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Abstract

This paper concerns with runtime testing cost due to service invocations, which is iden-
tified as one of the main limitations in Service-centric System Testing (ScST). Unfor-
tunately, most of the existing work cannot achieve cost reduction at runtime as they
are aimed at offline testing. The paper introduces a novel cost-aware pareto optimal
test suite minimisation approach for ScST aimed at reducing runtime testing cost. The
approach adapts traditional multi-objective minimisation approaches to ScST domain by
formulating ScST concerns, such as invocation cost and test case reliability.The paper
presents the results of an empirical study to provide evidence to support two claims:
1) the proposed solution can reduce runtime testing cost, 2) the selected multi-objective algo-
rithm HNSGA-II can outperform NSGA-II. In experimental analysis, the approach achieved
reductions between 69% and 98.6% in monetary cost of service invocations during testing.
The results also provided evidence for the fact that HNSGA-II can match the performance or
outperform both the Greedy algorithm and NSGA-II in different scenarios.
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1 Introduction

According to literature, one of the limitations of ScST is the cost associated with invoking services [3].
Increased test frequency for ScS exacerbates the severity of the issues regarding testing cost. The cost of
invoking services during testing is a major problem at composition level. Solutions aimed at reducing the
cost of testing, such as simulated testing have previously been proposed [8, 9, 10, 11, 12, 15]. However,
these approaches do not eliminate the need for runtime testing (testing with real services).

One widely studied solution aimed at reducing runtime testing cost is test suite minimisation [24]. The
purpose of test suite minimisation and prioritisation is to reduce testing cost through removing redundant
test cases. In test suite minimisation, there are concerns such as retaining coverage, test suite effective-
ness or fault detection capability, execution time and resource usage, such as memory. According to the
literature, problems where there are multiple competing and conflicting concerns can be investigated using
pareto optimal optimisation approaches [7].

A tester is often faced with making decisions based on multiple test criteria during runtime testing. This is
due to the fact that, in many situations, it is not expected that the tester aims to achieve a single goal during
the testing process. According to the literature, one goal that is often used is code coverage. Achieving a
high coverage is often regarded as a major goal in testing [21, 17]. However, achieving a high coverage is
expensive and expecting to achieve 100% coverage might not be realistic when testing complex systems.

The cost of a test suite is one of the most important criteria, since a tester wants to get maximum value
(e.g. number of branches covered) from the execution of a test suite [7]. In the literature, the cost of a test
suite is often associated with the time it takes to execute it [24]. However, with the introduction of web
services, service compositions and online APIs, the concept of monetary cost of testing is starting to gain
acceptance in software testing literature.

The reliability (also referred to as quality) of a test suite is also an important concern. Previously, we
introduced a formulation for the reliability score of a test input based on the reliability of its sources [2].
We believe reliability is an important aspect especially in ScST, because it can help reduce the testing cost.
A test suite with high reliability might reduce the cost of testing in two ways:

1. Human-oracle reduction due to the tester’s trust in the test input source. If the test data used in testing
has a high reliability, the tester will not need to inspect all test inputs for errors such as invalidity and
conformance to input requirements (e.g. input format).

2. Avoiding extra testing cost due to erroneous test inputs. The extra cost in this case occurs due to
service invocations with invalid test data during the execution and the tester’s investigation of the
unexpected test results that might occur as a result of invalid inputs.

For instance, consider the case of U.S. ZIP codes. Zip codes can be decommissioned or new ones might
be assigned to new areas over time. As a result, during the testing of an ScS that requires ZIP codes as
inputs, only valid codes must be used. In this scenario, if the ZIP codes (used in testing) are generated from
unreliable services, then the test suite’s reliability will be low, which means the test suite might include
decommissioned or invalid ZIP codes. It is safe to assume that testing with decommissioned ZIP codes can
be classified as unnecessary execution (except if the tester is performing robustness testing), which is likely
to produce false positives. The results from our experimental studies for ZIP codes (discussed in Section
4) provided some evidence for the correctness of this assumption. The problem with false positives is that
they might cause the tester to invest time in investigating the reasons for unexpected output(s).

In order to avoid the side effects of extensive runtime testing, a test suite minimisation approach could be
used to remove ‘redundant’ test cases; those which merely cover previously covered features. On the other
hand, to avoid side effects of a low reliability test suite, the selected approach must be able to manage
multiple objectives. Thus, we propose to adapt the multi-objective test suite minimisation approach of Yoo
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and Harman [24] to ScST with the objectives, such as cost of service invocation, branch coverage and test
suite reliability.

In this paper, we introduce a pareto-optimal, multi-objective test suite minimisation approach to ScST
aiming at reducing the runtime testing cost. The advantages of the proposed application of multi-objective
test suite minimisation for ScS are:

1. Reduced cost in runtime testing through test suite minimisation.

2. Its ability to discover trade-offs between cost of test runs and system coverage.

3. Its ability to select a more reliable test suite without increasing the cost and affecting the coverage of
the test suite.

The rest of this paper is organised as follows. Section 2 briefly introduces the concept test suite min-
imisation and explains the proposed multi-objective test suite minimisation approach for ScST. Section 3
presents our case studies, research questions and our method of investigation. Section 4 presents the results
from our experiments and answers the research questions. Section 5 concludes the paper.

2 Multi-Objective Test Suite Minimisation for Service-centric Systems

In this section, we explain the concept of test suite minimisation, our approach and present our objective
functions.

2.1 Test Suite Minimisation and HNSGA-II

Test suite minimisation (or test suite reduction) techniques aim to reduce the size of a test suite by eliminat-
ing redundant test cases [24]. Test suite minimisation is considered as a hitting set (or set cover) problem
which is an NP-complete problem and defined as follows:

Input: A test suite T ={t1, ..., tn} and a set of testing requirements R = {r1, ..., rn}which need to be satisfied
in order to provide the desired level of testing.

Goal: To find a representative set of test cases T0, from T (T0 ⊆ T ) that satisfies all requirements. In order
to satisfy all requirements, each ri must at least be satisfied by one of the test cases that belongs to
T0. The effect of minimisation is maximised when T0 is the minimal hitting set of the test cases in T.

Due to the test suite reduction problem (which is a minimal set cover problem) being NP-complete, the
use of heuristics is proposed by many researchers [24]. According to the literature, another well known
solution to the set cover problem is the greedy approximation. Yoo and Harman [22] proposed a solution
(using an algorithm called ‘HSNGA-II’) which combines these two solutions into a pareto-optimal test
suite minimisation approach. HNSGA-II uses the additional greedy algorithm, described in Algorithm 1
along with multi-objective algorithms.

Algorithm 1 Additional Greedy Algorithm (U ,S) [23]
1: C ← ∅ . covered elements in U
2: repeat
3: j ← mink(costk/|Sk − C|)
4: add Sj to solution
5: C = C

⋃
Sj

6: until C = U

Where U is the universe, S is the set that contains S1, S2, ..., Sn (with execution costs cost1, cost2, ..., costn)
which cover subsets of U , such that

⋃
i Si = U . The assumption in this scenario is the existence of a subset
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of S which covers all elements of U . The additional algorithm is cost cognisant, thus it does not just pick
the subset that covers the most elements, but it aims at finding the subset that provides maximum coverage
increase with the lowest cost at each iteration (at Line (4)) [23].

HNSGA-II is a variant of the standard NSGA-II algorithm and it may be more effective in multi-objective
minimisation problems compared to NSGA-II. HNSGA-II combines the effectiveness of greedy algorithm
for set cover problems with NSGA-II’s global search. Results from the execution of additional greedy
algorithm are added to the initial population of NSGA-II in order to create an initial population with better
solutions compared to a ‘random only’ population. The goal in using a better initial population is to guide
NSGA-II to a better approximation to the optimal pareto front. This process can be especially beneficial in
problems with very large search spaces.

Figure 1: Example test suite reduction scenario for a ScS. The table depicts test cases in the suite with their
reliability, branch coverage and execution cost calculated. For the given test suite (T1,...,T6) it is expected
that test cases T1 and T2 will be eliminated to get the optimal test suite (T3,T4,T5,T6) which achieves
100% coverage with lowest cost and highest reliability.

2.2 Proposed Approach

Our approach consists of two stages: test suite artefact calculation and multi-objective minimisation. After
test suite generation, our approach requires the calculation of three measurements in order to apply multi-
objective approaches. These are coverage, reliability and execution cost of each test case.

The reliability score of a test case is based on the reliability of its inputs. The reliability of each input
is calculated using the formulation we described in our previous work [1, 2]. Previously, we introduced
the concept of service-centric test data generation addressing the issues of automation in realistic test data
generation [1]. The proposed solution called ATAM composes existing services to generate the required
realistic test data. ATAM also calculates the reliability of each generated realistic input based on the
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services used in the input generation process. Details of our formulation for the input reliability score is
available in an earlier paper [2].

Unlike reliability, execution cost and branch coverage cannot be acquired from an external source. The
easiest way of acquiring this information is by executing the whole test suite. Unfortunately, performing
a runtime execution for the whole test suite in order to measure its artefacts will increase the overall cost
of testing which is an unacceptable side effect for an approach that aims to reduce testing cost. In order
to avoid this cost, we propose the use of simulated testing using mock/stub services. Using stub/mock
services will allow us to measure branch coverage and service invocation information for each test case
without incurring additional costs.

Service invocation costs can occur in several ways (based on the type of contract agreed between the
provider and the integrator). Two of the most prominent payment plans used at present are: pay per-use
and invocation quota-based plans. As a result, two different cost calculation functions are introduced.
Details of these two payment plans and the cost calculation associated with them are discussed in Section
2.3.

After completing stub/mock service generation, a simulated run for the test suite is performed in order to
measure testing artefacts for each test case. These measured values then used in the optimisation process
to determine the pareto optimal sets of test cases. An illustration of an example ScS and its test suite with
the test case measurement is depicted in Figure 1.

In order to adapt Yoo and Harman’s minimisation approach to ScST, we modified the original greedy
algorithm by replacing its objective functions with the objective functions from our approach. We used
the following algorithms for the 2-objective and the 3-objective optimisation scenarios. The additional
algorithm for 2-objective optimisation (described in Algorithm 2) uses the cost and coverage calculation
algorithms discussed in Section 2.3.

Algorithm 2 2-objective Additional Greedy Algorithm
Require: Test suite S

1: DEFINE current fitness
2: DEFINE test case subset S ′ := ∅
3: while not stopping rule do
4: current fitness := 0
5: for all test cases in the test suite S do
6: if test case T is not in S ′ then
7: current fitness := coverage score of S ′ (CovS′)
8: ADD T to S ′
9: new fitness := CovS′− current fitness

cost of S′
10: end if
11: if new fitness is better than current fitness then
12: current fitness := new fitness
13: MARK T as selected
14: REMOVE T from S ′
15: end if
16: if No test case is selected then
17: End
18: else
19: ADD T to S ′
20: end if
21: end for
22: end while
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The 3-objective additional algorithm (described in Algorithm 3) considers an additional objective, relia-
bility. In this algorithm, the objectives coverage, cost and reliability are combined into a single objective
using the weighted-sum model. In our experiments, both coverage and reliability objectives were given
equal weights.

Algorithm 3 3-objective Additional Greedy Algorithm
Require: Test suite S

1: DEFINE current fitness
2: DEFINE test case subset S ′ := ∅
3: while not stopping rule do
4: current fitness := 0
5: for all test cases in the test suite S do
6: if test case T is not in S ′ then
7: coverage fitness := coverage score of S ′ (CovS′)
8: reliability fitness := reliability score of S ′ (RelS′)
9: ADD T to S ′

10: coverage fitness := CovS′− coverage fitness
cost of S′

11: reliability fitness := RelS′− reliability fitness
cost of S′

12: new fitness := coverage fitness + reliability fitness
2 . reliability and coverage are given equal weight

13: end if
14: if new fitness is better than current fitness then
15: current fitness := new fitness
16: MARK T as selected
17: REMOVE T from S ′
18: end if
19: if No test case is selected then
20: End
21: else
22: ADD T to S ′
23: end if
24: end for
25: end while

As mentioned, HNSGA-II uses the results from the greedy algorithm runs as an initial population. In the
second stage of our approach, we run the greedy algorithm and feed its results to NSGA-II algorithm which
produces the pareto optimal front enabling the tester to investigate the trade-offs between the measured
testing artefacts. In the cases where the size of resulting set from greedy algorithm is less than the required
population size for NSGA-II, we compensate for this shortcoming by adding randomly generated solutions
to the greedy results.

2.3 Objective Functions

Branch coverage is calculated as the percentage of branches of ScS under test covered by the given test
suite. In our approach, we considered coverage as an objective rather than a constraint, in order to allow
the tester to explore all the possible solutions on the pareto-optimal front. The following objective function
is used for branch coverage since our aim is to maximise the coverage of the test suite.

Maximize
branches covered by test suite

total number of branches
(1)

The objective function for the cost is not as straightforward as branch coverage because it has multiple
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options for service invocation cost. Several different payment plans might exist for service usage. However,
we considered only the two prominent ones: pay per-use and quota based payment plans.

Pay per-use plan: In this case, the integrator is charged for each service invocation individually. The
total cost of executing a test case is calculated as the total cost of services invoked by the test case and is
formulated as:

cs(tcm) =

n∑
i=1

XSi ∗ CSi

where n is the number of services invoked by executing the test case tcm, Si is the ith executed service,
CSi is the cost of invoking service Si and XSi is the number of times service Si invoked by this test case.

The cost for each service can be determined by discovering available services and their prices. At runtime,
it is safe to assume that multiple alternatives for each service in the composition will be discovered. As
a result, the tester might not know which services will be invoked at runtime. However, the tester needs
to assign a static service cost to each service in the composition in order to calculate the cost artefact for
each test case. In order to determine the price of each service, the tester might choose to use one of several
criteria, such as using maximum, average or minimum price of the discovered services alternatives. This is
flexibility essential because the tester might choose to change the runtime service selection criteria during
the test runs (to force the invocation of low-cost services) in order to reduce the cost of testing. In this case,
the lowest invocation costs for each service in composition is used to calculate cost of test cases. However,
the tester might also choose to use the average or maximum invocation costs if a more realistic runtime
testing is desired.

The objective function for pay-per use plan is formulated as:

Minimise

k∑
i=1

cs(tci) (2)

where k is the total number of test cases and cs(tci) is the total cost of executing the ith test case in the test
suite.

Invocation quota based plan: In this case, the integrator pays a subscription fee for a number of service
invocations within a period of time (such as monthly or annually). In our scenario, we presume that all the
services used in the composition are selected from a single provider and a total invocation quota applies
to all services rather than an individual quota for each service. The objective function for this plan is
formulated as:

Minimise number of services invocations. (3)

Generating test data using ATAM also enables the use of another test case artefact: reliability. Reliability
of a test case is based on the reliability of its inputs. Reliability of a test input is calculated by ATAM as
the combined reliability of the data sources used in generation of this input. The reliability calculation and
data source selection in ATAM are discussed elsewhere [2].

Each test case might include a combination of inputs generated using ATAM and user generated inputs. In
the case of user generated inputs we consider the input to be 100% reliable and for ATAM generated inputs
the reliability score is provided by ATAM. The reason behind considering the tester input as 100% reliable
is our assumption of the tester’s likely verification of the input data before test execution. Since we do not
modify the tester inputs and use them as they are, we did not foresee any reason for having variations in
the reliability score of the tester generated data.

In light of these possible cases, a reliability function covering these two cases is formulated as:
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rf(inx) =

{
1.0 if inx is user generated
ATAM score if inx is generated using ATAM

where rf(inx) is the reliability score of the input inx.

The reliability score of each test case is calculated as the average reliability of its inputs, and is formulated
as:

rel(tcm) =
1

y

y∑
i=1

rf(ini)

where y is the number of test inputs and rf(ini) is the reliability of the ith input (ini) of the test case tcm.

Reliability of a test suite is calculated as the average reliability of its test cases. Since our aim is to increase
the reliability of the test suite, the objective function for test suite reliability is formulated as:

Maximise
1

z

z∑
i=1

rel(tci) (4)

where z is the number of test cases in the test suite and rel(tci) is the reliability of the ith test case (tci) in
the test suite.

2.4 Mutli-Objective Algorithm and Parameters

To implement and evaluate our approach, we used the popular ECJ framework [5] which provides a built-in
NSGA-II algorithm. We used a single population with a size of 2000 and set the number of generations
to 100. After some tuning, we found that the ideal parameters that provide the most diverse solutions for
our problem are: 5% mutation probability for each gene and single-point crossover with 90% crossover
probability.

As mentioned, the only difference between HNSGA-II and NSGA-II is the initial population. The initial
population of NSGA-II is generated by ECJ’s internal mechanism. However, the initial population for
HNSGA-II requires the use of additional greedy algorithms. The results from the additional greedy algo-
rithm combined with the randomly generated solutions (in order to match the stated population size) are
fed to EJC as the initial population of NSGA-II algorithm.

3 Empirical Studies

In this section, we introduce the case studies we used in our experiments, present the research questions
we asked and explain our method of investigation.

3.1 Case Study

In order to evaluate our approach, we selected two case studies with different characteristics. The reason
behind this selection is to observe the effectiveness of our approach in different scenarios by providing
results that might challenge the findings from the other case study.

The first case study (CS1) is an example code used as a benchmark for applications/approaches that aim
to achieve branch coverage called ‘Complex’. Complex is a artificial test object with complex branching
conditions and loops [20]. However, in its original form, Complex is not an ScS. In order to evaluate our
approach, we transformed Complex into an ScS by replacing all mathematical, relational and logical oper-
ators with service calls1. We choose an existing calculator web service [4] to replace the 4 mathematical

1The source code available at http://www0.cs.ucl.ac.uk/staff/M.Bozkurt/files/public/complex source.zip
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operators: addition, subtraction, division and multiplication. For the other five operators, we implemented
a web service providing the required services. The list of used services are presented in Table 5.

Figure 2: Flowchart of the second case study

The second case study (CS2) is a synthetically created shipping workflow that combines the functionality
of a number of available online services [6, 16, 18, 19]. In order to make CS2 as realistic as possible, the
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shipping service invokes a combination of existing web services and other synthetically created services.
We were required to use synthetic services in order to simulate the functions of existing services that we
have restricted access to.

The most important aspect of CS2 is that it works with real-world services, which requires realistic test
inputs. The workflow requires a total of 14 inputs and 2 of these inputs are realistic (ZIP codes). The other
inputs are user generatable shipping options such as mail type, delivery type, box weight and dimensions.
The realism of CS2 is also strengthened by the fact that the ZIP codes used in this study are generated from
existing web services. The flow graph for the workflow is depicted in Figure 2 and the 14 web services
invoked are presented in Table 6.

As discussed, one of the advantages of ATAM is its ability to generate test data based on the reliability
of the test data source. In order to carry out our experiments, we needed to measure the reliability of the
services we used for generating test inputs. However, this was not possible for some of the services we
used due to access restrictions. In order to overcome this limitation and to increase the realism of our case
studies, we need real-world reliability scores. Thus, we measured the reliability of 8 publicly available
existing services, presented in Table 1.

Service Type Number of errors Reliability Score
USPS.com ZIP code validation 0 0.999
Websitemart.com ZIP code validation 3102 0.744
Zip-codes.com ZIP code validation 50 0.995
Webservicesx.com ZIP code validation 727 0.939
NOOA.gov Weather service 410 0.965
Myweather2.com Weather service 146 0.987
CYDNE.com Weather service 1218 0.899
Weatherbug.com Weather service 550 0.954
Webservicesx.com State ZIP code info 727 0.939

Table 1: The list of the services used in determining the real-world reliability scores used in our experi-
ments. Services in the list are tested with 12171 ZIP codes belong to 23 U.S. States. The USPS service
on the list is accepted as the ground truth for the validity of the ZIP codes. The rest of the ZIP validation
services are evaluated with the generated ZIP codes to observe if they correctly identify given ZIP codes’
validity. As for the weather services, we observed if they return weather information only for the valid ZIP
codes.

There are three main reasons that led us to choose these services for this part of our experiments:

1. The public availability and having no access restrictions, evidently supporting replication.

2. Requiring the same input that can be validated using a service which can be accepted as the ground
truth.

3. Similar functionality of services allowing determination of the expected output.

The services in the list are categorised into two main groups based on their functionality; ZIP code veri-
fication services and weather services. Verification services check if a given 5-digit US ZIP code is valid.
Weather services provide current weather information for a given ZIP code.

Services in the list were tested using 12171 ZIP codes of 23 different U.S. states. The ZIP codes used in
reliability analysis are generated using the the 9th service from Table 1. The USPS service in the table is
accepted as the ground truth for the validity of the ZIP codes. As a result, the number of errors observed
for this service is set to 0 and its reliability score is set to the highest reliability score: 0.999. The rest of
the ZIP validation services are evaluated with the generated ZIP codes to observe whether they correctly
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identify the given ZIP code’s validity. As for the weather services, we only considered the valid ZIP codes
in order to maintain consistency and checked if they return weather information for all valid ZIP codes. For
the reliability of the last service, we simply counted the number of invalid ZIP codes from the generated
outputs.

Input Reliability
Positive Negative

A 0.999 0.744
B 0.995 0.939
C 0.965 0.987
D 0.899 0.954
E 1.0 1.0
F 1.0 1.0

Table 2: Reliability values used in the 3-objective evaluation of CS1. Positive and negative values for each
input are assumed to be generated by a single web service with the given reliability on the list. The last two
inputs are assumed to be human generated thus their reliability scores are 100%.

After acquiring the reliability scores, we generated test inputs for both case studies. As for the test inputs,
Complex does not require realistic inputs, but requires 6 integer numbers which can be automatically
generated. As a result, we did not use ATAM in generating test inputs for CS1. Instead, we generated the
required test inputs using a random number generation method. However, in order to maintain consistency
in our experiments, we also evaluated the 3-objective formulation of our approach on CS1. Thus, we needed
to generate a fictional scenario where inputs are generated using different services such as the Random.org
integer generator [13]. In this scenario, we assumed that the positive and negative values for each of the
first four inputs (A to D) are generated using 8 different services. We assigned 8 of the measured reliability
scores to these services as presented in Table 2.

For CS2 we determined 3 web service compositions, as presented in Table 3, to generate ZIP codes. The
services and test inputs used in evaluating this case study are real-world entities. However, we were unable
to measure the actual reliabilities of the three services in the first composition due to access restrictions.
As a result, we assigned 3 of the reliability scores from Table 1 to the 3 services in the first composition (in
Table 3) and used these scores in the combined reliability score calculation of this composition.

Service Reliability
Publisher Input(s) Output Individual Combined

1
Google Search Keyword Search result 0.999
Strikeiron Http address IP address 0.744 0.881
FraudLabs IP address US location 0.899

2 Codebump.com – US state names 0.954
0.947

Webservicesx US state name ZIP code 0.939
3 Webservicesx US area code ZIP code 0.899 0.899

Table 3: Web service compositions used in generating ZIP codes. Individual reliability scores represent
the scores for each service and combined scores represent the reliability of the composition. The combined
score of a composition also determines the reliability scores of inputs generated using this composition.

The other needed artefact is the cost of invoking services. This raises the issue of how to choose realistic
values for this characteristic. In an earlier publication [2], we discussed this issue of generating realistic
invocation cost values for the services used in the experiments and presented a solution where realistic
costs values are obtained using costs of existing services as a basis. We adopted the same approach again
and used the cost values from Table 4.
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Service Group Price (per query)
No Description Max Company Min Company

1 Phone verification $0.300 StrikeIron Free WebServiceMart
2 Traffic information $0.300 MapPoint Free MapQuest
3 Geographic data $0.165 Urban Mapping $0.010 Urban Mapping
4 Bank info verification $0.160 Unified $0.090 Unified
5 IP to location $0.020 StrikeIron Free IP2Location
6 Stock Quote $0.020 XIgnite $0.008 CDYNE
7 Financial data $0.017 Eoddata $0.007 XIgnite
8 Nutrition data $0.010 CalorieKing Free MyNetDiary
9 Web search $0.005 Google Free Bing

Table 4: Services used as a basis for the synthetically generated case study. The services and the given
prices in this table are collected from Remote Methods website [14].

The real-world web service we used in CS1 is a free-to-use web service and provides 4 of the services
used in this case study. Unfortunately, the free services presented challenges for maintaining consistency
especially on CS1 due to these services being the most invoked services. This problem had an impact on our
experiments using a per-use payment plan, causing most of the test cases having the same execution cost
even though there were large differences in the number of the services invoked. As a result, we assigned
the invocation cost values presented in Table 5 to the services in CS1.

Service PriceNo Description
1 Multiplication $0.300
2 Division $0.300
3 Logical AND $0.165
4 Logical OR $0.160
5 Greater Than $0.020
6 Less Than $0.020
7 Equal To $0.017
8 Subtract $0.010
9 Add $0.005

Table 5: The invocation costs for the services used in CS1.

For CS2, we used a combination of real service costs (for free to use services) and synthetically generated
values (using the same method adopted in CS1) as presented in Table 6.

3.2 Research Questions

We ask the following three questions:

RQ1 Can multi-objective test suite minimisation reduce the testing cost by finding optimal test suite sub-
set(s) for ScST?

RQ2 Is using a test suite with low reliability (containing invalid inputs) likely to generate false positives
which might increase the testing cost?

RQ3 Can HNSGA-II algorithm discover dominating solutions compared to NSGA-II and the additional
greedy algorithm in our problem?
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Service PriceNo Name Description
1 WebserviceMart ZIP code verification Free
2 WebServicesx ZIP code info $0.090
3 Bike messenger 1 Find bike messenger $0.008
4 Bike messenger 2 Find bike messenger $0.007
5 Bike messenger 3 Find bike messenger $0.007
6 WebServicesx ZIP code distance $0.020
7 USPS Get delivery price Free
8 Fedex Get delivery price Free
9 TNT Get delivery price Free
10 DHL Get delivery price Free
11 UPS Get delivery price Free
12 Payment system get card payment $0.30
13 Label system print mail label $0.017
14 Courier finder find courier $0.010

Table 6: Invocation costs for the services used in CS2.

3.3 Method of Investigation

In order to answer RQ1, we applied our minimisation technique to both of the case studies. Initially, we
tried to randomly generate a test suite that achieves 100% branch coverage for each case study. However,
we experienced two issues while using random test generation. It was found to be ineffective in achieving
full coverage in CS2 and many of the generated test cases cover exactly the same branches as another
test case (equivalent test cases). For CS1 the test suite reached 100% coverage after 1000 test cases and
for CS2, test cases covering 3 of the branches (where two ZIP codes of the same city are required) could
not be randomly generated within several thousand tries. As a result, we manually generated 4 test cases
that cover the uncovered branches in CS2 and applied a simple test case reduction technique to eliminate
equivalent test cases.

The resulting test suite sizes were 50 test cases for CS1 and 100 test cases for CS2. The details of both
test cases are presented in Table 7. We applied our approach to both of the test suites and measured the
minimisation rates achieved by our approach for two different respects: reduction in the number of test
cases and reduction in the test cost for both payment models.

Experiment Test suite size Coverage Service invocations Cost
CS1 50 100% 29760 $1302.90
CS2 100 100% 693 $212.45

Table 7: Details of the test suites generated for CS1 and CS2.

The main reason for seeking the answer to RQ2 is to investigate our assumption that there is a need for
reliable test suite. In order to answer RQ2, we measured the false positives occurred during testing of the
four weather information services. In this scenario, a false positive occurs when one of the four services
returns a negative response to the given ZIP code which is identified as ‘invalid’ by USPS service.

In order to answer RQ3, we evaluated the generated pareto fronts from two different aspects. First, we ran
greedy, NSGA-II and HNSGA-II2 with all possible combinations of configurations (both payment plans
and both number of objectives) in our approach for both case studies and performed a domination analysis
to compare the performance of the algorithms. We also measured the distances between discovered pareto

2We ran NSGA-II and HNSGA-II for 10 times in order to statistically evaluate their performance.
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fronts to give us a better understanding of the differences between the fronts. The distance metric we used
(Υ) which is used for measuring how close the discovered set of solutions are to the optimal pareto front.
In order to measure this metric, the minimum Euclidean distance between each of the solution from the
generated front and the optimal front are calculated and the average of these distances is used as the distance
metric. In this part of the experiment, we used the pareto front generated by HNSGA-II as a reference front
and measured the distance of the pareto front generated by NSGA-II to it.

4 Results and Analysis

In this section, we present the results from our experiments, provide answers to the research questions and
discuss the threats to the validity of the results from experiments we conducted.

4.1 Results

We analysed the results of test suite reduction after the application of our approach to the initial test suites
for both case studies in three different aspects. The first aspect is the reduction in number of test cases
while retaining the branch coverage of the subject. As presented in Table 8, our approach achieved 84%
reduction in the number of test cases for CS1 and 68% reduction for CS2.

Experiment
Number of Test Cases

Test Suite Our approach Reduction
CS1 50 8 84%
CS2 100 32 68%

Table 8: Reduction in the number of test cases with the application of our approach. The results from
our approach are the minimum number of test cases from the initial test suite that provide 100% branch
coverage.

During the experiments, we also found that only 12% of the test cases for CS1 and 34% of the test cases for
CS2 in the initial test suites found out to be equivalent test cases. This is an important finding that justifies
the diversity of the initial test suites, it also provides evidence for the effectiveness of our approach, since
the reduction rates are higher than the equivalent test case rates.

Experiment
Cost (contract based)

Test Suite Our approach Reduction
CS1 29760 415 98.6%
CS2 693 197 72%

Table 9: Reduction in the number of service invocations with the application of our approach. The number
for test suite represents the number of service invocations performed by executing the initial test suite.
The results from our approach are the minimum number of invocations necessary to achieve 100% branch
coverage.

The second aspect is the reduction in the number of service invocations. This aspect relates to the testing
cost when using a contract-based payment plan. Our approach in this case targeted for finding the minimum
number of service invocations required to achieve 100% branch coverage. As presented in Table 9, our
approach found a solution that reduces the number of invocations from 29760 to 415 for CS1 achieving
98.6% reduction while retaining the branch coverage of the test suite. As for CS2, our approach achieved
a 72% reduction in the number of service invocations.

The third aspect is the reduction in the monetary cost of testing. This aspect relates to the testing cost when
using a per-use payment plan. Our approach in this scenario seeks to find the set of test cases with the least
expensive execution cost and achieves 100% branch coverage. As presented in Table 10, our approach
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found a solution that reduces the total cost of testing from $1302.90 to $19.86 for CS1 achieving 98.5%
reduction while retaining the branch coverage of the test suite. As for CS2, our approach achieved a 69%
reduction in the total cost of testing.

Experiment
Cost (per-use based)

Test Suite Our approach Reduction
CS1 $1302.90 $19.86 98.5%
CS2 $212.45 $65.99 69%

Table 10: Reduction in the number of service invocations with the application of our approach. The number
for test suite represents the number of service invocations performed by executing the initial test suite. The
results from our approach are the minimum number of invocations necessary to achieve 100% branch
coverage.

A general assumption was that one might expect our approach to achieve the same or very similar reduction
rates for contract-based plan and the per-use plan. However, the results from Table 9 and Table 10 suggest
that this assumption might not hold in all cases. According to the results, in the case of CS1, the difference
between the reduction rates is minor. However, for CS2 the difference is significantly higher.

In order to answer RQ2, we investigated the false positives generated by the 727 ZIP codes which are
identified as invalid by the USPS web service. We tested all the weather services with invalid ZIP codes in
order to observe whether they cause a false positive. In this scenario, a false positive occurs when a service
does not return a weather information for an invalid ZIP code.

Service Type False Positives FP Rate Error Rate
NOOA.gov Weather service 232 0.32 0.035
Myweather2.com Weather service 1 0.0014 0.013
CYDNE.com Weather service 493 0.68 0.101
Weatherbug.com Weather service 196 0.27 0.046

Table 11: The list of false positives caused by erroneous test inputs. In this scenario, a false positive
occurs when one of the four services return a negative response to the given ZIP code which is identified
as ‘invalid’ by USPS service. Values in ‘FP rate’ column represent the false positive generation rate for
invalid inputs. The values in ‘Error rate’ column represent the erroneous output generation rates for the test
cases in the test suite.

As it is presented in Table 11, there is a big variance in the number of false positives generated by the
weather services. We believe this variance might be caused by weather services having ZIP code databases
(or using an external ZIP code service) from different sources. For example, ‘MyWeather2’ service might
be using a database which is very similar to the service (Webservicesx) we used in generating the ZIP codes.
However, for the other weather services, we observed a much higher false positive rate. For example, for
the ‘NOAA’ service, the tester needs to check the test results for 232 ZIP codes and verify each of these
ZIP codes if they used this test suite.

There is also another interesting result observed in Table 11: an invalid ZIP code is more likely to generate
a false positive than a valid one to cause an erroneous output. For all services except one, the false positive
rate is much higher than error rate.

One other important finding we need to discuss in this analysis is that none of the services generated
the all 727 false positives we expected to observe. Only 561 of the invalid ZIP codes caused a false
positive and for the remainder of the codes the weather services returned a valid response. We believe this
is a further indication that supports our claim regarding weather services not using up-to-date ZIP code
databases/services.

The results from the domination analysis (presented in Table 12) revealed results that conform with the
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Experiment
Contract Per Use

n
HNSGA-II NSGA-II

n
HNSGA-II NSGA-II

Avg. σ Avg. σ Avg. σ Avg. σ

CS1 (2 obj.) 23.0 0.5 0.67 1.5 1.43 23.0 0.1 0.3 1.0 1.48
CS2 (2 obj.) 32.7 22.2 1.89 0.3 0.46 32.3 25.1 2.98 0 0
CS1 (3 obj.) 201.8 14.8 3.68 25.1 7.88 204.6 15.8 4.29 23.6 4.03
CS2 (3 obj.) 238.9 212 6.03 1.0 1.18 241 209 10.14 0.7 0.71

Table 12: Results from our domination analysis. The column ‘n’ represents the average size of the discov-
ered pareto fronts. ‘Avg.’ column for each algorithm represents the average number of dominating solutions
discovered by the algorithm. The results lead to two important findings that NSGA-II and HNSGA-II’s
performances are similar for problems in which greedy algorithm does not outperform NSGA-II (such as
CS1). However, for problems (such as CS2) where greedy outperforms NSGA-II, HNSGA-II outperforms
NSGA-II.

analysis of Yoo and Harman [22]. Our first finding came from the results of CS1 that NSGA-II might
outperform HNSGA-II (by a small margin) where additional greedy algorithm cannot outperform NSGA-
II (as depicted in Figure 3, 6 and 8). We believe this is due to HSNGA-II starting with a good initial
population, leading it to discover solutions around this set whereas NSGA-II explored a larger space using
random population. However, as can be observed in Figure 3, 4 5 and 7, the majority of the solutions
discovered by both algorithms are the same.

(a) Contract-based payment plan (b) Per-use payment plan

Figure 3: Pareto fronts discovered from the 2 objective optimisation of CS1

(a) Contract-based payment plan (b) Per-use payment plan

Figure 4: Pareto fronts discovered from the 2 objective optimisation of CS2
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On the other hand, the results of CS2 provide evidence for the improvements HNSGA-II can provide for
problems in which greedy outperforms NSGA-II. The results from both 2- and 3-objective runs indicate
that HNSGA-II outperforms NSGA-II by a high margin. For example, on average, 68% of the discovered
solutions with 2 objectives for CS2 (contract-based plan) dominate NSGA-II and the domination rate goes
up to 89% for the same scenario with 3 objectives. A similar trend was also observed for other configura-
tions of CS2.

Figure 5: 3 objective optimisation for CS1 with per-use payment plan

Figure 6: Projected view of Figure 5 focusing on the solutions with 100% coverage score.
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Figure 7: 3 objective optimisation for CS1 with contract-based payment plan

Figure 8: Projected view of Figure 7 focusing on the solutions with 100% coverage score.

RN/13/04 Page 17



Cost-cognisant Test Suite Reduction for Service-centric Systems Mustafa Bozkurt

Figure 9: 3 objective optimisation for CS2 with per-use payment plan

Figure 10: Projected view of Figure 9 focusing on the solutions with 100% coverage score.
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Figure 11: 3 objective optimisation for CS2 with contract-based payment plan

Figure 12: Projected view of Figure 11 focusing around the solutions with 100% coverage score.

The results revealed that the difference between the generated pareto fronts are not as high as presented in
Table 13. Before the analysis, we expected the results to have a direct relation with the number of dominant
solutions discovered. Our assumption was that the higher the number of dominant solutions, the higher the
distance between the pareto fronts must be. The results from the analysis did not validate this assumption.
However, the results provide evidence for the fact that for problems in which NSGA-II outperforms greedy,
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NSGA-II discovers solutions further from HNSGA-II. This can be observed in Figure 5 and 7 (a closer look
of the high coverage areas of these two figures are depicted in Figure 6 and 8), where NSGA-II discovered
solutions (especially around 100% coverage) that are far from the solutions discovered by HNSGA-II.

Experiment
Contract Per Use

Average σ Average σ

CS1 (2 objectives) 0.6999 0.71219 0.0353 0.05036
CS2 (2 objectives) 5.4224 1.83578 0.9128 0.24409
CS1 (3 objectives) 4.5524 2.28092 0.07 0.08572
CS2 (3 objectives) 1.521 0.42198 0.4014 0.11026

Table 13: The average distances between the pareto fronts generated by both algorithms. Both algorithms
are run 10 times and the average Euclidean distance between pareto fronts are measured using the distance
metric Υ.

The distances (between discovered fronts) depicted in figures mentioned here might not accurately repre-
sent the actual distance between the solutions due to cost values being normalised. The cost values (for
both per-use and contract-based) are normalised in order to fit all discovered fronts into a single graph.
However, the distances provided in tables are based on the calculations with the actual cost values and
reflect the real distances between fronts.

The results provide evidence for the effectiveness of HSNGA-II over both NSGA-II and greedy algorithm.
For example, results from Figure 10 and 12 clearly indicate that HNSGA-II can match greedy’s perfor-
mance for problems in which greedy discovers a pareto front close to optimum front and can outperform
NSGA-II. On the other hand, results from Figure 6 and 8 indicate that for problems in which greedy can
outperform NSGA-II, HNSGA-II also can outperform greedy by matching NSGA-II’s performance.

4.2 Answers to Research Questions

The results from our experiments provide evidence for the effectiveness of our approach in testing cost re-
duction using multi-objective algorithms and answered RQ1. For both case studies, our approach achieved
high reduction rates, with up to 84% reduction in the size of test suite and up to 99% reduction in the testing
cost (for both payment plans) while retaining the coverage of the initial test suite.

With regards to RQ2, the results provide evidence for the fact that invalid inputs have a significant possibil-
ity of generating a false positive which might increase the testing cost in ScST. The observed false positive
generation rates during the experiments were high (varying between 27% to 68%) for all the services we
analysed except for one where the rate was 0.0014. The results also suggest that an invalid input is more
likely to cause a false positive than the possibility of a realistic input causing an erroneous output in ScST.

As for RQ3, the results provide evidence for the fact that HNSGA-II performance is highly related to the
performance of greedy algorithm. Since HNSGA-II executes the same NSGA-II algorithm for problems
in which NSGA-II outperforms greedy (such as CS1), it performs similarly to NSGA-II. However, for the
problems in which greedy outperforms NSGA-II, we observe the real benefit of HNSGA-II. The evidence
for this claim came from the results of CS2, for both payment plans greedy discovered a very good set
of solutions and HNSGA-II could not discover better results and resulted with the same pareto front. The
advantage of using HNSGA-II is that it can match the performance of the best performing algorithm (out
of the two) in any scenario, while outperforming the other one.

5 Conclusion

In this paper, we introduced a solution aimed at reducing the runtime testing cost in ScST by using multi-
objective optimisation, and presented an experimental study that investigated the relative effectiveness of
proposed approach. We also investigated the HNSGA-II algorithm and compared its effectiveness in ScST
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against the other two well known algorithms (NSGA-II and greedy) used in test suite minimisation. In this
part of our research agenda, we focused on the cost of runtime testing, branch coverage of the test suite and
test suite reliability as our three primary objectives. The results provide evidence for the applicability and
the effectiveness of the approach to ScS. Our approach achieved high reduction rates in both case studies
with all possible payment plans without reducing the coverage of the test suite. The results also affirm the
benefits of using HNSHA-II over NSGA-II especially for certain problems.
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