLAng:ScheduledClause.schedule>
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+failureC riteria:S tring
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S erviceC lientDefinition

+description:S tring

C lientP erformanceC lause

+name:S tring

+maximumT hroughput:F requency

E lectronicS erviceDefinition

+description:S tring

terms+

electronicS erviceDefinition+

termsT oE S Def

terms+

serviceC lientDefinition+

termsT oC lientDef

terms+

operationDefinition+

1..*

termsT oOpDef

S cheduledC lause

(from contracts )

S erverP erformanceC lause

+name:S tring

+maximumLatency:Duration[0..1]

+reliability:P ercentage[0..1]

+maxT imeT oR epair:Duration[0..1]

conditions+

serverP erformanceC lause+

1..*E S S LAS erverC lauses

serverP erformanceC lause+

*

operation+

1..*

conditions+ clientP erformanceC lause+

1..*
E S S LAC lientC lauses clientP erformanceC lause+

*

operation+

1..*

Figure 1. Model of the syntax of SLAng electronic-service contracts

<SLAng:Schedule xmi.id="mofid:7361214"
name="August to September 2004"
startDate="mofid:8609150"
duration="mofid:23958818"
period="mofid:22674777"
endDate="mofid:7286463"/>

</SLAng:ScheduledClause.schedule>
</SLAng:ServerPerformanceClause>
...
<SLAng:Duration xmi.id="mofid:12499840"

value="100.0"
unit="mS"/>

The semantic model of electronic service provision is
shown in Figure 2. Service usages are events, occurring
over a period, with the possibility of failure. They are asso-
ciated with an operation, which forms part of an electronic
service. They are also associated with the client that caused
the usage. Although the model of service usage for appli-
cation services presented here is simple, it is explicit and
fairly unambiguous. It serves as a reference for the defini-
tion of terms seen in the syntax of the Electronic Service
SLA. The syntactic and semantic models are co-located in
a single model, and the terms in the syntactic model are as-
sociated with elements in the semantic model in order to
define their meaning.

As stated above, the SLAng meta-model also includes
OCL constraints that give meaning to condition statements
in the language. The following is the top-level invariant
defining the meaning of performance and reliability for
Electronic Service SLAs:
contextcontracts::es::ServerPerformanceClauseinv:
operation→collect(o : contracts::asp::OperationDefinition|
o.operation

)→forAll(o : services::Operation|
observedDowntime(o)< (timeRemaining(-1)? (1 - reliability)))

This expression is explained in detail in [22]1. It
relies on a number of function definitions, such as
observedDowntime defined in the specification. The total
amount of OCL for this constraint runs to about 50 lines.

S erviceUsage

+failed:B oolean

Operation

(from services)

+name:S tring

E lectronicS ervice

(from services)

P eriod

(from services)

+duration:Duration

S erviceC lient

(from services)

+name:S tring

E vent

(from services)

+date:Date
serviceC lient+

serviceUsage+

*

C lientUsage

electronicS ervice+

operation+

1..*OperationT oE S

serviceUsage+

*

operation+

UsageOperation

Figure 2. Model of electronic service usage

In contrast to other SLA and policy languages, SLAng
does not include any intrinsic extensibility mechanisms,
such as the capacity to define new sources of service perfor-
mance data or composite obligations regarding the perfor-
mance of services. It is our belief that languages providing
these facilities without insisting on a strong supporting se-
mantic definition for them pose a risk to the parties to the

1The expression is slightly modified from [22] as a result of testing
and developing the meta-model and constraints using the generated SLA
checker. However, its intent is the same and its structure is quite similar.

3



SLA, as it is too easy to define ambiguous contracts, and in
fact hard to define unambiguous ones (consider the 50 line
OCL definition of performance and reliability discussed
above). Instead we aim to provide useful and unambigu-
ous contracts as the core definition of SLAng, and suggest
that SLAng can be extended by modifying the meta-model
and defining new constraints relating syntax to service be-
haviour, if necessary, and then with care. Of course, mod-
ifying the language necessitates the modification of SLA
checkers, and this further motivates the need for a checker
to be automatically derived from the language specification.

In this section we have presented an overview of the
SLAng language and its specification. For a more detailed
discussion of the language, including a discussion of design
decisions and objectives, and a comparison to other SLA
languages and technologies, please refer to [22].

3 Generating an SLA checker

The SLAng meta-model and constraints, as used in the lan-
guage specification, are a model of ideal service provision
in the presence of SLAs. The model describes the structure
of SLAs, and the structure and behaviour of services in the
real world. The constraints assert that we expect the ser-
vices to behave in a manner consistent with the SLAs that
apply to them.

The meta-model can alternatively be interpreted as a
model of data describing the world, and the set of condi-
tions necessary for those data to be considered free from vi-
olations. If we interpret the meta-model in this way, then we
can produce a computer program capable of holding those
data and checking them, to see whether services are behav-
ing in the way that we want them to, i.e. without violations
of SLAs.

The process of implementing the checker program has
the potential to introduce errors, such that the program ei-
ther misses violations defined by the language specification,
or reports violations that have not actually occurred. More-
over, every time the language is altered, during its devel-
opment, or in response to changing requirements, check-
ers would require reimplementation. The cost of imple-
mentation and the potential for errors can be substantially
reduced by automatically generating the checker from the
specification. The SLAng meta-model is ideally suited to
this approach: It is a MOF model, which may be repre-
sented in XMI, and the constraints are in the textual for-
mat of the OCL. It is therefore entirely machine readable.
Moreover, a standard already exists for transforming MOF
models into code, called the Java Metadata Interface (JMI)
standard [14]. It defines a set of Java interfaces for manip-
ulating models based on the structure of their meta-model.
Finally, at least one implementation of an OCL interpreter
is freely available.

All that is necessary in order to implement a checker for
SLAng SLAs is to generate the JMI interfaces and an imple-
mentation for the SLAng meta-model, and attach an OCL
interpreter that can check constraints by querying these in-
terfaces. This approach is shown in Figure 3 in which thick
arrows represent code generation, and thin arrows represent
data flow.

Syntax model Semantic model

Constraints

Code
Generator

Java classes
for SLAs

Java classes
for events

OCL
interpreter

Figure 3. Generating an SLA checker from the
SLAng meta-model

To achieve this goal we found it necessary to implement
a JMI generator. As discussed in the related work sec-
tion, this was needed because previous generators did not
offer adequate flexibility over the type of code generated.
We combined the resulting generated data structures with
the OCL2 interpreter implemented at Kent University [11],
which features an extension allowing it to evaluate OCL
constraints over plain Java objects using Java reflection.
The design of the JMI generator is discussed in more de-
tail in the next section. The design of the resulting checker
is discussed in detail in Section 5.

4 Design of the JMI generator

The JMI generator is implemented in Java, and follows the
design shown in Figure 4. It is heavily dependent on the
Velocity Template Engine (VTE) [10], developed as part of
the Apache project. Similar to Java Server Pages (JSP) [5],
or PHP [6], Velocity is a tool for generating text from pre-
defined templates. These templates are text files that in-
clude fields delimited using special characters. The VTE is
configured with these templates, and also extra data called
‘context’. The templates are parsed by the VTE: ordinary
text is passed straight through; the fields in the templates ei-
ther control the order of parsing, for example by specifying
optional or repeated sections, or indicate that data from the
context should be inserted. By varying the context, several
outputs can be produced from the same template.
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SLAng
meta-
model

XMI

Velocity
templates

for JMI

Poseidon 
UML Editor

JMI
interfaces

and
implemen-

tations
JMI generator

Read
XMI

Create
Velocity
context
objects

Velocity
template

engine
XMI

reader/
writer/

DTD

Figure 4. Design of the JMI generator

The templates in our implementation are taken from the
JMI specification, and translated into Velocity’s template
syntax. The JMI specification requires the following Java
types to be produced, each of which is contained in its own
file:

• For each class:

– A ‘class proxy’ interface, for creating and finding
instances of the class.

– An ‘instance’ interface, for editing properties and
invoking operations of instances of the class.

• For each association: An ‘association proxy’ interface
for creating and querying pairs of associated instances.

• For each package: A ‘package proxy’ interface en-
abling the discovery of class proxies, association prox-
ies and subpackage proxies.

• For each enumeration:

– An interface type for enumeration values.

– A class containing static exemplars of enumera-
tion values.

• An XMI reader interface.
• An XMI writer interface.

The generator includes a template for each of these ele-
ments. Figure 5 shows a fragment of the template for the
instance interface that generates accessor methods for at-
tributes. Figure 6 shows the template applied to the context
data for theServiceUsage class shown in Figure 2.

Except in the case of enumerations, the JMI specification
only defines interfaces, but does not indicate how they are to
be implemented. The generator therefore also includes tem-
plates for implementations of each of the above elements.
The generator has a template to produce an XMI DTD fol-
lowing the pattern described in the XMI standard.

The context for each of these templates is drawn from the
particular MOF model for which a set of JMI interfaces is
being generated. In our case this is the SLAng meta-model.
The meta-model is exported from a modelling tool in an

Figure 5. Template for attribute methods on
JMI instance interface

Figure 6. JMI interface to service usage data

XMI format file. The first stage of the JMI generator reads
this file and creates an in-memory representation of it.

This initial in-memory representation of the API is not
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a suitable context for the Velocity templates, as it reflects
the structure of the XMI file, rather than the structure of
the templates. Velocity templates can only perform quite
simple data manipulation (they lack recursion, for example,
which makes it difficult to navigate data structures in the
context). They must therefore be supplied with their context
data in a form that closely reflects the way it is used in the
template. The second stage of the generator creates a num-
ber of different context objects, appropriate to the Java files
that must be generated, using the data from the in-memory
representation of the XMI file.

In the third stage of its operation, the VTE is invoked us-
ing the generated context objects and the JMI templates, in
order to generate the requisite JMI Java code. This is placed
in the appropriate places in a package directory hierarchy on
the file system.

5 The SLA checker

The SLA checker consists of three major components:

1. The automatically generated JMI interfaces and imple-
mentation for holding SLAs and event data.

2. The Kent OCL implementation, with SLAng con-
straints loaded, for checking whether SLAs have been
violated.

3. An API wrapper, that allows checks to be requested,
and returns lists of violations that have been found.
This part is hand-written in our implementation, be-
cause it is independent of the structure and semantics
of the SLAng language.

The checker may be incorporated in electronic service
systems wherever SLAs need to be monitored. It is used as
follows:

1. The checker is instantiated.
2. The static elements from the semantic model are in-

stantiated or loaded from an XMI file. These el-
ements, with types such asElectronicService ,
ServiceClient and Operation represent knowl-
edge that the checker has about the service or services
being monitored. The model is manipulated using the
generated JMI interfaces.

3. One or more SLAs are instantiated or loaded from an
XMI file, again using the JMI interfaces.

4. Associations are established between the service com-
ponents defined in the SLAs and those components in
the service model created in Step 2. This is the mo-
ment when it is necessary to have a clear understand-
ing of to what the terms in the agreement refer. The
links between the elements are created using the JMI
interfaces.

5. Monitoring data is provided to the component by in-
voking the various ‘create’ methods found on the
JMI API (e.g. createServiceUsage() on the
ServiceUsage class proxy interface). These data are
associated with the relevant static elements in the ser-
vice model, created in Step 2.

6. Periodically, the check methods on the violations API
may be invoked. These return lists of violations, if any
exist.

The instruments measuring the performance of the ser-
vice are not part of the SLA checker, so must be imple-
mented separately. For a given SLA, a combination of the
descriptions included in its terms section, and the reference
model of the service included in the language definition
(Figure 2) provide the guidance as to what data these in-
struments must provide.

To demonstrate the SLA checker and to assist in the de-
velopment of the SLAng semantics, we have implemented
a browser that allows the editing of SLA and event data, via
a tree-view of the model. This relies on the reflective facili-
ties of JMI, which allow each element in a model to contain
a link to its corresponding meta-element in its meta-model.
The meta-model in this case is the MOF model instance rep-
resenting the SLAng meta-model. The representation of the
SLAng meta-model is only necessary when using the user-
interface, and would not be required when using the checker
as a component.

The user-interface also allows interactive editing and
checking of the constraints over the SLAng model. The de-
sign of the checker is shown in Figure 7. A screenshot of the
user interface is shown in Figure 8. The leftmost panel in
the user interface contains the tree representing the SLAng
model (SLAs and events). The middle panel lists the con-
straints over the model, and the rightmost panel allows the
editing of constraints.

SLAng
JMI

Kent
OCL

inter-
preter

Reflective
browser

MOF
JMI

SLAs/
Service
models

SLAng
meta-
model

XMI

SLAng
Constraints

Violations
interface

Violations
reporting

User interface

Checker component

SLAng
XMI

reader

MOF
XMI

reader

Figure 7. Design of the SLA checker
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Figure 8. Screenshot of the SLA checker user
interface

6 Evaluation

6.1 Deployment of the SLA checker

We have tested the SLA checker by deploying it to moni-
tor the performance of an EJB application. The application
is an auction management system developed by an indus-
trial collaborator. SLAs are potentially very useful for auc-
tion applications, which typically involve multiple organisa-
tions, with mission-critical performance requirements. For
the purposes of this evaluation we monitored thelogin op-
eration using an SLA, a fragment of which is used as an ex-
ample in Section 2. The application is deployed in the pop-
ular application server JBoss, which implements the Java 2
Enterprise Edition (J2EE) specification [4], using Apache
Tomcat to serve the web front-end [2].

The architecture of JBoss is based on the Java Manage-
ment eXtensions library (JMX). In this component-based
architecture, all functionality is deployed as ‘managed
beans’ (MBeans), Java components that expose meta-data,
configurable properties and lifecycle management methods.
The JBoss distribution and default configuration includes
MBeans implementing EJB containers, JNDI naming ser-
vices, transactions, and many other services. We have de-
ployed the SLA checker as an MBean, meaning that it has
one instance per instance of the JBoss server. It is made
available to other MBeans and to deployed EJBs via the
JNDI naming repository.

To provide external access to the SLA checker, we im-
plemented a small J2EE application called ‘The SLAng
Control Panel’. This consists of a single JSP page pro-
viding an interface to a stateless session bean. This bean
in turn delegates operations to the SLAng checker. The
main operation provided by the checker over this interface

is checkAll() , which causes the component to evaluate
the SLAng constraints over its internal model of SLAs and
service data, and return a list of violations, if any exist.

Auction
Application

JSP

SLAng
Control
Panel

JSP

Tomcat JBoss

Apache
JMeter

Web
browser

HTTP

HTTP

Auction
Applica-
tion EJB

SLAng
Checker
Compo-
nent

SLAng
Control-
Panel
EJB

Client-side
proxies

Server-side
interceptors

TIm
er

Figure 9. The SLA checker component de-
ployed to monitor an EJB application

Service performance information is passed to the SLAng
service by a server side interceptor configured as an option
of the JBoss container configuration. JBoss remoting op-
erates using a stack of interceptors on both the client and
server side. These allow different types of functionality
to be added to the communication channel independently,
such as transaction management, security, and the commu-
nication protocol itself, which is managed by the outermost
interceptor on client and server sides. For the purposes of
evaluating the SLAng component, we added an interceptor
on the server side to measure time spent processing EJB re-
quests. The interceptor accesses the SLAng service using
JNDI and invokes thecreateServiceUsage() , method
on its JMI interface to record the measured time.

Apache JMeter was used to generate a variety of loads
on the service [3].

6.2 Results

In this section we evaluate the SLA checker on three points:
The ease of implementation of the checker; the ease of de-
ployment of the checker in its intended context (in this case
to monitor the auction application); and the performance of
the checker.

Implementation: Effort in implementing the checker
falls into three categories: implementing the JMI genera-
tor; implementing the SLAng language specification that is
the input to the generator; and implementing the remain-
ing code for the component, which mainly involves the in-
tegration of the OCL evaluator component and the provi-
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sion of an API for requesting checks and reporting vio-
lations. Of these three categories, the first two could be
speciously discounted on the grounds that they are separate
efforts from the implementation of the actual component. If
this were the case, then implementing the component would
have taken around 1 man-week of labour. In fact, the to-
tal amount of labour has been closer to 1 man-year, and
JMI generator, language and component have co-evolved to
some extent. Indeed, as discussed below, the JMI generator,
or at least it’s templates will have to continue to adapt in the
face of performance requirements that are somewhat related
to the domain of the application, i.e. checking SLAng con-
tracts. The SLA checker consists of approximately 115,000
lines of code (including blank lines and comments) out-
side of standard libraries of which 77,000 were generated,
36,500 form the implementation of the OCL evaluator and
1,500 were hand written.

Deployment: The checker was straightforward to deploy
into the JBoss application server. This is mainly because
JBoss’s architecture is expressly designed to support the
deployment of new services and components. However,
the JMI interfaces also contribute by providing a clear API
through which to deliver service performance data, and the
XMI reader interface and implementation makes loading
SLAs and service models into the component simple. Im-
plementing the SLAng control panel application and in-
tegrating the component into JBoss took 2 weeks for a
programmer not previously intimate with the workings of
JBoss.

Performance: One of the main claims of this paper is
that by automatically generating the SLA checker from the
language specification, errors in interpreting SLAs can be
avoided. Our testing of the component has revealed many
errors in the definition of the SLAng language, resulting
from the fact that the original specification was developed
without the assistance of an OCL interpreter. We also dis-
covered several bugs in the OCL interpreter, although these
caused it to conspicuously fail, rather than to return incor-
rect results. We have not yet detected any errors of the type
mentioned above, and although we have yet to conclude a
systematic testing of the component, we believe that this is
encouraging.

However, the major problem with the SLA checker is
its inability to scale. This is manifest in two ways: Firstly,
and most seriously, the time taken to evaluate the OCL con-
straints is highly correlated to the size of the model, and is
far too long for models containing realistic amounts of ser-
vice data. For a data set of 1000 service usages, the client
throughput constraint compares every pair of usages to de-
termine if they occur too closely together. If none do, this
results in a million comparisons, and takes 20 minutes on

a PC with 1.7GHz Intel Pentium 4 processor. The evalu-
ation is slow due to a combination of factors: The OCL
interpreter performs almost no optimisations, the interpre-
tation of the OCL is innately expensive, and the data model
over which the expressions are evaluated offers no short-
cuts, such as indices.

The second issue is related. In our current implementa-
tion of the JMI interfaces all data is represented as Java ob-
jects stored in main memory. Since we have implemented
no policy for removing or persisting old data, this leads in-
evitably to memory exhaustion as the application continues
to be used. Moreover, the amount of service usage data that
can be checked is restricted by the amount of main memory
available to the virtual machine in which the component is
deployed. This seems an unacceptable bound on what is in
essence a data processing application.

To correct these issues without discarding the approach
altogether requires some reengineering. The data model
needs to be backed by a database. This could be either
object oriented, or the translation to a more conventional
model could be managed by the generated Java code for a
particular model. Clearly not all data can be assumed to
be in memory at the same time, and this may need to be
reflected in the interface to the model data. The evaluation
speed of the OCL constraints could be improved by translat-
ing it to Java, or possibly SQL (with some reduction in ex-
pressive power), rather than interpreting it. We gained some
improvement in evaluation time by adding results caching
to the OCL interpreter. Further optimisation of evaluation
is required, and if the constraints are still to be evaluated
across a generated interface, the generated interface may
have to provide indices to assist in evaluation, possibly re-
sulting in a closer coupling between interface standard and
OCL evaluator.

Clearly these refinements should be the subject of further
research.

7 Related work

In [22] we provide a detailed comparison of SLAng with
previous SLA languages, focusing on the extent to which
these languages provide explicit definitions of their terms
and conditions. Our use of an explicit model for this seems
to be quite novel, and it is this feature of the language that
allows us to generate the checker automatically. We are
not aware of any other attempt to automatically generate
a checker for an SLA language.

Our implementation closely resembles that of the Kent
OCL2 interpreter, that we employ to detect violations. Parts
of the implementation of the OCL2 checker were generated
from models of the OCL2 language syntax [11]. More-
over, its checks may be evaluated over models stored in Java
classes generated by the Kent Modelling Framework, a code
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generator similar to our own discussed below. In this sense
the OCL2 interpreter uses automatically generated repre-
sentations of both its syntax and semantics, and so is quite
similar to the SLA checker. However, the OCL2 interpreter
does not maintain any explicit representation of a large part
of the language semantics, the process of interpretation.

Our work also bears some resemblance to efforts to em-
bed requirements monitors in software for runtime valida-
tion of systems. Systems for this purpose consist of a lan-
guage for expressing the requirements, coupled with a map-
ping onto monitoring solutions. Representative examples
are: the Java-MaC system [15] which automatically em-
beds monitors in Java code using a combination of bytecode
rewriting and runtime libraries; and the KAOS-FLEA [13]
system in which requirements specified using the KAOS
methodology are monitored using the FLEA monitoring
system coupled with manually implemented event detec-
tors. These approaches are of comparable expressive power
to the use of UML/OCL to describe constraints on a system.
JavaMaC seems to provide extra advantages in terms of au-
tomating the instrumentation of the system, but in fact the
requirements must be expressed in terms of the structure of
the Java code being instrumented. The degree of abstraction
at which the requirements are specified tends to determine
the degree to which the placement of monitors can be auto-
mated.

Generating program code from UML diagrams is an
important step in the Model Driven Architecture (MDA)
methodology. A number of systems to achieve this have
been developed with varying degrees of flexibility in the
specification of their output. However, we found none to
be ideal for our purposes, and elected to implement a gen-
erator by hand instead.

Probably the most commercially significant generator is
the Eclipse Modelling Framework (EMF) [7]. The EMF
generates specific repositories from UML meta-models ac-
cording to a pattern similar to JMI. However, it is not tem-
plate driven, so we would have no control over the imple-
mentation of the repository. If, as suggested in the previ-
ous section, we need to implement a repository backed by a
database, it would be difficult to achieve using the EMF.

Another alternative is the AndroMDA tool [1], imple-
mented using Velocity templates. The architecture of this
tool is essentially identical to that presented in Section 4.
Custom templates can be configured by the user, and the
tool parses XMI representations of models and makes avail-
able standard context objects. However, as stated above,
Velocity templates do not have powerful control structures.
Without the ability to modify the structure of the context
objects to preprocess model information it is impossible
to generate some outputs using AndroMDA. For example,
the XMI DTD requires the use of transitive closure across
inheritance relationships in the model, which cannot be

achieved in the template.
A powerful alternative is that implemented in the Kent

Modelling Framework, version 3 [9]. This tool evaluates
string-typed OCL expression over models to generate pro-
gram text. This approach is potentially very powerful, since
OCL is recursive so can calculate arbitrary functions over
the model. However, the OCL expressions are hard to write,
particularly when a ‘generation state’ has to be maintained,
containing things like a list of unique identifiers used. For
this reason we preferred to use more conventional tem-
plates.

In future we would like to see a combination of the
template-based approach of AndroMDA, and the more
powerful control structures available from OCL. One pos-
sibility is the use of PHP, a template language with sophis-
ticated control structures. The use of PHP to generate code
from models could be facilitated by providing a mapping
of the MOF model to PHP classes. This would provide
a standard interface to model data, comparable to the fa-
cilities provided by the JMI for Java, effectively allowing
PHP pages to load their own context model before generat-
ing code. The resulting PHP pages would be more reusable
than the templates in our implementation, as they would
not depend on external code to represent and preprocess the
context data.

8 Conclusion

This paper has described our use of MDA technologies
to producing an implementation of an SLA checker, au-
tomatically, from the specification of our SLA language,
SLAng. The approach means that the SLA checker can be
regenerated automatically whenever the language changes,
and we have argued that because the process of generating
the checker is standard and independent of the semantics of
SLAng, then semantic errors are less likely to be introduced
into the checker. In these two respects, our experience can
be seen as supporting two claims of the MDA approach:
reduced costs and increased quality due to a reduction in
human error. Moreover, the approach taken seems partic-
ularly appropriate when generating a checker for SLAs in
which legal considerations may mean that it is important
that the results generated by the component are particularly
free from error with respect to the specification of the lan-
guage.

The possibility of generating such a checker from the
language specification can also be seen as a justification for
our original choice of an explicit meta-modelling approach
to defining SLAng. Designers of other languages may wish
to consider adopting the approach as it offers the possibility
to generate all or part of an interpreter for a language auto-
matically. Where an explicit representation of the semantic
primitives of a language is practical, an OCL interpreter can
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be employed to check that these semantic elements are con-
sistent with statements in the language, which is effectively
what the SLA checker does when checking for violations.

In the process of implementing the checker we evaluated
several code generation tools. These are discussed in the
related work section. We believe that a template based tool
is the easiest to use when performing code generation from
models, but that the template language used should be ex-
pressive enough to allow preprocessing of the model data to
be expressed in the template. We have proposed PHP as a
possible suitable technology for future use.

Our evaluation of the checker revealed some serious
practical considerations. In the case of the SLA checker, our
in-memory representation of SLAs and service data takes
the place of, and is in several respects subject to the same
requirements as a database. OCL can be seen as acting
as a query language over the data. Although for restricted
numbers of objects the implementation serves its purpose,
it seems that to achieve scalability both the mapping to im-
plementation and the implementation of off-the-shelf com-
ponents such as the OCL interpreter must be considerably
more sophisticated. This is a consideration beyond SLA
checking, as it is reasonable to assume that large software
development efforts will wish to maintain and check consis-
tency within large repositories of models. Future research
should investigate this mapping further to produce imple-
mentation prescriptions to complement interface standards
such as the JMI.

Our initial implementation of the SLA checker has
served as a proof of concept and as an opportunity to evalu-
ate the technologies employed. It also provides a useful test
platform for refining future versions of the language, since
the previously theoretical constraints and semantic models
can now be tested against real and synthesised scenarios
of service usage. Our future priorities will be to increase
the sophistication of both the SLAng language and its SLA
checker with the aim of producing a broadly applicable, pre-
cise language that can be used cheaply and correctly in re-
alistic situations.2
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