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Abstract

Numerous applications require the optimisation of
unknown functions, which are costly to evaluate and
potentially too complex to allow for strong simplify-
ing assumptions (e.g. linearity, di↵erentiability, etc.).
May it be in a clinical trial, online advertisement or
oil reserves location, it is not always economically
feasible to sample the objective functions at whim.
Gaussian Process (GP) bandits e�ciently deal with
such situations by learning probability distributions
over the black-box functions favouring their sampling
in areas with higher prospects.

GP–UCB is a type of GP-bandit algorithm that
trades o↵ exploration and exploitation by using Up-
per Confidence Bounds (UCB). We perfect it by in-
troducing a hyperparameter learning stage. This
leads to a more e�cient algorithm whose performance
is tested against that of the GP–UCB over a set of
benchmark functions.

1 Introduction

An increasing number of scenarios require an agent
to take the best possible decision, by maximising his
rewards. So far, the main body of the literature has
focused on solving well defined optimisation problems
in which the function to be optimised or objective

function has a closed-form mathematical formulation
[2]. Moreover, that function is considered cheap to
evaluate, in the sense that it can be extensively mea-
sured at di↵erent inputs in order to find its optimum.

Nevertheless, in everyday situations those require-
ments are hardly ever met. In online assignment

learning problems [16] a service provider has to
choose which ads to display on a webpage for each
user to view. The provider is paid depending on the
number times the shown ads are clicked on, the Click-

Through-Rates (the reward function). He is not given
any information about the reward function other than
if the user has clicked on the ad or not. As a result,
bandits were used to find which ads maximise the
payo↵s, without having to make unreasonably strong
assumptions over the nature of a reward function,
about which so little is know.

Other possible applications include training multi-
armed bandits to rank web documents by relevance
and exhibit the k best [11]. Bandits can also be used
to increase the statistical power of clinical trial re-
sults where the population under study is divided into
many subpopulations (e.g. di↵erent ethnicities) [10].
They also have applications in reservoir location in
the oil industry and can even play games [5].

Gaussian Process (GP) bandits, in particular, con-
struct a probabilistic representation of the objective
function, called its surrogate. Then they sample the
objective function in areas corresponding to an op-
timum of the surrogate. This action increases our
knowledge of the objective function and modifies the
surrogate accordingly. That modification is dictated
by the covariance kernel of the GP, which depends
on a certain number of fixed parameters called hy-

perparameters. They can substantially influence the
performance of the GP-bandit and yet their values
is di�cult to set a priori, specially when optimising
black-box functions.

To respond to that issue the author of this pa-
per has developed, during his MSc. thesis [4], a
new framework named Dynamic Learning Gaussian

Process (DLGP) bandit where the GP bandit learns
the hyperparameters. This learning process is none
trivial though, as many complications arise from the
high correlation between sampled observations. This
new framework ultimately allows us to make more
informed choices about which values to sample, mak-
ing it converge to the optimum after fewer function
evaluations.
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2 Gaussian Process (GP)

Gaussian Processes are a generalisation of multivari-
ate normal distributions, instead of just being a dis-
tribution over vectors they define a distribution over
functions. Conceptually GPs are based on the naive,
yet e↵ective, idea that a function f(x) can be re-
garded as an infinite vector whose values correspond
to f(x) evaluated at every possible input x.

Let X be a non-empty index set, which can either
be countable (e.g.. Nd) or uncountable (e.g.. Rd).
Moreover, let xi be a specific value taken by x.

Definition 2.1 [8] A Gaussian Process {f(x),x 2
X}, is a family of random variables f(x), all defined
in the same probability space. In addition, for any

finite subset F ⇢ X , with F := {x⇡1 , . . . ,x⇡n}, the
random vector f := [f(x⇡1), . . . , f(x⇡n)]

>
has a (pos-

sibly degenerate) Gaussian distribution.

A GP is fully characterised by its mean function
m(x) and covariance function k(x,x0). They are in
turn defined as 8x,x0 2 X :

m(x) := E[f(x)],
k(x,x0) := E[(f(x)�m(x)) (f(x0)�m(x0))].

The GP is denoted as,

f(x) ⇠ GP (m(x), k(x,x0)) . (2.1)

In the literature the mean function is usually dis-
regarded for notational simplicity, hence considering
m(x) = 0(x), where 0(.) is the zero function.

The main requirement of the covariance function
or kernel is to be positive semidefinite. Amongst the
best known examples of covariance functions there is
the Automatic Relevance Determination (ARD) ker-
nel, defined as

kARD(f(x), f(x0
)) := �2

0 exp
�
� 1

2 (x� x

0
)

>M(x� x

0
)

�
,

(2.2)
where M is a positive semidefinite matrix generally
set as M = diag(h)�2. The non-null hyperparame-
ters �0 and h, can either be set by the user or tuned
using some optimisation techniques. The elements of
vector h are called length-scale parameters.

In practice, when analysing a finite set F we find a
new random variable f 2 R|F | by evaluating the GP
only at the points in F . Now, consider that we have
n input values drawn from the GP in (2.1), gathered

in a matrix X⇤ = (x⇤
1, . . . ,x

⇤
n)

>, with ⇤ indicating
that we have not observed f(x⇤

i ) (with or without
measurement noise). Then, the generated random
variable f⇤ 2 Rn follows a multivariate gaussian dis-
tribution,

f⇤ ⇠ N (0,K(X⇤, X⇤)), (2.3)

where [K(X⇤, X⇤)]i,j := k(x⇤
i ,x

⇤
j ) is a covariance ma-

trix in Rn⇥n.

We assume that each observation f(xi) is tainted
with some gaussian noise "i ⇠ N (0, �2)

yi = f(xi) + "i. (2.4)

As a result the n-training set is composed of pairs
{(xi, yi)}i=1:n , in matrix notation (X,y), where with
X = (x1, . . . ,xn)> and y = (y1, . . . , yn)>.

As the GP process is a natural conjugate prior over
functions is is trivial to find the conditional distribu-
tion of the test cases given the training examples, in
other words f⇤|X,y, X⇤. The predictive distribution
simply becomes,

f⇤|X,y, X⇤ ⇠ N (f̄⇤,⌃⇤), where (2.5)

f̄⇤ := E[f⇤|X,y, X⇤] = K(X⇤, X)[K(X,X) + �

2
nI ]

�1
y,

(2.6)

⌃⇤ := K(X⇤, X⇤)�K(X⇤, X)[K(X,X) + �2
nI ]

�1K(X,X⇤).

(2.7)

We see from (2.5) that the GP posterior at a given
test input x⇤ depends on the training data X, on
the choice covariance function and on the set of hy-
perparameters in the kernel. Those randomly chosen
hyperparameters are to some extend a nuisance.

2.1 Evidence maximisation

Here we introduce an evidence maximisation based
method to learning hyperparameters, also known as
marginal likelihood maximisation. Its first step con-
sists in determining the likelihood of the data given
the collection of hyperparameters ✓. Since, when
training the Gaussian Process, we only work with a
finite dataset then the likelihood corresponds to that
of a multivariate Normal distribution.

We want to compute the evidence P (y|X, ✓). We
set the prior P (f |X, ✓) ⇠ N (0,K), with K :=
K(X,X). We obtain the evidence by noticing that in
(2.4) we have P (y|X, ✓) = N (f |0,K)+N ("|0, �2

I ) =
N (0,⌃). with ⌃ := K(X,X)+�

2
I . It is also named
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marginal likelihood. We find the optimal values of ev-
ery hyperparameter ✓j 2 ✓ by taking the derivatives
of the evidence with respect to each of them.

Although, evidence maximisation seems to be a
good method to find the hyperparameters ✓, it fails
to take overfitting into account, hence the model fails
to generalise to unobserved data. One way of avoid-
ing this issue is to use leave–one–out cross–validation
(LOO). This technique assumes that for input i in
our dataset, renamed x⇤i for the occasion, we have
not observed the corresponding output y⇤i . It then
computes the log likelihood Li of observing y⇤i given
all other pairs of observations; this operation is re-
peated for every pair. Finally, we choose ✓ to max-
imise the joint likelihood of observing the entire n

sample (LLOO).

Let µi and �

2
i be the predictive mean and variance

x⇤i , respectively, computed from (2.6) and (2.7). No-
tice that these values are scalars since there is a only
single element in the test set X⇤ = x

>
⇤i
. Also let the

subscript �i designate matrices/vectors containing all
the observations in the sample with the exception of
the i

th. Consequently, we get

Li := logP (y⇤i |x⇤i , y�i, X�i, ✓)

= � 1
2 log �

2
i �

(y⇤i � µi)2

2�2
i

� 1
2 log(2⇡)

The hyperparameters are found by maximising the
following,

LLOO(y,X, ✓) :=
nX

i=1

Li. (2.8)

Finally, for more technical details on how to max-
imise (2.8) in a computationally e�cient way the
reader is directed to [13] Chapter 5.4.2.

3 Gaussian Process Bandit

Bandits are a formal framework for solving reinforce-
ment learning problems where a learner has to ex-
plore an unknown environment to try to get the high-
est possible cumulative reward. Bandits are an e�-
cient way of trading o↵ exploration and exploitation

and are generally best described by the classical slot
machine example. In this scenario the agent is in a
casino and tries to maximise is cumulative earnings
while playing at the slot machines.

The agent has to chose between playing N slot
machines with di↵erent distributions over earnings,

with expected payo↵s µi. His aim is to find machine
i

⇤ := argmaxi2Nµi while avoiding wasting money on
the machines with lower expected earning, along the
way. To achieve that goal he will mainly play the slot
machine that has been giving him the highest pay-
o↵s - exploitation - while sporadically playing other
machines to verify that their payo↵s have not been
underestimated - exploration.

In the bandit context we consider each machine to
be an arm of a multi-armed bandit. By choosing an
appropriate algorithm to solve this task the hope is
to minimise the average cumulated regret. The regret
at time t being the gap between our maximal possible
earning µi⇤ and our actual reward rt, i.e.

Rt := µi⇤ � rt. (3.1)

3.1 Context

GP-bandits rely on the assumption that the arms of
the bandit are dependent, hence the reward obtained
by pulling one arm delivers information about neigh-
bouring arms. For example, if a person likes a movie
that gives us indications about what other types of
movies she might like.

We formalise this scenario by assuming that a
reward function y is obtained from a latent func-
tion f(.), which is a sample path generated from a
GP(0, k(x,x0)) distribution. It is evaluated at arms
x 2 F . Typically, F is taken to be an axis parallel
hyper-rectangle of finite size. The observations are
believed to be subject to some Gaussian noise ", as
in (2.4).

In this article, to trade o↵ exploration versus ex-
ploitation we will only focus one of the most theoreti-
cally understood method, which has also been shown
to give good empirical results, GP–UCB a version of
the UCB algorithm created by [1]. Finally, without
loss of generality we will only consider the case were
we are looking for the maximum of f( .).

3.2 GP–UCB

Gaussian Process - Upper Confidence Bound (GP–
UCB) applies the principle of optimism in the face

of uncertainty by valuing the elements x that poten-
tially hold a great reward rt but that at the same time
lie in unsampled areas of the objective function’s in-
put space D.

xt = argmax
x2D{µt�1(x) +

p
�t�t�1(x)} (3.2)

3



The GP–UCB in (3.2) combines a greedy strategy
xt = argmax

x2D{µt�1(x)} taking the elements with
highest expected value under the predictive distribu-
tion, computed from data gathered up to evaluation
t�1, and balances it with an exploratory component.
The term that allows for deviations from the greedy
optimum is

p
�t�t�1(x), where �t�1( .) is the predic-

tive variance and �t is the parameter that establishes
the level of exploration.

In [15], it is shown that, for finite D, the value of
the tradeo↵ parameter,

�t = 2 log

✓
|D| t2⇡2

6�

◆
, with � 2 (0, 1), (3.3)

holds good convergence properties.

Let µ, k0(. , .) and ✓0 be the prior mean,
variance and hyperparameters respectively and
Xt := (x1, . . . ,xt)>, then the GP–UCB algorithm
can be stated as,

input: Input space D; GP prior
µ0 = 0, �0, k0(. , .), ✓0

1 for t=1,2,. . . do

2 Generate a set of m arms
U := {u1, . . . ,um} ⇢ D;

3 Choose
xt  argmax

u2U{µt�1(u) +p
�t�t�1(u)};

4 Sample yt  f(xt) + "t;
5 µt  GP posterior mean with ✓0

and inputs Xt using (2.6);
6 �

2
t  GP posterior variance with

✓0 and inputs Xt using (2.7);
7 end

Algorithm 1: GP–UCB algorithm

4 Dynamic Learning Gaussian

Process Bandit

The case bellow illustrates one of the main weak-
nesses of GP–UCB. Consider a GP with an ARD ker-
nel in which the length-scale of dimension x is M1,1 =
0.4 and the one along dimension y is M2,2 = 1, de-
picted in figure 1. As a result the GP varies more
smoothly along y than x.

Now suppose that we wish to maximise this func-
tion. To do so we shall need to sample it more along x
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Figure 1: axis x on the left and y on the right

then y, because the probability of observing a sudden
peak, holding the maximum, is higher with x than y.
Nevertheless, GP–UCB will not be able to take this
factor rapidly into account during the optimisation,
since it never updates the prior hyperparameters.

For instance, consider a petroleum company look-
ing to increase its oil reserves by finding new reser-
voirs. For the company to know if a reservoir
is exploitable expensive analysis are required (e.g.
drilling, satellite imagining, etc.). Bandits can be
used here to reach the best reservoirs while limiting
costly analysis. Here Xt represents the coordinates
of all areas analysed so far. Assuming peaks in fig-
ure 1 represent bigger reservoirs the company would
prefer to focus on sampling along the x axis, hence
a method allowing it to realise this could save the
company a lot of money.

That is when the true strength of the DLGP is re-
vealed as it is capable of dynamically learning the
hyperparameters and more quickly avoid excessively
sampling areas with low prospects. This is particu-
larly important in high-dimensional problems where
many dimensions may have low relevance to the ob-
jective, i.e. noise variables.

4.1 DLGP-bandit definition

The DLGP as presented in this section is just a
general framework that introduces a hyperparame-
ter learning stage onto GP–UCB without specifying
how to learn them in practice. Consequently, that
entire procedure is represented by a function call
h(✓0,At�1, ...) in algorithm 2. This way practitioners
will be able to improve DLGP further and tailor it to
their needs, yet a very detailed algorithm for solving
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h(.) is presented in section 5.

input: Input space D; GP prior
µ0 = 0, �0, k(. , .), ✓0 and �

1 ✓

⇤  ✓0 and A0  {;} ;
2 for t=1,2,. . . do

3 if t 2 � then

4 ✓t  h(✓0,At�1, ...) select

new hyperparameters;
5 ✓

⇤  ✓t;
6 end

7 Generate a set of m arms
U := {u1, . . . ,um} ⇢ D;

8 Choose
xt  argmax

u2U{µt�1(u) +p
�t�t�1(u)};

9 At  {At�1,xt} adding the last

arm pulled to the set of pulled

arms;
10 Sample yt  f(xt) + "t;
11 µt  GP posterior mean with ✓

⇤

at inputs Xt using (2.6);
12 �

2
t  GP posterior variance with

✓

⇤ at inputs Xt using (2.7);
13 end

Algorithm 2: DLGP algorithm

At first sight DLGP is not fundamentally di↵erent
from the GP–UCB. In appearance it only includes a
few extra commands, lines 3-6 in Algorithm 2, how-
ever they result in a behaviour substantially di↵er-
ently from that of its predecessor.

In essence, the DLGP starts o↵ like the GP–UCB
up until t reaches the first element in � denoted �1.
Indeed, it is only possible to start learning the hy-
perparameters when there is data on which to train
them. That is why it is advised to have �1 larger
then the number of hyperparameters in the kernel.

We define a set � instead of just reevaluating the
hyperparameters each time because the computa-
tional cost of learning ✓ increases more than linearly
with the sample size but not the gain of recomputing
✓. Indeed, as the sample grows the contribution of
a single additional observation on determining ✓ will
become smaller and not worth the extra computation.

4.2 Dependent data issues

In the next section we shall suggest one way of con-
structing h(.), but first we discuss a certain number

of general issues related to hyperparameter learning.
These are specific to the GP-bandits and that the
reader should be aware o↵. These include the com-
plications caused by the fact that data in the set
of pulled arms At is not iid and why normal cross-
validation fails to prevent overfitting in this situation.

Indeed, when using bandits, the arm to pull next
xt+1 always depends on all past arms At. As we
perform k-fold cross-validation, we have a test set
XV := {xi : i 2 V}, where V ⇢ {1, . . . , t}, |V| = t/k

and a training set X�V := {xi : i 2 Vc}. If the
data were iid then XV ?? X�V , but when working
with dependent data neighbouring observations con-
tain information about each other and the relation
no longer holds.

When applying the DLGP, sampled input points
tend to cluster around the argument of local optima,
i.e. the value x such that f(x) is a local optima. It
would seem that as the bandit learns the hyperparam-
eters it compresses space and considers data points xi

to be closer then they really are. A similar problem
was described in kernel regression [6], with positively
correlated data, where the kernel bandwidth tended
to be overestimated with correlated data more than
with uncorrelated data.

Consequently, the learner tends to overestimate the
length-scale hyperparameters typically considering
the objective objective function to be too smoother.
This is most probably due to the fact that the hyper-
parameter estimator ignores the dependence in the
measurements and attributes their positive correla-
tion to the smoothness of the underlying function.

A method to cross-validate dependent data, com-
monly used in time series, is modified cross-validation

or h-blockage [3]. This approach involves selecting a
term h > 0 that controls for the distance of the block-
age and then removing the observations less then h

periods away from the test value.

The method that we shall use relies on this concept,
while adding a geometric component to the tech-
nique. This method will require the use of GMM’s
and silhouette coe�cients that we will quickly review.

4.2.1 Gaussian Mixture Model (GMM)

We assume that the generative model for observations
is a Gaussian mixture,

P (xi|⇥) =
KX

k=1

pk N (xi|µk,⌃k),
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where ⇥ := (⇥1, . . . ,⇥K)> and ⇥k := (↵k, µk, �k)>.
The pk’s are the mixing probabilities, that is the prior
probabilities on any observation x belonging to a clus-
ter Ck, so pk := P (x 2 Ck) = P (x1 2 Ck) . . . P (xn 2
Ck).
Let the superscript (t) indicate the t

th estimation
of a parameter. The Expectation Maximisation (EM)
algorithm solves the Gaussian mixture model by re-
cursively performing the following steps.

• E step (at recursion t):

r

(t)
ik :=

p

(t�1)
k N (x|µ(t�1)

k ,⌃(t�1)
k )

P
k0 p

(t�1)
k0 N (x|µ(t�1)

k0 ,⌃(t�1)
k0 )

,

• M step (at recursion t):

µ

(t)
k =

Pn
i=1 r

(t)
ik xi

Pn
i=1 r

(t)
ik

,

⌃(t)
k =

Pn
i=1 r

(t)
ik (xi � µk)(xi � µk)>
Pn

i=1 r
(t)
ik

,

p

(t)
k =

1

n

nX

i=1

r

(t)
ik .

We notice that there is one parameter in the model
that was considered known up to now but which must
in fact be learned, that is the number of clusters K.

4.2.2 K means and silhouette coe�cient

Let us consider the K means algorithm, that deter-
mines cluster means µ1, . . . , µK , such that:

min
{µ1,...,µK}

KX

k=1

X

i2Ck

kxi � µkk2.

We find the number of clusters K by using the silhou-
ette coe�cient s(i) [14], obtained for each observation
i in the sample.

Let ai := 1
|Ci|
P

j2Ci
kxi � xjk and bi :=

minC2Cc
i

1
|C|
P

j2C kxi � xjk. Then

s(i) :=
bi � ai

max(ai, bi)
,

and by construction s(i) 2 [�1, 1]. In the case where
the cluster Ci only contains i we set s(i) = 0. Then,
computing the average silhouette coe�cient over the
entire sample indicates the quality of the clustering.
K is chosen so as to obtain the maximal average.

5 Defining h(.)

In this section we present an algorithm that can be
implemented to learn the hyperparameters in the
DLGP framework, in other words we are defining
h(✓0,At, ...). Conceptually, it is based on the fact
that dependent observations tend to group in clus-
ters instead of being randomly spread across the axis
parallel hyper-rectangle. As the correlation typically
decreases with the Euclidean distance between the in-
puts, then two observations in the same cluster gener-
ally contain more information about each other then
two observations in two di↵erent clusters.

input: At, ✓0, w
for k=2,3,. . . do

run k means;
s̄c(k) average silhouettes s(i)
if max{s̄c(k), . . . , s̄c(k � w + 1)} <

s̄c(k � w) then
K  k � w;
leave loop;

end

end

t 0;
while EM not converged do

t t+ 1;

r

(t)
ik  E step (for K clusters);

(µ(t)
k ,⌃(t)

k , p

(t)
k ) M step(for K

clusters);
end

for i=1,2,. . . ,n do

P (xi) =
PK

k=1 p
(t)
k N (xi|µ(t)

k ,⌃(t)
k ) ;

�  U(0, 1);
f(xi) �P (xi)

end

� only keep the n� h lowest values in
{f(x1), . . . , f(xn)};
perform LOO on � and use conjugate
gradient to maximise ✓;

Algorithm 3: clustered cross-validation algo-
rithm

If we chose to perform LOO cross–validation, we
keep in the training set all the observations that be-
long to the cluster containing the observation in the
test set, then the method will fail to prevent over-
fitting. This is because the training set contains too
much information about the test set. Therefore, the
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idea is that before starting the cross–validation we
compute the probability P (xi) of each input being
sampled under a Gaussian mixture model (GMM)
and we then trim h arms whose modified probabil-

ity under that model is highest. P (xi) is modified by
multiplying it by a random number generated from
a Uniform U(0, 1). Those observations are removed
from both the training and test sets, so it can be view
as a sort of geometry based h–block.

Note that, the trimmed observations do not take
part in learning the hyperparameters at time �i, but
they are not lost so they can possibly be used at time
�i+1. Furthermore, although they are not used to
learn the hyperparameters, they are always used to
compute the GP predictive distribution.

As the DLGP converges to its target, samples will
be drawn increasingly close to the argument of the
optimum and to each other. This will cause them to
form a cluster, but this time a desirable one. So to
avoid penalising this situation too much we use mod-
ified probabilities. The removed observations will
tend to be at the centre of clusters but not always
of the largest one. This modification has proven to
give better results in terms of empirical convergence
speed of the algorithm.

Finally, the number clusters in the GMM are de-
termined by iteratively running K means with di↵er-
ent K values and evaluating the silhouette coe�cient
for the model with di↵erent K’s [9]. The number
of clusters corresponding to the K with the highest
coe�cient.

This algorithm should be put in lieu of line 4 on
the DLGP (algorithm 2). With w representing how
many times the loop can increase K, while the silhou-
ette coe�cient of the corresponding model decreases,
before it stops and settles for a given value of K.

6 Comparison

In this section we will compare the performances
of both the GP-bandit and the DLGP-bandit algo-
rithms against a test suite of standard benchmark
functions, the optimisation literature, [7] and [17].
This was implemented in MatLab with the help of
the GPML toolbox [12].

The algorithms will be judged according two main
criteria, one being the speed of convergence to the
global optimum and the second, more in tune with
reinforcement learning, is the regret.

6.1 Methodology

At every step t of every experience a set of arms to
pull, Ut, is randomly generated and then Ut is pre-
sented to both algorithms. Once they have chosen
an arm the same random noise value "t will blur the
observation, (2.4).

The speed of convergence does not solely depend
on the quality of the algorithms, it also depends on
the sequence of possible arms (Ut) that is presented
to it and mostly for GP–UCB on the values of the
hyperparameters. That is why the algorithms are re-
run a few times to marginalise over those random
components. At each run the hyperparameters start
o↵ as being the same and their values is randomly
initialised in the interval (0, 1).

The performance of the DLGP and GP–UCB al-
gorithms will be evaluated according to two metrics.
The first metric is the Euclidean distance of the j

th

closest element to the optimum,

D(j)
t := min{kxi � xoptk : xi 2 A(j)

t }

where A(j)
t corresponds to At once the j � 1 closest

elements to the optimum were removed. Then D̄(i)
t

is the average D(i)
t over all generated sample paths

under the same distribution. The bigger j is the more
robust the metric.

The second measure we will use is the average over
all sample paths of the individual average regret over
time, R̄t := 1

t

Pm
i=1 Rt,i where (3.1) with an addi-

tional i indicates which of the m sample paths it cor-
responds to. Note that again we average R̄t over
di↵erent runs to gain additional robustness.

6.2 Test suite

The functions that are used as benchmarks have dif-
ferent characteristics that may disrupt an optimisa-
tion algorithm, such as being multimodal, trapping
the method in local optima. All these issues tend to
get exacerbated with the dimensionality of the func-
tion. However, one of the characteristics that often
dominates the complexity of the search is known as
separability. Separability indicates if a n-dimensional
optimisation problem can be solved as n separate op-
timisations.

The functions in our test suit include the Rastigin
F1, Griewank F2 and Ackley’s F3. The search domain
for F1 is [�5, 5]D while it is [�100, 100]D for F2 and
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F3. All of them are multimodal and only F2 is non-
separable.

F1(x) = 10D +
DX

i=1

[x2
i + cos(2⇡xi) ]

F2(x) =
DX

i=1

xi

4000
�

DY

i=1

cos
xip
i

+ 1

F3(z) =� 20 exp

0

@�0.2

vuut 1

D

DX

i=1

z

2
i

1

A

� exp

 
1

D

DX

i=1

cos(2⇡zi)

!
+ 20 + e

1

Their global optimum can be found at x? = 0 and
F (x?) = 0. However, here we do not use the Ackley’s
function itself but a shifted version. : z := x + o,
with o being a vector that shifts the functions coor-
dinates with respect to standard function. The global
optimum of F3 is at z? = o and F (z?) = 0

7 Results

For the 2 dimensional functions simulations a Gaus-
sian noise N (0, 0.3) was used. The parameters of the
DLGP were set as follows: �1 = 20 and then increases
by steps of 50, i.e. �i+1 = �i + 50.

The figures on the next page show the the be-
haviour of the algorithms on each objective function
across function evaluations. The first image of each

figure represents the progression of D̄(5)
t and the lower

right the progression of R̄t.

7.1 Comments

• Rastirgin function: the measure D(5)
t con-

verges more quickly to the optimum using the
DLGP than the GP–UCB, however the latter has
less regret then the former. This is because the
GP–UCB gets more easily stuck at local minima
not far from the optimum, which is at the centre
of a quadratic-like function. The DLGP though
keeps on exploring the area surrounding the op-
timum but since there are some peaks in that
area, each time it evaluated the function there
that increased its regret. This tends to justify

that regret is not as appropriate as D(5)
t in this

situation.

• Ackley’s function: the di↵erence between the
results given between the DLGP and the GP–
UCB is due to the fact that the GP–UCB is al-
most doing a random search. Indeed, the surface
of the function is almost flat with the exception
of a pit that contains the global minimum. As
a result the only few time that the GP–UCB is
close to the optimum is when it lands nearby
by chance and since we are using a robust mea-
sure that kind of random guesses is penalised.
The DLGP on the other hand manages to clus-
ter around the solution get increasing closer to
it at each evaluation.

8 Conclusion

Bandits allow for a very flexible non-parametric ap-
proach to black-box function optimisation that does
not require many constraining assumptions. The ease
of application of GP-bandits and the existence of nu-
merous freely available toolboxes that support GPs
make them a viable optimisation techniques.

The new Dynamic Learning Gaussian Process
(DLGP) setup that was introduced here shows the
GP-bandit’s true potentialities, with performances
up to 20 times faster on some benchmark functions
than current state of the art GP–UCB.

Nevertheless, the perspectives for their improve-
ment are wide. For instance, using more sophisti-
cated hyperparameter optimisation algorithms, in-
stead of just performing conjugate gradient. Further-
more, we have restricted model selection to hyperpa-
rameter optimisation, but that could be extended to
kernel learning.

In conclusion, DLGP is an algorithm that has
proven to be better then GP–UCB in a variety of
situations. Although further analysis is needed with
higher dimensional functions, intuitively if the hy-
perparameters are learnt consistently DLGP should
always be better (or at worst as good as) than GP–
UCB. This means that some sort of clustering penal-
isation should always be included. Consequently, it
appears that the DLGP should be preferred to GP–
UCB, specially if processor time is not a constraint.
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DLGP GP–UCB

Best Median Worst Mean Std Best Median Worst Mean Std

F1 0.0724 0.157 0.256 0.144 0.0757 0.429 0.454 1.27 0.607 0.368

F2 0.725 0.881 1.38 0.954 0.262 6.82 6.96 8.08 7.16 0.515

F3 0.291 0.529 0.773 0.521 0.176 8.74 10.2 10.4 9.75 0.821

Table 1: comparison of D(5)
500 for DLGP and GP–UCB on 2D functions
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Figure 2: Rastirgin 2D
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Figure 3: Griewank 2D
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Figure 4: Ackley’s 2D
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