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1 INTRODUCTION

App stores provide a rich source of information
about apps concerning their customer-, business- and
technically- focussed attributes. Customer informa-
tion is available concerning the ratings accorded to
apps by the users who downloaded them. This pro-
vides both qualitative and quantitative data about the
customer perception of the apps. Business information
is available, giving the number (or rank) of down-
loads and also price of apps. Technical information is
available in the descriptions of apps, but it is in free
text format, so data mining is necessary to extract the
technical details.

In this paper we mine the Blackberry World app
store for data to support App Store Analysis. The
technical information we mine is provided by the
free text description of each app. We mine this using
techniques inspired by work on mining natural lan-
guage descriptions for technical information. In this
way, our work resembles work on mining other forms
of natural language product information [6]. Though
there has been work on app store analysis [7], we
believe that ours is the first paper to data mine and
analyse app features and their relationship to non-
technical information.

We find ourselves at a unique situation in software
engineering research: in no previous software engi-
neering development and deployment environment
have software engineering researchers been able to
access publicly available data that links all of these
important attributes:

• The customers’ opinions of software, in the form
of the reviews they leave;

• The popularity of software, in the form of its rank
and/or number of downloads;

• The price charged for software;

• A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro and Y. Zhang
are with the Department of Computer Science, University College
London, Malet Place, London, UK, WC1E 6BT
E-mail: a.finkelstein@cs.ucl.ac.uk, {mark.harman, yue.jia, w.martin,
f.sarro, yuanyuan.zhang}@ucl.ac.uk

• The technical claims made by developers con-
cerning the list of features offered by their soft-
ware.

Of course, this information may not be complete
or fully reliable: customers may, for various reasons,
leave reviews that do not reflect their true opinion. Ei-
ther intentionally or unintentionally, developers may
not be entirely truthful about the technical claims
made. Price information may only concern the price
of the app, and may not include ‘in app purchases’
and other costs associated with using the app. Nev-
ertheless, it is not unreasonable to hope that broad
observations about whole classes of apps may still
prove to be robust; the large number of apps on
which such observations are based tends to support
robustness.

It is important to note that we are extracting claimed
features, though hereinafter we shall often refer to
them simply as ‘features’ for brevity. That is, the
feature information we extract reflects features that
are present in the descriptions of apps, but they are
not necessarily present in the app itself. We believe
that this is an interesting aspect of our app store
analysis: it gives us an opportunity to explore the
relationship between claimed features and other app
store data. Claimed features denote an interesting
technical category in its own right. Whether or not
there is a relationship between claimed features and
features present in the app remains an interesting
topic for another paper.

Specifically, in this paper, we are concerned with the
correlation between the price, popularity and ratings
accorded to apps by their users. We are also interested
in the correlation between these three properties of the
features of the apps. Correlation analysis allows us
to address fundamental questions for any app store,
such as:

1) Do apps that tend to get a higher rating also
tend to be more popular?

2) Do apps that cost the customer more tend to get
a lower rating?
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3) Do the extracted features enjoy any of the above
correlations?

The primary contributions of this paper are:
1) We introduce the concept of Mining App Stores

for business/technical and customer informa-
tion 1. It is important to note that there has been
previous work analysing apps, for example app
security [41], code reuse between apps [36] and
dependence analysis [5]. Our primary concep-
tual contribution is to introduce the idea that
App Stores can be mined for connected sets of
data, allowing us to analyse the relationship be-
tween technical, customer, and business aspects
of the market.

2) We study the distributions of prices and ratings
over all apps. We found a very large number of
zero-rated apps. We find that prices tend to be
lower than $5.00 for most apps, but there are
frequency peaks at ‘round number’ prices, such
as $10 and $20.

3) We present a procedure to mine feature infor-
mation from app descriptions. Our approach
uses natural language processing algorithms to
extract likely feature descriptions as bitri-grams
(i.e., 2-grams or 3-grams). We report the results
of a simple ‘sanity check’ empirical study of 15
software developers, to investigate whether the
extracted bitri-grams capture what the develop-
ers were considered to be meaningful features.
Our results show the developers agreed that 16
out 19 mined bitri-grams were features, while
this happened only in 3 out of 19 cases for
the random bitri-grams. We also observed that,
on average, the developers show high precision
(0.71), recall (0.77) and f-measure (0.73), sug-
gesting that they often classify the mined bitri-
gram as feature and the random bitri-gram as
non-feature. This provides some initial tentative
evidence that the features we extract are mean-
ingful to developers.

4) We empirically investigate the correlations be-
tween price, rating and popularity for free and
non-free apps and their claimed features. For
both we find evidence for a strong correlation
between ratings and downloads; highly rated
apps are more frequently downloaded, as one
might expect. We find little evidence of correla-
tions between price and either rating or popular-
ity for apps, but we did find evidence for a mild
inverse correlation between feature price points
and median feature rating for the price point;
customers tend to rate higher priced features
less favourably than lower priced features. We
also find that free apps have significantly (p-

1. Strictly speaking this claim attaches to our previous MSR 2012
paper [12]. This is a considerably extended version of that work,
which develops the research agenda set out in the MSR paper.

value < 0.001) higher rating than non-free apps,
with a moderately high effect size (Â12 = 0.68),
suggesting that users are not entirely insensitive
to the pricing choices of developers.

The rest of the paper is organised as follows: Section
2 introduces the overall app analysis framework. Sec-
tion 3 describes the metrics that capture the attributes
of a feature. Section 4 presents the design of our
empirical study, the results of which are analysed
in Section 5. Section 6 discuss the limitations of the
present study, while Section 7 describes other work
related to ours. Section 8 concludes and presents
directions for future work.

2 APP ANALYSIS FRAMEWORK

Our approach to app store analysis consists of four
phases shown in Figure 1. The first phase extracts raw
data from the app store (in this case BLACKBERRY
APP WORLD2, though our approach can be applied
to other app stores with suitable changes to the ex-
traction front end).

In the second phase we parse the raw data extracted
in the first phase to retrieve all the available attributes
of each app relating to price, ratings and textual
descriptions of the app itself. In the third phase we
leverage on app descriptions to identify technical in-
formation, in particular, we use data mining to extract
the features of apps from their textual descriptions.
The final phase computes metrics on the technical,
business and customer information extracted.

The rest of this section explains each step of our
approach in more detail, while Section 3 presents
the metrics we introduced to analyse the information
mined.

Fig. 1. Overall App Analysis Architecture: A four
phase approach extracts, refines and stores app infor-
mation for subsequent analysis.

Phase 1 (Data Extraction): We implemented a cus-
tomised web crawler to collect raw webpage data
from the Blackberry app store. Due to the existence
of a large number of apps, the Blackberry app store
does not provide a direct way to access all the apps
iteratively. Thus, our crawler collects app data in two
steps. First, it collects all category information from
the app store and scans each category page to find the
list of URLs of all the apps in each category. It then

2. http://appworld.blackberry.com/webstore/
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visits the webpage of each app within each category
and saves it as raw app data.
Phase 2 (Parsing): We extract a set of attributes
for each app by parsing the raw data accord-
ing to a set of search rules. The search rules are
based on HTML tags identified manually, each of
which specifies a unique signature for each at-
tribute of interest. For example, we can retrieve
the title of an app by searching the value of the
hh1i HTML tag with the attributes ‘id=title’ and
‘class=awwsProductDetailsContentItemTitle’.

The extraction process cannot be entirely auto-
mated. Some attribute fields populated by humans
require a further refinement process that accounts for
the various ways in which the humans who populate
the App Store data might provide equivalent infor-
mation. For example, the values of the price field for
a free app could be ‘0’, ‘Free’, ‘Free for one week’
or a word that means ‘free’ in a language other than
English. We assign a value 0 for the price of all such
apps.

We developed search rules for the Blackberry apps
to capture information about Name, Category, Icon,
Description, Price, Release time, Version, Size, Lan-
guage, Customers’ Rating, Number of Ratings and
Rank of Downloads. However, the analysis of this
work is focused on the Category, Description, Price,
Customers’ Rating, and the Rank of Downloads at-
tributes.

Once this manual step is complete the entire pro-
cess is fully automated (until such time that the app
store changes structure). To apply our approach to a
different app store we need modify only the address
information in the data extractor and the search rules
in the parsing phase to accommodate the different app
store structure and data representations, respectively.
Phase 3: (Data Mining Features): App features can
be defined in many ways. For our purposes, feature
information is data mined from app descriptions. For
example, “7-days weather forecast” is a feature mined
from apps in the weather category while “receive
facebook message” is a feature mined from IM &
Social Networking apps. The definition of an app
feature (as mined by our process) is as follows:

“A feature is a claimed functionality offered by an
app, captured by a set of collocated words in the app
description and shared by a set of apps in the same
category.”

Since app descriptions are written in natural lan-
guage, extracting features from the text requires data
mining techniques usually associated with Natural
Language Processing (NLP). We developed a simple
four-step NLP algorithm to extract feature informa-
tion and implemented it using the Natural Language
Toolkit (NLTK), a comprehensive natural language
processing package, written in Python [29].

Our feature extraction algorithm is presented in Al-
gorithm 1. The first step extracts raw feature patterns,

Stay informed and prepared with live local weather,

severe weather alerts, in-depth forecasts, camera views,

and radar maps. The features of the WeatherBug

application for the BlackBerry Storm include:

*

Live neighborhood weather from over 8,000 weather

stations in the U.S.

*

Current weather, forecast and NWS alerts.

*

7-day and weekend forecasts.

*

radar animation and cloud coverage.

*

View snapshots and time-lapse animations from more

than 2,000 weather cameras

*

WeatherBug Community photos. Share you own weather

photos.

Fig. 2. WeatherBug: An example of description of a
weather app.

thereby identifying the ‘coarse features’ of apps. Fea-
ture patterns are informal patterns which developers
used to list and clarify the features released. Figure
2 shows the description of a non-free Blackberry
weather app, named “WeatherBug”. We will use this
example to illustrate our feature mining algorithm.

In Figure 2, the list starting with ‘*’ is an example
of a raw feature pattern which summarises the main
features of the app. We locate raw feature patterns by
searching HTML list in the description of apps. If the
sentence prior to a HTML list contains at least one
keyword from the set of words “include, new, latest,
key, free, improved, download, option, feature”, the
HTML list is saved as the raw feature pattern for this
app. We apply this process to all the apps in the same
category to create a list of raw features, as shown in
Figure 2.

Algorithm 1 Feature Extraction Algorithm
Require: apps

rawFeatures = [ ]
featureLets = [ ]
for all apps do

if featurePattern exists in currentApp.description then
rawFeatures.append (extractFeaturePattern (currentApp))

end if
end for
for all rawFeatures do

refineRawFeatures (currentRawFeature)
end for
featureLets = findTriaGramCollocation (refineRawFeatures) {NLTK}
features = getGreedyClusters (featureLets)
return features

The second step of the algorithm refines the raw
feature patterns by removing ‘noise’. We first tokenise
the raw feature patterns into a lower case token
stream and then apply the following filtering: First,
non-english and numerical characters are removed
from the token stream. Secondly, incidental, unimpor-
tant ‘noise’ words are filtered out. The determination
of what constitutes such an unimportant word is
delegated to the English language STOPWORDS set
in the NLTK data package. Finally, each remain-
ing word is transformed into its ‘lemma form’ us-
ing the WORDNETLEMMATIZER function from NLTK,
thereby homogenising singular/plural, gerund end-
ings and other non-germane grammatical details. Ta-



5

TABLE 1
An example of a refined feature pattern.

[live, neighborhood, weather, weather, station, us]
[current, weather, forecast, nws, alert]
[7–day,weekend, forecast, radar, animation, cloud, coverage]
[view, snapshot, time�lapse, animation,weather, camera]
[weatherbug, community, photos, share, weather, photo]

TABLE 2
Featurelets: This table shows some examples of the

featurelets extracted by applying the proposed
approach to the weather app description reported in

Figure 2.

Tri-gram collocated tokens Tri-gram association score
[animation,weather, camera] 2891
[neighborhood, weather, station] 2826
[share, weather, photo] 2798
[live, neighborhood, weather] 2792
[time–lapse, animation,weather] 2780
[7–day,weekend, forecast] 2230

ble 1 shows an example of the refined feature pattern
for the weather app example.

In the third step, the algorithm extracts a set of
‘featurelets’ from the refined feature patterns. A fea-
turelet is a set of commonly occurring co-located
words, describing a core function of apps. We perform
a collocation analysis to find words that associate
frequently from the refined feature pattern, built on
top of NLTK’s N-gramCollocationFinder package. We
experimented with the settings for N = [2, 3, 4] and
found that the setting N = 3 generally achieves
best results. The determination of ‘best results’ was
made by the experimentors’ subjective human as-
sessment of whether the resulting n-grams appeared
to be meaningful. However, this human judgement
was more systematically tested in the simple ‘sanity
check’ human study we performed to answer RQ4
(see Section 5.3).

Table 2 shows the featurelets extracted from the
weather app example. Each of the featurelets on the
left column has three tokens, because we used the tri-
gram collocation model here. The right column shows
the tri-gram association score, which indicates how
frequently these tokens are associated together in the
pool of the refined features of all weather apps. For
each category of apps, we rank and select the best
M featurelets based on the NLTK N -gram associ-
ation measures. We experimented with the settings
for M = [100, 200, 500] and chose M = 200 in our
experiments, once again based on the experimentors’
assessment of the choice that produced the more
apparently meaningful result.

Some extracted featurelets are similar
to each other. For example, in Table 2,
featurelets [neighborhood, weather, station] and
[live, neighborhood, weather] share two common
tokens (‘neighborhood’ and ‘weather’). Step 4

TABLE 3
Core Feature: This Table shows the core features (i.e.,
‘bitri-gram’ ) extracted by applying the last step of the
proposed approach to featurelets reported in Table 2

Core feature Optional tokens
[animation,weather] [time–lapse, camera]
[neighborhood, weather] [station, live]
[share, weather, photo] N/A
[7–day,weekend, forecast] N/A

applies a greedy hierarchical clustering algorithm
to aggregate similar featureslets together, as shown
in Algorithm 2. The algorithm treats each featurelet
as one cluster initially. It then repeatedly combines
clusters if their similarity measure is greater than a
predefined similarity threshold.

The similarity measure is the number of common
tokens shared by each cluster, and we chose 0.5 as the
similarity threshold in our experiment, based on our
assessment of result meaningfulness with different
threshold values. The common words from each clus-
ter are extracted as ‘core features’. Table 3 shows the
example of core features extracted from the featurelets
showed in Table 2. We shall refer to a core feature as
‘bitri-gram’ since it can be represented by either a 2-
gram or a 3-gram.
Phase 4: (Analysis): The final phase of our approach
involves the analysis of the mined information. This
phase is application specific. In the analyses presented
in this paper, we collect metrics about apps and their
features and use these in the correlation analysis and
in the user study based on features. These metrics are
defined in Section 3. The mined information could, of
course, support many other analyses, and we make
all our data available to support such subsequent
downstream analyses3.

3 METRICS FOR APP ANALYSIS
We introduce some simple metrics that capture the
attributes of a feature, f in terms of the corresponding
attributes of all apps that posses the feature f . This
allows us to compute useful information about the
features of an app. This section formalises the defini-
tions of these metrics to support replication and future
work.

We shall define our metrics with respect to an
app database, which contains the information ex-
tracted for the app store. Let AR(a, d), AD(a, d) and
AP (a, d) denote the rating, rank of downloads and
price, respectively, of the app a in the app database
d. Let ](s) denote the size (cardinality) of set s. Let
S(f, d) = {a1, . . . , am} such that feature f is shared
by all m apps a1, . . . , am in an app database d.

We can extend AR(a, d), AD(a, d) and AP (a, d)
to the features extracted from app descriptions, by

3. Data from this paper is available at http://www0.cs.ucl.ac.uk/
staff/F.Sarro/projects/UCLappA/UCLappA.html.
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defining the rating, rank of downloads and price of
a feature, f to be the average rating, downloads and
price for all the apps that share f . More formally, we
extend the metric X (X 2 {AR,AD,AP}) defined
from (app, database) pairs to numbers, to a metric
F defined from (feature, database) pairs to numbers,
as follows:

F (f, d) =

P
ai2S(f,d)

X(ai, d)

](S(f, d))

The same approach can be used to extend any
metric X of type

app ⇥ database ! R

to one of type

feature ⇥ database ! R

Algorithm 2 Greedy Feature Cluster Algorithm
Require: featureLets
Require: greedyThreshold

greedyClusters = [ ]
greedySimilarities = [ ]
for all featureLets do

greedyClusters.add (featureLet)
end for
for i = 0 ! len (greedyClusters) - 1 do

currCluster = greedyClusters[i]
for j = 0 ! len (greedyClusters) - 1 do

if i == j then
currSimilairy = 0

else
currSimilairy = getSimilarity (currCluster, greedyClusters[j])

end if
greedySimilarities.add (currSimilairy)

end for
if max (greedySimilarites) > greedyThreshold then

maxIndex = getMaxClusterIndex (greedySimilarites)
mergeClusters (currCluster, greedyClusters [maxIndex])

end if
end for
return greedyClusters

4 THE DESIGN OF THE EMPIRICAL STUDY
This section explains the design of our empirical
study, the research questions we set out to answer and
the methods and statistical tests we used to answer
these questions.

4.1 Research Questions
We are studying relationships between price, rating
and popularity (rank of downloads) for apps and the
features we extract from them. We therefore start by
presenting baseline data on the distribution of these
data.

Popularity is measured in terms of the rank of
downloads, so this distribution is always a mono-
tonically decreasing ranking. Also, since popularity
is measured as a rank position in the league table
of most downloaded apps (rank of downloads) this
means that lower numbers (higher rank positions)
indicate higher popularity on an ordinal scale.

From the app descriptions, we extracted 1,008 dif-
ferent features and so a natural question to ask is how
these features distribute over the apps from which
they are extracted. From the App Store, we extract
rating and pricing information. We also present the
distribution of these data, over both the apps and
features extracted from these apps. These data form
the answer to RQ0:
RQ0: Baseline data on Price, Rating and Feature
Distributions

The next three research questions investigate the
correlation between price, rating and popularity (i.e.,
rank of downloads) for non-free apps and between
rating and popularity (i.e., rank of downloads) for free
apps (those for which the price charged at the point
of download is zero). These questions were addressed
in the conference version [12] of this paper for non-
free apps. In this journal extension of the conference
paper, we also consider free apps, and investigate the
correlations we find in greater depth.
RQ1: Price/Rating Correlation. What is the correla-
tion between the Price (P) and the Rating (R) for non-
free apps, overall and in each category?
RQ2: Price/Popularity Correlation. What is the cor-
relation between the Price (P) and the rank of Down-
loads (D) for non-free apps, overall and in each cate-
gory?
RQ3: Rating/Popularity Correlation. What is the
correlation between the Rating (R) and the rank of
Downloads (D) for free and non-free apps, overall and
in each category?

In the conference version [12] of this paper, we
observed correlation between rating and popularity
rank of downloads), both for the apps themselves, and
also for the features we extracted from them. In this
extended version of the paper, we study this question
in greater detail.

In the Blackberry App Store, at the time we took
our snapshot, it was possible for a reviewer to assign a
zero rating score. It is also possible that the particular
app may have no reviews at all, which would also
yield a zero rating score. It is not possible to distin-
guish between these two types of zero rated score.
Furthermore, we might speculate that an app which
has relatively few ratings available lacks sufficient
evidence for the overall average rating recorded by
users in general.

Therefore, we consider subsets of apps that have
larger numbers of ratings available, and thereby enjoy
a larger evidence base, from which we may draw
inferences about average rating amongst the user
community:
RQ3.1: Rating/Popularity Correlation over all re-
views.
RQ3.2: Rating/Popularity Correlation over review
subsets.

While the features we extract tend to have con-
ceptually appealing names (i.e., bitri-grams), such as
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{near, wifi, hotspot}, we need to know whether
they can be relied upon as meaningful technical items
that a developer would consider to denote a feature.

In the conference version of this paper [12] we
addressed this goal by analysing whether the statis-
tical correlations observed at the app level can also
be observed for the features we extract compared to
the chance that such correlations could be observed
for bitri-grams constructed entirely at random. In
this paper we augment this previous study with a
more human-based analysis. Specifically, we seek to
investigate the degree to which human developers
might believe that the bitri-grams extracted denote
meaningful technical features:
RQ4: Do extracted bitri-grams denote meaningful
features to developers?

Finally, in the conference version of the paper, we
observed that there was no correlation between price
and either rating or popularity. This surprised us,
since we might conjecture that an app developer
would have to try harder, per se, to garner higher
ratings and popularity should they choose to charge
a higher price.

Therefore, we investigate whether focussing on
price ranges (rather than absolute price) might lead to
higher correlation values. We also investigate whether
there is a correlation between price and the number
of features offered: perhaps apps that offer more
features charge a higher price? This motivates our
final research question, which investigates in more de-
tail, the apparent absence of evidence for correlations
involving price:
RQ5: Is there a stronger correlation involving Price
when we ‘zoom in’ on specific ranges of price or
between price and number of features or shared
features in an app?
RQ5.1: Is there any difference in Rating and Popu-
larity for free apps compared to non-free apps?

4.2 Data Employed in the Empirical Study
To answer the research questions, we constructed an
app store database from the Blackberry store, taken by
extracting information from all non-free apps present
on the 1st of September 2011, our census date for
this study. Table 4 shows summary data (i.e., number
of apps, features, mean, median and minimum app
price, rank of downloads, and rating) concerning the
19 categories in this app store database for non-free
and free apps. The price is the price charged to down-
load the app. The rating data is extracted from the
reviews left by customers. The rank of downloads is
the ranking position (relative to other apps) recorded
by the app store for the downloads of the app at our
census date.

We can observe that the number of apps contained
in each category ranges from 45 to 11,504 for non-
free apps and 42 to 1,257 for free apps. The categories

‘Shopping’ and ‘News’ contain the lowest number of
non-free apps (i.e., 45 and 68, respectively), while the
‘Weather’ category contains the lowest number of free
apps (i.e., 42). The categories ‘Reference & Books’ and
‘News’ contain the highest number of non-free and
free apps, respectively.

4.3 Evaluation Criteria
We answer RQ0 by means of graphical analysis. In
particular, we use histograms to visualise how many
apps/features share the same price, rating, and how
many apps share a same feature, over non-free and
free apps.

To answer RQs 1-3 (i.e., investigate the correla-
tion between price, rating and popularity of apps
and features) we use scatterplots to show the rela-
tionship between two sets of data (i.e., price/rating,
price/popularity, rating/popularity) and two asso-
ciation statistics (i.e., the Spearman’s Rank Correla-
tion and the Pearson Product-Moment Correlation)
to measure their statistical dependence. The Spear-
man’s correlation assesses how well the relationship
between two pairs of observations can be described
using a monotonic function, while the Pearson’s cor-
relation is a measure of their linear relationship. Both
statistics range from +1 to - 1, where +1 indicates
perfect correlation and -1 indicates a perfect inverse
correlation. No correlation is indicated by 0.

To provide an in-depth analysis of the statistical cor-
relation between price, rating and popularity (RQ3.2)
we also analysed Spearman’s (Pearson’s) correlations
at a finer grained level by grouping the apps depend-
ing on their minimum number of reviews (i.e., 0 to
9 reviews) and computing the correlation existing in
each group. We visualise these results by means of
graphs reporting, on the x axis, the number of reviews
and, on the y axis, the rho and p-value provided by
the Spearman’s (Pearson’s) test for each group. We
refer to these graphs as correlation graphs.

To answer RQ4 we carried out a sanity check of
our app feature mining technique, to see whether
the feature descriptions extracted from this App Store
are meaningful to humans. We asked the paper’s co-
authors (excluding the ones involved in the study
preparation) and also software developers working in
our other UCL research groups to fill in a simple on-
line questionnaire4. The questionnaire contained both
bitri-grams extracted by our feature mining technique
and bitri-grams created by randomly selecting words
from app descriptions. Each feature is presented to the
users as a small set of collocated words (bitri-gram)
describing a function shared by a set of apps in the
same category. The users were given a list of 38 bitri-
grams (half random, half mined) and the name of the
category to which they belong.

4. The questionnaire is available at http://yuejia.cloudapp.net/
appstore/questionnaire.
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TABLE 4
Blackberry App World: Summary data computed for each category. The number of non-free apps and the

mean price and rating are reported within the number of features mined for each category. Download
information is provided by Blackberry App World as rank over all apps (free and non-free). To give a sense

of the distributions of download rank positions, we present the mean, median and minimum ranks.

Category Name
Non-Free Apps Free Apps

Number of Number of Price ($) Rank of Downloads Rating Number of Number of Rank of Downloads Rating
Apps Features Mean Mean Median Min Mean Apps Features Mean Median Min Mean

Business 350 75 12.57 19063.48 18031 817 1.79 874 69 19491.55 16723 135 1.65
Education 576 58 5.68 22222.18 21739 1595 1.38 353 32 19024.98 15823 933 1.92
Entertainment 908 64 5.76 18413.13 16364 134 1.86 565 38 9721.01 6985 8 2.62
Finance 193 57 4.38 19593.59 16619 251 1.93 513 66 15394.49 12826 96 2.01
Games 2604 36 2.64 15919.49 13550.5 153 2.13 928 36 7109.65 5132.5 9 2.99
Health & Wellness 626 53 15.95 19852.88 18295.5 266 1.58 329 54 16168.94 13771 29 1.79
IM & Social Networking 150 55 4.42 14242.26 11513 22 2.55 305 60 8932.63 6171 0 2.29
Maps & Navigation 245 58 12.9 17140.75 13909 655 2.16 263 52 10489.11 7199 5 2.45
Music & Audio 499 60 2.05 24523.58 27248 204 0.99 1008 53 12699.36 10416.5 6 2.46
News 73 29 2.4 17485.36 15391 1393 1.73 1257 59 16037.91 13587 106 1.96
Photo & Video 393 72 2.51 21126.92 22879 15 1.4 192 50 7758.24 6064.5 33 2.47
Productivity 503 68 6.32 15124.95 11924 252 2.54 367 49 11050.12 8484 14 2.52
Reference & eBooks 11584 70 4.27 30388.93 31214.5 1155 0.12 366 22 18332.74 16800.5 16 1.67
Shopping 45 23 2.7 14785.51 11708 2543 2.33 229 41 13256.41 9933 56 2.08
Sports & Recreation 239 27 4.81 18808.38 16019 943 2.05 450 45 10509.9 8105.5 17 2.87
Themes 10936 32 3.12 21055.28 21254.5 18 1.68 552 29 5382.71 2836.5 27 3.35
Travel 764 57 4.81 25439.53 26112.5 553 0.67 441 56 13792.16 10828 12 2.38
Utilities 1362 66 4.61 16294.49 13994.5 63 2.32 950 59 11586.39 8932.5 7 2.67
Weather 58 48 7.51 12392.38 10288.5 309 2.44 42 39 7489.12 5193.5 21 2.61
All (avg) 1689.89 53.05 5.76 19151.21 17792.34 596.89 1.77 525.47 47.84 12327.76 9779.58 80.53 2.36

We set out to perform a ‘sanity check’ and not a full
human-subject empirical study. Nevertheless, we did
seek to minimise potential sources of bias, where we
could: The same number of bi-grams and tri-grams
were present in both sets. The developers were asked
to say whether they believed that a given bitri-gram
represented a feature or not. With the exception of
two authors (who also participated) none of those
polled had received any training nor any background
on the research reported and none of those polled had
previously seen any of the bitri-grams.

A total of 15 people filled in the questionnaire
and their answers have been analysed by using both
descriptive and accuracy measures. We use a his-
togram to show the users’ agreement across features.
To evaluate the classification accuracy we employed
three common measures (i.e., Precision, Recall and
F-measure) which are computed from the confusion
matrix of Table 5. Precision allows us to assess the
‘correctness’ of the responses provided by a user (the
degree to which a user agrees that our extracted
feature bitri-grams were true features), while Recall
allows us to measure the ‘completeness’ of user’s
responses (the degree to which they agreed with all
of our bitri-grams). More formally:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is True Positives; FP is False Positives and
FN is False Negatives.

To have an indication of a balance between correct-
ness and completeness we computed the harmonic
mean of Precision and Recall (i.e., F-measure), defined
as follows:

F �measure =
2TP

2TP + FP + FN

TABLE 5
The Confusion Matrix: Each column of the matrix
represents the number of instances in a predicted

class, while each row represents the instances in an
actual class. A True Positive (Negative) is an instance
that was true (false) and has been correctly classified
as true (false), while a False Positive (Negative) is an
instance that was true (false) and has been wrongly

classified as false (true).

Actual
True False Total

Predicted True TP FP TP + FP

False FN TN FN + TN

Total TP + FN FP + TN N

We do not claim that this study is a thorough full-
scale empirical investigation of the question underly-
ing RQ4. Such a study would require a paper in its
own right. Our results, in answer to RQs 0, 1, 2 and
3 provide evidence that the bitri-grams we extract do
capture something that carries meaning. In our answer
to RQ4, we seek to investigate whether there is any,
prima facie, evidence that this same something might
be regarded as denoting ‘a feature’ by people with
technical software development experience.

To answer RQ5 we investigated the possibility that
there may be correlations between price/rating and
price/download in sections of the data (perhaps for
specific price ranges). We therefore further analysed
these relationship by zooming into the scatterplots
used to answer RQ3. We also considered the median
rating and rank of downloads for each price point
(for apps and features) to explore whether there is
a correlation between these price points (chosen by
developers) and the median rating (or popularity)
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given by customers for all apps (or features) charged
at the associated price point. Moreover, we analysed
whether there is any relationship between apps’ price
and their number of features or number of shared
features by means of scatterplots and Spearman’s and
Pearson’s correlation tests.

To answer RQ5.1 we investigated whether there is
any statistically significant difference between the free
and non-free apps. We also report on the effect size
of any such significant differences, treating the apps
for which we have data as a sample of all possible
apps and using a non-parametric standardised effect-
size measurement (Vargha and Delaney’s Â12 [1]) as
a rough indicator of the degree of difference between
the two types of app (free and non-free).

5 RESULT ANALYSIS
5.1 RQ0. Baseline data on Price, Rating and Fea-
ture Distributions
Figure 3 shows the distributions of prices, ratings and
features, over both apps and the features extracted
from the apps.

There are fewer free-apps than non-free apps (see
Figure 3(a)). The largest ‘price point’ (i.e., > 10, 000
apps) is at $0.99, dropping to approximately 5,000
priced at $1.99 and thereinafter, the number of more
expensive apps gradually decreases. Note that in this
app store, prices are set at discrete dollar intervals
($0.0, $0.99, $1.99, $2.99 . . .).

Despite the lower numbers of higher priced apps
overall, we can observe peaks in the number of apps
at the ‘round number’ price points ($10, $20 and $30),
though these prices are, more precisely $9.99, $19.99
and $29.99 respectively. We observe a similar pattern
for the prices of features extracted from the apps (see
Figure 3(b)). Since the attributes of a feature (such as
prices) are aggregates over all apps that share that
feature, the averaging effect produces a more fine-
grained distribution of possible price points.

There are also a large number of zero-priced fea-
tures (i.e., 1,223). These are, by definition, features
only contained in zero-priced apps. These features
are not shown in the graph in Figure 3 since this
column would be an outlier, thereby making the
differentiation of other columns harder to read.

We found a very large number of zero-rated apps
(see Figure 3(c)). Looking at the zoom-in subfigure for
non-zero rated apps (Figure 3(d)), we observe that the
majority of these apps (i.e., more than 2,500) are rated
4 or 5 star, about 2,000 apps are rated between 3 and 4
star, about 1,500 apps are rated between 2 and 3 star,
and fewer than 1,000 apps are rated between 1 and 2
star.

The rating over features also reveals that a relatively
high number (140 of the 1,008 features extracted) have
a zero rating. These features, by definition, are only
contained in apps that have a zero rating. They could

be removed as being of little consequence, but we did
not do this (or any other filtering of our algorithm’s
results), since we seek to validate our feature selection
mechanism and do not want to bias these (or other)
results by experimenter interference.

Since feature ratings are averaged over all apps that
share the features, we see a finer-grained distribution
of ratings for feature ratings than for app ratings,
clustered around the original star scale. Not surpris-
ingly, like the features’ price distribution, this feature
rating distribution is similar to the corresponding
distribution for apps.

We report the number of features per app in Figure
3(g), which reveals that this distribution follows a
power law: a very few (69 apps) app have more than
40 features, while a few (324 apps), have more than
20, while the vast majority (40,773 apps), have 10
or fewer features. In fact, more than a half of the
apps (85%), have fewer than than 5 features. This is
partly due to the fact that 65% of these apps belong to
categories such as ‘Themes’ and ‘Reference & eBooks’,
which provide users the sole functionality to down-
load contents (e.g., a theme or a book) and partially
due to the fact that there is no feature pattern in their
descriptions. In the rightmost half of the graph, that
does not include these categories, we find that 6,229
apps (14%) have more than 5 features.

A manual inspection of the attributes of the 69 apps
that had more than 40 features revealed that these
apps were created by the same developers, have a
similar description and share the same features that
are related to photo editor and language dictionary
functionality. This result reflects the earlier finding
due to Ruiz et al. [36], that there is, in the Android
app store, heavy code reuse in photography apps.

We also investigated the number of apps sharing
the same feature. This also follows a power law as
can be seen from Figure 3(f), which shows that a very
few features are shared by more than one thousand
apps. There are only 9 such highly prevalent features.
A manual inspection revealed that these 9 features
belong to apps from the ‘Themes’ category. They
are features such as [icon, set], [home, screen, icon],
[background, screen].

5.2 RQ1-3. Three correlations for non-free and
free apps
Figure 4 shows the scatterplots between Price (P),
Rating (R) and Rank of Downloads (D) at app and
feature levels, respectively. The size of each point
denotes the number of apps to which that data point
refers.

Graphs 4(a) and 4(b) suggest that the price of the
apps is not strongly correlated with their popularity
(i.e., apps of the same price can have different rank
of downloads). However we can observe that the
cheapest apps often have zero ratings. There is an
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(a) Price distribution over apps (b) Price distribution over features

(c) Rating distribution over apps (d) Rating distribution over apps - zoom in

(e) Rating distribution over features (f) Number of apps sharing a same feature

(g) Number of features per app

Fig. 3. RQ0: Distribution of price, rating and features at app and feature levels.



11

outlier in terms of price at $599; an app which has
a price higher than that for many of the handsets on
which it would reside when downloaded.

From graphs 4(c) and 4(d) we can observe that,
regardless by their price, the non-rated apps tend to
be less popular than the rated ones and that the higher
the rating for an app, the more popular it tends to be.

Perhaps more importantly, when we look at the
overall trend of the median values of rank of down-
loads for a given rating (Figures 4(e) and 4(f)), we
can observe an apparently strong linear relationship
for non-free apps. The relationship also appears to
exist for free apps too, though it may have a slightly
more exponential character. To investigate these ob-
servations for the scatter plots of rating scores to
median rank of downloads, we calculated Spearman
and Pearson correlation coefficients.

For non-free apps the Pearson correlation coefficient
(rho) is 0.78 (p=0.004), and the Spearman correlation
coefficient (rho) is 0.72 (p=0.013). For the free apps the
Pearson correlation coefficient (rho) is 0.64 (p=0.033),
and the Spearman correlation coefficient (rho) is 0.65
(p=0.037). This indicates that there is a strong correla-
tion between rating and popularity for both free and
non-free apps.

Since this finding has a potential impact (it is im-
portant to know that there is a relationship between
rating and popularity) we investigated these correla-
tions in some detail in the remainder of this section.
We investigated various other model fits for the corre-
lations, including polynomial and exponential. These
next findings have to be treated with caution, since the
‘rank of downloads’ is an ordinal scale measurement
and so a polynomial and logarithmic transformation
may be considered questionable.

We report these results, with this caveat in mind,
since they may shed further light on the relation-
ship. The strongest Pearson correlation was found
for the log of the median rank of downloads to the
rating value. For non-free apps the Pearson rho is
0.78 (p=0.004). For free apps the Pearson rho is 0.66
(p=0.028).

In both cases, free and non-free, there is little dif-
ference between the results for the correlation for the
log transformed rank of downloads and the original
linear fit. However, we can also observe an interesting
outlier for those apps with rating of 5.0 (the highest
possible rating; five stars). Then rank of downloads
for these apps is notably higher than the overall trend
would suggest; five star apps seems to be peculiarly
unpopular, on average. If we remove the outlier then
all the correlations we have reported above increase
notably.

For example, the Pearson rho for non-free apps be-
comes 0.91 (p=0.000) and for free apps it becomes 0.83
(p=0.003), while the log-transformed values indicate
an even stronger exponential correlation: the Pearson
rho is 0.96 for non-free and 0.93 for free apps (both

with p=0.000). Without this outlier, the correlation for
free apps seems to be more exponential than linear
(so higher rated apps tend to be exponentially more
popular), whereas for non-free apps the relationship
appears to be linear whether or not we exclude the
five star outlier.

It is impossible to know exactly why the rating of
five stars should be peculiar in this way. It would
be tempting to speculate that there is something less
reliable about five star ratings (particularly for apps
that have only this top rating), even perhaps that a
larger proportion of five star ratings might be sus-
picious than those at other rating levels. After all, if
a developer were to rate their own app (or recruit
others to do so) would that developer not wish for the
highest possible rating? However, since correlation,
on it own, cannot reveal causality, we leave this as an
open question for further studies. Perhaps when we
better understand how to assess the likely provenance
of reviews, the question as to why five star ratings are
peculiar can be answered more fully.

Similar observations about correlations between rat-
ing and poularity hold for the mined features. That
is, there appears to be little correlation involving
price (see Figures 4(i), 4(j)), while there is a strong
(and apparently generally linear) correlation between
rating and popularity: more highly rated features
tend to be more popular (they have a lower rank
of downloads). The correlation is far from perfect,
overall, but the general linear trend is visually quite
evident in Figures 4(k) and 4(l)).

To provide a more quantitative assessment of these
correlations for features and apps across, both within
each category and overall report the Spearman and
Pearson correlation values. Figures 5 and 6 show
the Spearman’s Rank and Pearson’s correlation (solid
line) and their significance (dashed line) obtained by
grouping non-free and free apps, respectively, by their
minimum number of reviews. In particular, we set the
minimum number of reviews to range from 0 to 9 and
plot the x axis as minimum number of reviews, and
the y axis as the correlation (rho) value and p-value
of the correlation test.

Space does not permit us to include all graphs of
this form for all categories. However, all 38 graphs
and other data are available at the paper’s companion
website5. We include these graphs to illustrate some
general trends. We observed that there is an atypically
higher correlation coefficient reported for the case
where we include all apps (that is, we include all
apps with zero or more ratings in the analysis) for
both the Spearman and Pearson test. This higher
correlation could be an artefact of the many apps
with zero ratings; since these rating values are tied,
by definition, this may tend to (artificially) inflate the

5. http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/
resources/CorrelationGraphs.pdf.
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(a) PR non-free apps (b) PD non-free apps (c) RD non-free apps

(d) RD free apps (e) MedianRD non-free apps (f) MedianRD free apps

(g) MedianRD free apps - Polynomial model (h) MedianRD free apps (0 < R < 5) - Polyno-
mial model

(i) PR non-free features

(j) PD non-free features (k) RD non-free features (l) RD free features

Fig. 4. RQ1-3: Scatterplot of Price (P), Rank of Downloads (D) and Rating (R) at app and feature levels.
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correlation coefficient.
This was our motivation for additionally report-

ing on higher thresholds for the number of ratings
required in order for the app to be included in the
correlation analysis. As we move rightwards in these
graphs, we reduce the number of apps considered,
but increase the number of ratings required per app
in order for the app to be included in the analysis.
This reflects a trade off in the quality and quantity of
evidence for customer rating.

For correlation coefficients close to zero (no rank
correlation) the amount of evidence needed is gener-
ally higher, in order for a reliable assessment of the
correlation coefficient (rho) value. This is reflected by
the change in the p value, which indicates insufficient
evidence after x = 2 in the case of Figures 5(b) and
6(b). In order to be cautiously conservative about the
correlations reported, we therefore based our claims
that rest on qualitative analysis of correlation coef-
ficients on analysis with ‘rating filters’ only up to a
maximum of 2 (that is all apps with two or more
ratings).

This quantitative analysis of Spearman and Pearson
correlation coefficients can be found in Table 6 and
Table 8 respectively. The decision as to when a cor-
relation coefficient is sufficiently high that is reflects
a degree of association is debatable. We report the
coefficients so that the reader can make up their own
mind. An absolute value for a correlation coefficient
above 0.5 (with an associated p value less than 0.05) is,
however, surely unlikely to arise by chance. Therefore,
we treat this as a conservatively safe threshold above
which we deem some correlation to exist in each case.

With this threshold in mind, we counted the num-
ber of correlation coefficients in each category, the
absolute value of which was 0.5 or above. This count
is reported in the final row of each table. As can be
seen (from the columns labelled ‘RD’) in these tables,
there are clearly many app and feature categories
where there is a correlation between the rating and
popularity (Rank of Downloads).

In particular, when the ‘minimum number of re-
views’ threshold is set to zero (its most inclusive
value), there is a correlation between rating and pop-
ularity for all but one category and in all but one case
(18 out of 19) in three of the tables (and all cases for
the fourth, concerning linear feature correlations). Of
course, this value could be unduly influenced by tied
ratings data (those apps with zero ratings). However,
many strong correlations exist when we filter out all
zero rated apps (in columns labelled ‘MinReviews=1’
and ‘MinReviews=2’).

Perhaps somewhat surprisingly, we found little ev-
idence for a correlation between either the price of
an app and its rating, or between the price and the
downloads of an app. This finding applies to both
the app store as a whole and to almost all of the
categories within it. This would suggest that, despite

(a) Price VS Rating (non-free app)

(b) Price VS Rank of Downloads (non-free app)

(c) Rating VS Rank of Downloads (non-free app)

(d) Rating VS Rank of Downloads (free app)

Fig. 5. RQ1-3. Correlations Graphs: The Figures
show the Spearman Rank correlation values (solid
line) and their significance (dashed line) obtained by
grouping the apps by their minimum number of reviews.

the plethora of apps and fierce competition, customers
of non-free apps may not be as price sensitive as
one might have thought; they tend to accord neither
higher nor lower rating scores to more expensive non-
free apps.

Finally we observe that the Pearson’s correlations
between Rating and Rank of Downloads are stronger
than the Spearman’s ones suggesting that the relation-
ship between these two variables has a more linear
character than a monotonic one.

The correlations between rating and rank of down-
loads observed for apps can be also observed for
the features we extracted, while no correlation has
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(a) Price VS Rating (non-free app)

(b) Price VS Rank of Downloads (non-free app)

(c) Rating VS Rank of Downloads (non-free app)

(d) Rating VS Rank of Downloads (free app)

Fig. 6. RQ1-3. Correlations Graphs: The Figures
show the Pearson correlation values (solid line) and
their significance (dashed line) obtained by grouping
the apps by their minimum number of reviews.

been found between feature’s price and rating. As can
be seen from Table 7, we found strong correlations
between the rating and the downloads for the features
(as well as the apps) in almost every category (and
also within the app store as a whole) when all the apps
are considered (i.e., MinRating = 0). As we become
more restrictive, the correlation values decrease in
many categories for the same reason observed at the
app level. Finally, the correlations observed for free
features are, in general, lower than those observed
for non-free features, perhaps suggesting that free
features might be popular regardless of their rating.

In general, our results show that there is a correla-

tion between customer rating and the rank of feature
downloads and there is no correlation between feature
price and feature downloads, nor between price and
rating, replicating RQs1-3 at the feature level. This
finding may offer useful guidance to developers in
determining which features to consider when design-
ing apps. As an example, they can provide insights
into the added value of features under consideration
for new products or next releases.

Thus, in answer to RQ1-3: our results show that
there is a correlation between customer rating and
the rank of app downloads for apps and the features
extracted from them and for both free and non-
free apps and features. However, there is very little
evidence for any correlation between price and
either rating or popularity.

5.3 RQ4. Do extracted bitri-grams denote mean-
ingful features?
Table 10 reports the average True Positives, False
Positives, True Negatives and False Negatives (TP, FP,
TN, FN) obtained by the 15 software developers who
participated in our ‘sanity check’ study. We presented
the developers with a total of 38 bitri-grams (half
mined, half randomly generated) in an arbitrary order,
together with the corresponding category. We asked
them to say if each bitri-gram represents a feature
or not. Figure 7 shows the boxplots of the perfor-
mance measures (i.e., Precision, Recall, F-measure)
computed for the classification task carried out by
the 15 developers. We observe that, on average, they
achieved high Precision (0.71), Recall (0.77) and F-
measure (0.73) values. This suggests that they often
classify the mined bitri-gram as a feature and the
random bitri-gram as a non-feature.

Figure 8 shows the number of developers that clas-
sified the mined and random bitri-grams as features.
We clearly observe that the bitri-grams mined from
the app descriptions by our algorithm were more
often identified as features with respect to ones ran-
domly extracted from the same descriptions. In other
words, the agreement of the developers in identifying
the mined bitri-grams as features is much higher than
the agreement showed for the random ones. Indeed,
in 16 out of 19 cases, more than 9 developers classified
the mined bitri-grams as feature, while this happened
in only 3 out of 19 cases for the random bitri-grams.
Manually inspecting the three mined features that
achieved the lowest agreement with the develop-
ers, we found that only one could be misleading,
(i.e., [number, time] in the ‘Utility’ category) while
the other two are still meaningful in relationship to
the corresponding category (i.e., [activity, time] in the
‘Business’ category and [automatically, centred] in the
‘Maps & Navigation’ category ).

Thus, in answer to RQ4 we find that there is
evidence that the bitri-grams of features extracted
are meaningful to humans.
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TABLE 6
Spearman Correlation Results for RQ1-3 at the App Level: The first 12 columns present the Spearman

Rank correlation values computed for non-free apps, while the final 6 present the values we computed for
free apps. We present the results obtained for each subset of apps having at least 0, 1, and 2 reviews. In all

of these columns, the single letter labels stand for (P)rice, (R)ating and (D)ownloads.

Name of Categories
Non-Free Apps Free Apps

MinReviews=0 MinReviews=1 MinReviews=2 MinReviews=0 MinReviews=1 MinReviews=2
PR PD RD PR PD RD PR PD RD RD RD RD

Business 0.02 0.03 0.83 -0.04 0.03 0.40 -0.01 0.07 0.52 0.81 0.40 0.46
Education -0.10 -0.05 0.83 -0.06 0.04 0.52 -0.08 0.11 0.64 0.80 0.43 0.53
Entertainment -0.17 -0.21 0.81 0.12 0.00 0.37 0.02 0.05 0.57 0.46 0.27 0.31
Finance 0.33 0.43 0.81 0.09 0.27 0.35 0.28 0.38 0.46 0.71 0.14 0.25
Games -0.10 -0.01 0.76 -0.20 -0.03 0.42 -0.17 -0.05 0.49 0.27 0.16 0.23
Health& Wellness -0.28 -0.26 0.85 -0.15 -0.06 0.52 -0.15 0.03 0.54 0.75 0.30 0.38
IM & Social Networking -0.21 0.02 0.63 -0.30 0.10 0.28 -0.30 0.08 0.41 0.50 0.32 0.35
Maps & Navigation -0.06 0.01 0.78 -0.04 0.15 0.45 -0.12 0.19 0.50 0.56 0.34 0.43
Music & Audio 0.42 0.33 0.76 -0.08 0.11 0.44 -0.20 -0.05 0.52 0.52 0.05 0.05
News 0.07 0.16 0.79 0.06 0.32 0.33 0.20 0.31 0.40 0.73 0.31 0.39
Photo& Video 0.02 0.06 0.82 -0.11 0.09 0.21 -0.09 -0.01 0.50 0.48 0.43 0.45
Productivity 0.01 0.08 0.73 0.02 0.14 0.35 0.00 0.12 0.37 0.58 0.37 0.45
Reference & eBooks 0.09 0.13 0.32 0.01 0.03 0.60 0.00 0.02 0.58 0.83 0.57 0.53
Shopping 0.26 0.21 0.67 0.12 0.03 0.28 -0.08 0.19 0.16 0.59 0.31 0.30
Sports & Recreation -0.10 -0.02 0.77 -0.14 0.04 0.31 0.13 0.23 0.56 0.31 0.04 0.17
Themes 0.16 0.15 0.81 0.04 0.05 0.07 0.01 -0.02 0.17 0.04 -0.09 -0.09
Travel 0.04 -0.02 0.75 0.21 0.22 0.85 0.34 0.30 0.87 0.54 0.05 0.14
Utilities -0.10 -0.03 0.77 -0.11 0.05 0.27 -0.12 0.00 0.45 0.55 0.29 0.37
Weather 0.07 0.12 0.54 0.19 0.21 -0.04 0.25 0.16 0.10 0.66 0.58 0.55
All 0.10 0.12 0.79 0.02 0.04 0.27 0.01 0.02 0.39 0.60 0.23 0.30

Some correlation 0 0 18 0 0 4 0 0 10 13 2 3

TABLE 7
Spearman Correlation Results for RQ1-3 at the Feature Level: The first 12 columns present the Spearman

Rank correlation values we computed for non-free features, while the final 6 present the values we
computed for free features. We present the results obtained for each subset of apps having at least 0, 1, and

2 reviews. In all of these columns, the single letter labels stand for (P)rice, (R)ating and (D)ownloads.

Name of Categories
Non-Free Features Free Features

MinReviews=0 MinReviews=1 MinReviews=2 MinReviews=0 MinReviews=1 MinReviews=2
PR PD RD PR PD RD PR PD RD RD RD RD

Business -0.36 -0.38 0.78 -0.32 -0.22 0.61 -0.10 -0.08 0.72 0.85 0.50 0.56
Education -0.16 -0.27 0.87 0.28 -0.25 0.03 -0.05 -0.63 0.21 0.68 0.31 0.19
Entertainment -0.30 0.05 0.57 -0.23 0.37 -0.07 0.00 0.31 0.09 0.18 0.03 0.04
Finance 0.12 0.28 0.46 -0.01 0.16 0.31 0.29 0.04 0.09 0.64 0.32 0.32
Games -0.20 0.10 0.77 -0.15 0.16 0.25 -0.12 -0.13 0.59 0.36 0.21 0.09
Health& Wellness -0.40 -0.50 0.93 -0.25 -0.37 0.68 -0.35 -0.10 0.69 0.87 0.63 0.57
IM & Social Networking -0.36 -0.19 0.57 -0.24 -0.15 0.31 -0.21 -0.19 0.44 0.59 0.45 0.42
Maps & Navigation 0.48 0.42 0.90 0.35 0.28 0.79 0.28 0.29 0.88 0.58 0.23 0.28
Music & Audio -0.05 0.00 0.74 -0.15 -0.12 0.49 -0.18 -0.01 0.65 0.13 -0.14 -0.24
News 0.12 0.05 0.75 0.17 -0.43 0.35 -0.05 -0.77 0.40 0.78 0.35 0.57
Photo& Video -0.37 -0.30 0.80 -0.47 -0.26 0.47 -0.55 -0.47 0.60 0.28 0.28 0.28
Productivity 0.24 0.23 0.86 0.19 0.26 0.37 0.09 0.12 0.41 0.76 0.68 0.58
Reference & eBooks -0.02 -0.39 0.74 0.49 -0.03 0.31 0.58 -0.28 0.30 0.33 0.11 0.24
Shopping -0.17 -0.56 0.73 -0.20 -0.70 0.52 0.27 -0.59 0.01 0.78 0.75 0.76
Sports & Recreation 0.25 0.25 0.79 0.00 0.08 -0.02 0.02 0.37 0.26 0.35 -0.18 -0.09
Themes 0.32 0.00 0.80 0.15 -0.12 0.19 0.07 -0.06 0.32 0.35 0.05 -0.15
Travel 0.34 0.15 0.82 0.27 0.02 0.55 0.24 -0.06 0.51 0.64 0.12 0.23
Utilities 0.03 0.06 0.87 -0.26 0.01 0.56 -0.29 -0.18 0.68 0.73 0.55 0.61
Weather 0.11 -0.03 0.67 -0.01 -0.22 0.67 0.01 -0.28 0.72 0.60 0.60 0.60
All -0.17 -0.19 0.81 -0.10 -0.21 0.37 -0.14 -0.23 0.44 0.64 0.33 0.33

Some correlation 0 2 18 0 1 7 2 3 9 12 6 7
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TABLE 8
Pearson Correlation Results for RQ1-3 at the App Level: The first 12 columns present the Pearson

correlation values computed for non-free apps, while the final 6 present the values we computed for free
features. We present the results obtained for each subset of apps having at least 0, 1, and 2 reviews. In all of

these columns, the single letter labels stand for (P)rice, (R)ating and (D)ownloads.

Name of Categories
Non-Free Apps Free Apps

MinReviews=0 MinReviews=1 MinReviews=2 MinReviews=0 MinReviews=1 MinReviews=2
PR PD RD PR PD RD PR PD RD RD RD RD

Business -0.09 -0.07 0.82 -0.13 -0.15 0.62 -0.05 -0.09 0.71 0.75 0.52 0.51
Education -0.07 -0.08 0.76 0.09 0.05 0.55 0.06 0.13 0.72 0.78 0.54 0.55
Entertainment -0.07 -0.17 0.77 0.19 -0.06 0.53 0.09 -0.02 0.65 0.61 0.38 0.38
Finance 0.17 0.13 0.83 0.11 0.04 0.61 0.12 0.26 0.64 0.73 0.3 0.39
Games -0.09 -0.01 0.77 -0.18 -0.05 0.55 -0.15 -0.07 0.59 0.47 0.22 0.3
Health& Wellness -0.27 -0.28 0.8 -0.06 -0.14 0.61 -0.12 -0.14 0.65 0.73 0.44 0.5
IM & Social Networking -0.16 -0.18 0.74 -0.17 -0.15 0.51 -0.25 -0.26 0.6 0.63 0.42 0.43
Maps & Navigation 0.02 0.01 0.8 0 0.04 0.63 0 0.17 0.67 0.69 0.46 0.55
Music & Audio 0.23 0.26 0.8 -0.09 0.07 0.7 -0.22 -0.03 0.72 0.65 0.31 0.27
News 0.01 0.03 0.73 -0.07 -0.07 0.44 0.14 0.1 0.46 0.74 0.45 0.5
Photo& Video 0.1 0.13 0.85 -0.14 -0.09 0.44 -0.24 -0.22 0.61 0.54 0.46 0.5
Productivity -0.03 -0.02 0.82 0.04 0.03 0.56 0.02 0.06 0.56 0.69 0.52 0.59
Reference & eBooks 0.1 0.15 0.42 0.05 0.01 0.62 0.05 0.01 0.65 0.82 0.69 0.65
Shopping 0.09 0.06 0.77 0.05 0.03 0.48 -0.13 0.17 0.35 0.65 0.44 0.39
Sports & Recreation 0.05 0.1 0.75 -0.04 0.03 0.54 0.07 0.14 0.64 0.59 0.23 0.29
Themes 0.12 0.1 0.81 0.04 0.02 0.42 0.03 -0.01 0.45 0.54 0.13 0.05
Travel 0.16 0.05 0.69 0.3 0.18 0.7 0.37 0.24 0.78 0.66 0.23 0.2
Utilities -0.05 -0.09 0.82 0.02 -0.04 0.52 -0.06 -0.03 0.61 0.71 0.44 0.49
Weather 0.1 0.16 0.69 0.17 0.17 0.17 0.22 0.13 0.31 0.77 0.72 0.73
All -0.01 0.01 0.78 -0.01 -0.03 0.52 -0.02 -0.01 0.59 0.71 0.41 0.43

Some correlation 0 0 18 0 0 14 0 0 15 18 5 9

TABLE 9
Pearson Correlation Results for RQ1-3 at the Feature Level: The first 12 columns present the Pearson

correlation values computed for non-free features, while the final 6 present the values we computed for free
features. We present the results obtained for each subset of apps having at least 0, 1, and 2 reviews. In all of

these columns, the single letter labels stand for (P)rice, (R)ating and (D)ownloads.

Name of Categories
Non-Free Features Free Features

MinReviews=0 MinReviews=1 MinReviews=2 MinReviews=0 MinReviews=1 MinReviews=2
PR PD RD PR PD RD PR PD RD RD RD RD

Business -0.41 -0.48 0.76 -0.51 -0.65 0.67 -0.36 -0.60 0.66 0.85 0.71 0.58
Education -0.08 -0.20 0.84 0.28 -0.22 -0.02 -0.13 -0.45 0.23 0.72 0.48 -0.02
Entertainment -0.42 -0.27 0.74 0.01 -0.06 0.37 0.11 -0.07 0.32 0.28 0.14 0.19
Finance 0.15 0.30 0.73 -0.05 0.13 0.62 0.14 0.09 0.20 0.67 0.38 0.41
Games 0.05 0.21 0.76 -0.09 0.18 0.13 -0.32 -0.31 0.66 0.26 0.23 0.00
Health& Wellness -0.36 -0.51 0.89 -0.04 -0.39 0.71 -0.43 -0.30 0.72 0.91 0.68 0.60
IM & Social Networking -0.52 -0.39 0.67 -0.18 -0.04 0.30 -0.14 -0.10 0.48 0.56 0.41 0.36
Maps & Navigation 0.38 0.21 0.88 0.30 0.12 0.85 0.27 0.27 0.92 0.61 0.51 0.53
Music & Audio -0.01 0.05 0.75 -0.12 -0.11 0.43 -0.22 0.10 0.57 0.44 0.10 0.00
News 0.10 0.16 0.73 -0.07 -0.24 0.49 -0.25 -0.77 0.54 0.72 0.36 0.60
Photo& Video -0.30 -0.17 0.85 -0.43 -0.15 0.49 -0.59 -0.35 0.51 0.33 0.32 0.32
Productivity 0.35 0.29 0.89 0.25 0.23 0.42 0.21 0.13 0.54 0.78 0.66 0.48
Reference & eBooks -0.19 -0.46 0.88 0.53 -0.19 0.28 0.50 -0.29 0.45 0.56 0.01 0.19
Shopping -0.13 -0.50 0.79 -0.22 -0.67 0.71 0.39 -0.41 0.17 0.77 0.76 0.79
Sports & Recreation 0.00 0.11 0.78 -0.35 -0.25 0.23 -0.30 0.15 0.33 0.68 -0.19 -0.02
Themes -0.02 -0.24 0.83 0.02 -0.12 0.27 -0.03 0.21 0.19 0.21 -0.01 -0.21
Travel 0.35 0.16 0.70 0.31 0.13 0.55 0.29 0.09 0.55 0.64 0.15 0.31
Utilities 0.02 -0.05 0.88 -0.06 -0.01 0.51 -0.23 -0.15 0.67 0.75 0.70 0.72
Weather 0.17 -0.07 0.70 0.09 -0.18 0.65 0.11 -0.23 0.69 0.82 0.79 0.79
All -0.21 -0.26 0.83 -0.07 -0.27 0.52 -0.08 -0.27 0.58 0.75 0.47 0.45

Some correlation 1 2 19 2 2 8 2 2 12 14 7 7
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Fig. 8. RQ4: Number of developers that classified a bitri-gram as a feature. The x axis shows the bitri-gram type,
i.e., Mined (M) or Random (R) and the y axis shows the number of users that classified it as a feature. We see
that developers think, in general, that our mined bitri-grams are more ‘feature like’ than random bitri-gram from
the same category description.

TABLE 10
RQ4-Confusion Matrix: average TP, FP, FN, TN
values obtained by the 15 software developers
involved in our feature’s quality sanity check.

Actual bitri-gram
Mined Rand Total

Predicted Mined 16 9 19
Rand 3 10 19
Total 19 19 38

Fig. 7. RQ4-Boxplots: Precision, Recall and F-
measure for the classification task carried out by the
15 software developers involved in the feature’s quality
sanity check.
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5.4 RQ5. Is there a stronger correlation involving
Price when we ‘zoom in’ on specific ranges of price
or between price and number of features or shared
features in an app?

The authors (and referees of an earlier version of this
paper) were surprised that no evidence was found for
correlations involving price. We found no evidence
that price is correlated to either ratings or to popu-
larity, neither for apps nor the features we extracted
from them.

We considered the possibility that, though there
is no overall correlation involving price, there may
nevertheless, be correlations in sections of the data
(perhaps for specific price ranges). We therefore fur-
ther analysed the relationship between price/rating
and price/download by zooming into the scatterplots
shown in Figure 4. Moreover, we analysed whether
there is any relationship between apps’ price and their
number of features or number of shared features.

From Figure 9 we can observe some interesting
patterns:

1) Prices tend to be lower than $5.00 for most apps,
but there are frequency peaks at ‘round number’
prices, such as $10 and $20 (see Figures 9(a) and
9(b)). However, if we consider the median values
(see Figure 9(c)) it is clear that there is no linear
relationship between price and rank of down-
loads (i.e., Pearson rho = 0.165, p-value=0.385),
while we can observe a mild rank correlation
(i.e., Spearman rho=0.41, p-value=0.027).

2) The lower priced apps tend to have a higher
rating (see Figures 9(d) and 9(e)). From the
scatter plots we do see some evidence that the
ratings accorded to apps priced below $5.00
are slightly higher than those accorded to more
expensive apps, but the correlation coefficient is
extremely low: the Spearman rho=0.051, with a
p-value = 0.000, while the Pearson rho=0.046,
with a p-value = 0.000. Also, it should be noted
that at this lower end of the price spectrum
there are many tied values (e.g. all apps with
price $0.99) and this can artificially inflate the
correlation values reported. If we look at the
median values (see Figure 9(f)), we cannot find
any significant correlations between price and
rating (i.e., Pearson rho=�0.099, p-value=0.602
and Spearman rho=�0.159, p-value=0.401).

3) The more expensive apps tend to have more fea-
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tures (see Figures 9(g) and 9(h)) and shared fea-
tures (see Figures 9(i) and 9(j)). We found moder-
ate correlations between price and median num-
ber of features (Pearson rho=0.46, p-value=0.007,
Spearman rho=0.46, p-value=0.006) and between
price and median number of shared features
(Pearson rho = 0.46, p-value=0.007, Spearman
rho = 0.46, p-value=0.006) when considering all
apps (i.e., including those having zero features).
The linear correlations between price and me-
dian number of features/shared features be-
come stronger, while the Spearman’s ones de-
creased dramatically (and, perhaps more im-
portantly, lose their significance) when we con-
sider only those apps having at least one fea-
ture (Pearson rho=0.54, p-value=0.001, Spear-
man rho=0.023, p-value=0.899) or at least one
feature in common with other apps (Pearson rho
= 0.54, p-value=0.001, Spearman rho=0.023, p-
value=0.899).
This finding suggests that the apparent rank
correlation for all apps (including those with no
features at all) is a product of ties (the zero-
featured apps have a tied number of features).
However, the linear correlation is the one that
is stronger so we conclude that there is overall
evidence of a mild linear price to number-of-
features correlation.

4) Though there is only the weakest evidence for
any correlation between an app’s price and
either its rank of downloads or rating, there
is stronger evidence for correlations between
a feature’s price and its rating (and also its
rank of downloads). We investigated this fur-
ther by computing correlation coefficients for
the median rating and for the median rank
of downloads per price point for all non-free
features (see Figures 9(k) and 9(l)). For rat-
ings, we found evidence of an inverse correla-
tion between price and rating for both Pearson
(rho = �0.537, p = 0.000) and Spearman (rho
= �0.559, p = 0.000) correlations. For rank of
downloads, the evidence was less strong: Pear-
son (rho = �0.408, p = 0.000) and Spearman (rho
= �0.422, p = 0.000).

It is interesting to note that the correlation one
might expect (higher prices are less likely to be
favoured by users, surely?) is present with stronger
evidence for the features than for the apps from which
we extract these features. This could be because there
are many more different price points and rating values
for features (since feature properties are computed as
averages over the apps that share the features). How-
ever, the strong correlation found is further evidence
that the features we extract carry some meaning and
that this meaning could be useful to developers.

In answer to RQ5 for apps, we found that there

is a moderate correlation between apps price and
median number of (shared) features. The higher the
price the more features are claimed to be provided.
However, the answer for features provides stronger
evidence of an inverse correlation between the price
rating; more expensive features tend to be less
highly ranked.

5.5 RQ5.1: Is there any difference in Rating and
Popularity for free apps compared to non-free
apps?
From Table 4 we can observe that, on average, free
apps have a lower rank of downloads than non-
free apps (suggesting that, in general, free apps are
more popular). We found that this difference is sta-
tistically significant according to the non-parametric
Mann-Whitney ‘U’ Test (p-value < 0.001), with a
notable effect size (the Vargha-Delaney normalised
non-parametric effect size Â12 is 0.76). The same
observation holds for free features (i.e., free features
are more popular than non-free ones, p-value < 0.001
and Â12 = 0.70).

From Table 4 we also observe that free apps provide
the users slightly fewer features (see Table 4) on av-
erage, than their non-free counterparts. However, we
found that this difference is not statistically significant
according to the non-parametric Mann-Whitney ‘U’
Test (p-value= 0.847, Â12 = 0.50) .

As for the rating, we can observe that the most
highly rated non-free apps reside in the categories ‘IM
& Social Networking’, ‘Weather’ and ‘Productivity’,
while ‘Themes’ and ‘Games’ contain the most highly
rated free apps. In general, we observe that free
apps enjoy a higher rating, on average, compared to
the non-free apps that reside in the same category
(see Table 4). This difference is statistically significant
(p-value < 0.001), according to the non-parametric
Mann-Whitney ‘U’ Test and has a reasonably large
effect size (Â12 is = 0.68).

Overall, we find that there is strong evidence that
the free apps are, in general, more popular than non-
free apps and that they also enjoy higher ratings.

6 THREATS TO VALIDITY
In this section we discuss the validity of our study
based on three types of threats, namely construct,
conclusion, and external validity.

Construct validity concerns the methodology em-
ployed to construct the experiment. Our data is ex-
tracted from the Blackberry App Store. As such we
are relying on the maintainers of the App Store for the
reliability of our raw data. Undoubtedly, there will be
inaccuracies and imprecisions in the data and these
may have affected some of our computed data. In
order to protect against possibly incorrect conclusions
that may be drawn from such analysis, we have
been careful to base all of our primary observations
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(a) Price VS Rank of Downloads (b) Price VS Rank of Downloads (c) Price VS Rank of Downloads (median)

(d) Price VS Rating (e) Price VS Rating (f) Price VS Rating (median)

(g) Price VS Feature (median), f � 0 (h) Price VS Feature (median), f > 0 (i) Price VS Shared Feature (median), f � 0

(j) Price VS Shared Feature (median), f > 0 (k) Rank of Downloads - Median per Price point
(features)

(l) Rating - Median per Price point (features)

Fig. 9. RQ5: Scatterplots of Price VS Rank of Downloads, Rating, Features and Shared Feature at different
levels of granularity.
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on analyses over large sets of data. By focusing on
such ‘macro level’ statistical observations (rather than
fine-grained detailed observations), we hope that our
findings will prove to be robust in the presence of any
inaccuracies and imprecision in the raw data.

Conclusion validity threats concern the issues that
affect the ability to draw a correct conclusion. We
carefully applied the statistical tests, verifying all the
assumptions each inferential test requires concerning
the distributions to which it is applied. We also re-
ported widely-used measures to obtain a quantitative
evaluation of the human study (i.e., Precision, Recall
and F-measure). We also verified that the Matthews
Correlation Coefficient was always positive, an im-
portant sanity check for any categorisation model
[40]. Conclusion validity could also be affected by the
selection and number of participants in the human
study. To mitigate this threat, we plan to conduct
replications on a larger number of participants.

Our approach to external threats is relatively stan-
dard for the empirical software engineering litera-
ture. That is, while we were able to obtain a set
of categories that had a degree of diversity in ap-
plication type and size, we cannot claim that our
results generalise beyond the subjects studied. The
number of features analysed in the human study
could also threaten the external validity of the results.
The rationale for selecting a relatively small number of
features (i.e., 38) arose from the need to mitigate the
potential problem that subjects may choose to drop
out of the experiment (i.e., mortality).

A potential threat to generalisabily lies in our ex-
traction of feature information from descriptions. Nat-
urally, we do not claim that these extracted features
include all the real features of the app. Indeed, we
do not even claim that any of features we extract can
be found in the app. Rather, we claim that there is
evidence that what we have extracted tends to be
meaningful feature descriptions (as indicated by our
human sanity check) and that they denote features
claimed to be included in the apps (according to the
developers’ own descriptions). Great care is required
in extending our findings from ‘claimed features’
to features that are truly available to users of the
app. Such extrapolation of our findings is not valid
unless future work demonstrates a strong correlation
between claimed and actual features.

7 RELATED WORK
Much of the previous work on Mining Software
Repositories (MSR) has tended to focus on under-
standing, predicting and, ultimately guiding the pro-
cess of software evolution [14], [49]. The goal of App
Store Analysis is to combine technical data with non-
technical data such as user and business data to
understand their inter-relationships. The number and
granularity of the software products considered dif-
fers from previous work on mining non-app software:

MSR typically uses a white box analysis of multiple
applications [9] of software products of (sometimes)
very large size [39].

By contrast, to mine app stores, we can use white
box techniques where the source code of apps is
available. However, we may also use a black box
analysis of the apps, where source code is unavailable.
As we have demonstrated in this paper, technical
information can be extracted from sources other than
the code of the app itself. We are also likely to con-
sider potentially many more software products, but
of perhaps smaller size, at least for the apps available
at the time of writing (they may grow in size and
complexity in future, as all software generally tends
to do [25]).

Several other authors have also commented on
general properties of App Store Analysis and its re-
lationship to traditional software repository mining.
For example, Syer et al. [43] seek to understand the
differences in characteristics between apps and more
conventional applications, drawing parallels between
apps and UNIX utilities, while Nagappan et al. [33]
and Menzies [30] discuss challenges and opportunities
in app analysis.

Minelli and Lanza [32] also compared apps with
traditional software systems, finding that apps are
smaller and simpler (consisting of approximately 5.6k
Lines of code, on average). However, they claim (and
we agree) that this may be a transient effect, due to
disappear as apps become larger and more complex.

Ruiz et al. [36] analysed Android code reuse, find-
ing it to be prevalent compared to non-Android
open source software. They also found that devel-
opers reuse software through inheritance, libraries
and frameworks (a result we partly replicated for the
Blackberry world app store in Section 5.1).

Yamakami [47] proposes the notion of ‘open source
based mobile platform software engineering’ and dis-
cusses a business model involving software vendors,
carriers and handset vendors. Want [46] highlights
how the app store allows developers to integrate, test
and distribute the key aspects of pervasive computing
research.

Our results are based on a smartphone app store
(though there is no reason to assume that they may
not apply to other app stores). The first smartphone
(named Simon) was designed as a concept product
by IBM in 1992 [38]. Since then, there has been a
dramatic increase in terms of the number of function-
alities and platforms for the smartphones. The Apple
App Store [19], opened in July 2008, contained over
775,000 apps by January 2013, while over 40 billion
apps were reportedly downloaded in its first four
years of operation [20]. The Google Play App Store
(formerly named ‘Android Market’) [18] was opened
in October 2008. There were 700,000 apps available
with over 25 billion downloads as of September 2012
[17]. BlackBerry App World [16] opened in April
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2009. There were more than 99,500 available apps in
the store after three years of operation [21]. Clearly,
there are bigger app stores than the Blackberry App
World studied in this paper. We plan to extend our
work to other app stores in future work. However,
the results presented here for Blackberry concern an
app store that is worth several hundreds of millions
of dollars, so the potential monetary impact of the
findings remains considerable.

Until relatively recently, there has been little work
on app stores as a source of software engineering data.
However, since 2012 there has been an explosion of
research in this area. In the remainder of this section
we briefly review this related work on App Store
Analysis and its relationship with our work.

Much of the recent work on App Store analysis
seeks to understand users’ preferences as expressed
through the reviews that they leave on the app store
[10], [15], [22], [23], [24], [34], [37].

Iacob and Harrison [22] introduce a tool called
MARA (Mobile App Review Analyzer) to extract fea-
ture requests from online reviews to assist app devel-
opers. Of 136,998 reviews analysed, the authors report
that about a quarter (23.3%) are feature requests.

Pagano and Maalej [34] analysed over a million
reviews from the Apple App Store, finding that most
reviews are uploaded immediately after a new app
release. They also found that feedback content has
an impact on download numbers: positive messages
usually lead to better ratings and vice versa. While
they found that application ratings and ranks are not
statistically independent, they did not find a statistical
correlation, as we have found.

Khalid et al. [23], [24] manually analysed 6,390
reviews from a sample of 20 Apple App Store apps,
reporting that the most common user complaints re-
volve around functional errors and crashes, as one
might expect, but also among the most prevalent
‘complaints’ are requests for new features.

Hoon et al. [15] mined data from 8 million app re-
views residing in the Apple App Store. Their analysis
reveals that the vast majority of reviews are very short
and that this brevity tends to increase with app age.
They also reported a tendency for approximately half
of the apps to decrease in average user rating over
time.

Ruiz et al. [37] studied the prevalence and impact
of advertisements in apps, which are an increasingly
popular source of revenue for the app developer. They
mined data from 519,739 versions of 236,245 differ-
ent Android apps over 27 Google Play categeories.
Perhaps surprisingly, even though apps may contain
up to 28 different advertisement libraries, the authors
found no evidence that the number of advertisements
has an impact on app ratings, overall. However, the
authors report that inclusion of certain advertisement
libraries does appear to be negatively correlated with
ratings.

Guzman and Maalej [10] perform a sentiment anal-
ysis on app reviews to help developers cope with the
large number of reviews that may be available for
their apps. They use topic modelling to extract and
group together features mentioned in these reviews
and report the results of an empirical validation with
nine human subjects (including the two authors) on
2,800 reviews of 7 apps from the Google. Guzman
and Maalej report that their approach has precision
and recall of 0.59 and 0.51 respectively, according to
their validation. These precision and recall values are
lower than those found with our ‘sanity check’ human
study of the features we extract. However, it should
be noted that Guzman and Maalej are attempting the
challenging task of imputing sentiment to reviewers
as well as feature extraction from the reviews they
study.

In this paper, we have shown that useful informa-
tion can be extracted from descriptions. This is impor-
tant, particularly in situations where no source code
is available for an app. However, in many cases, there
may be source code available and so any analysis
performed about descriptions can also be augmented
by whitebox study of the source code itself. Such
white box and analysis is, of course, also an instance
of App Store mining.

Gorla et al. [8] use API calls as a convenient way to
understand the semantic behaviour of a large number
of apps, the source code which they mine. They
show how anomalous API calls can be used to detect
aberrant or otherwise suspicious behaviour. Taba et al.
[44] study 1,292 free Android apps from 8 app cate-
gories, reporting that users award significantly higher
ratings to apps with simpler user interfaces. Linares-
Vasquez et al. [28] study clones in 24,379 free Android
apps, observing that developers’ use of obfuscation
techniques to protect their intellectual property has
a tendency to increase false positive clone detection.
Syer et al. [42] investigate the relationship between
defects found in an app and the degree to which
it is platform dependent (assessed in terms of API
calls). They report a positive correlation between the
number of defects found and platform dependence in
the Android apps. Addressing this, Linares-Vasquez
[27] seeks to support Android app maintenance in the
presence of API and platform updates. While Syer
et al. consider dependence within an app, Angeren
et al. [45] investigate dependence between various
attributes of apps in the App Store itself to give a
perspective on the App Store as a software ecosystem
[26].

In this paper, we have extracted feature information
from app descriptions. Our approach is independent
of whether these descriptions are truthful or not,
since we merely seek to determine correlations be-
tween the ratings, popularity and prices accorded
to these extracted claimed features. Nevertheless, the
information we find will have additional potential
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applications for those descriptions that tend to be
more truthful. Pandita et al. [35] introduce a tool
WHYPER, which compares the permissions requested
by the app and the app description. This allows
them to highlight apps with suspect descriptions.
Suspicion arises when mismatches are found between
an app’s technical declaration of permissions sought
and its public declaration of features it offers. They
used First Order Logic to analyze the sentences in
the description. Yang et al., [48] also considered this
problem, introducing an approach they call APPIC to
compare features extracted from descriptions (using
topic modelling) with the permissions declared for an
Android app.

Lulu and Kuflik [3] cluster apps to help users
retrieve the apps they have installed on their device.
Their approach is also based on information extracted
from the app description, but augmented by content
from ‘professional blogs’.

In many areas of software engineering research,
it is some considerable time before widely available
tooling catches up with research frontiers. It is there-
fore perhaps a sign of the rapidly increasing maturity
of App Store Analysis that there are already several
tools available for mining and extracting information
from app stores. For example, as well as our own
tool, APPIC, MARA and WHYPER already discussed
above, Chen et al. [4] introduce AR-miner for ex-
tracting review information, Minelli and Lanza [31]
introduce SAMOA, for visualising results of mobile
app analysis, and Bakar and Mahmud [2] introduce
OSSGrab, for extracting information from app stores.

Our work [12] was the first to argue that App Store
Analysis can be used to understand the relationships
between technical, business and social aspects of app
stores. It was also the first to propose the incorpora-
tion of technical information (such as feature infor-
mation, mined from app descriptions) as part of this
analysis process. The present paper extends this initial
analysis of non-free Blackberry apps, to consider both
free and non-free apps and the correlations between
their claimed features, rating, popularity and price in
more detail.

8 CONCLUSIONS AND FUTURE WORK
App stores provide a software development space
and market place that are fundamentally different
from those to which we have become accustomed for
traditional software development: the granularity is
finer and there is a far greater source of information
available for research and analysis. Information is
available on price, customer rating and, through the
data mining approach presented in this paper, the
features claimed by app developers. These attributes
make app stores ideal for empirical software engineer-
ing analysis.

We have introduced a method to extract, from
app store descriptions, usable information about the

features of apps that captures some of the technical
aspects of the apps in the store. We evaluated our
approach on both the free and the non-free apps in
the Blackberry App Store. We performed a simple
empirical study as a sanity check that the feature
information extracted was meaningful to developers.
The study found high precision (0.71), recall (0.77) and
f-measure (0.73), suggesting that the bitri-grams we
extract to capture features are meaningful as feature
descriptions for developers.

We found that the number of features per app
(and the number of shared features between apps)
follow a power law. We also found that, though there
are a large number of zero-rated apps. The non-zero
ratings accorded to apps by their users are, generally
speaking, positive; more ratings occupy the higher,
more favourable end of the rating spectrum.

The degree of correlation between rating, price and
popularity is different for different app categories, as
one might expect and as we report in detail in the
paper. Our analysis indicates that there is a strong
overall correlation between the ratings given to apps
by their users and their popularity (i.e., rank of down-
loads). This correlation was observed for both free and
non-free apps. This correlation is also present in the
features we extract and so this feature information
may be useful in its own right. We found that free
apps received significantly higher ratings than their
non-free siblings and that there is a mild correlation
between price and the number of features offered, but
we found little evidence for any correlation between
the price of a non-free app and either its rating or
popularity.

There are many potential avenues for future work
that result from our findings. For example, we could
use feature level clustering to re-draw and re-consider
the boundaries of the categories of apps in an App
Store, which may help to identify outliers that may
have been mis-categorised. We can also study mi-
gration of features between categories over different
snapshots of the app store.

In future, we also intend to investigate predictive
models of customer evaluations, and the interplay
between functional and non-functional properties of
apps, and the data available in app stores. We will
also seek to develop multi objective predictive mod-
els using Search Based Software Engineering (SBSE)
[11][13]. The use of multi objective SBSE will allow
us to develop predictive models tailored to the con-
flicting and competing needs of different app store
developers and, perhaps also, their customers.

We also believe our data may contain many other
interesting relationships between features, prices, rat-
ings and ranks-of-downloads, that have yet to be
discovered and reported upon. To facilitate this future
work, we make the full dataset available for other
researchers to mine, analyse and experiment with. The
datasets used in the work reported in this paper can
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be downloaded from the UCLAppA page:

www0.cs.ucl.ac.uk/staff/F.Sarro/

projects/UCLappA/UCLappA.html
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