
M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 312 – 321, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Analysing the Evolvability of Neural Network Agents
Through Structural Mutations

Ehud Schlessinger1, Peter J. Bentley2, and R. Beau Lotto1

1 Institute of Ophthalmology, University College London, 11-43 Bath Street,
London EC1V 9EL

{e.schlessinger, lotto}@ucl.ac.uk
2 Department of Computer Science, University College London, Malet Place,

London WC1E 6BT
P.Bentley@cs.ucl.ac.uk

Abstract. This paper investigates evolvability of artificial neural networks
within an artificial life environment. Five different structural mutations are in-
vestigated, including adaptive evolution, structure duplication, and incremental
changes. The total evolvability indicator, Etotal, and the evolvability function
through time, are calculated in each instance, in addition to other functional at-
tributes of the system. The results indicate that incremental modifications to
networks, and incorporating an adaptive element into the evolution process it-
self, significantly increases neural network evolvability within open-ended arti-
ficial life simulations.

1 Introduction

Understanding the causal relationship between the functional structure of adaptive
neural networks and ecological history is a fundamental objective in neuroscience
research. And an important method for addressing this challenge is to model artificial
neural networks within open-ended, ecologically relevant Artificial Life environ-
ments. The problem, however, is that standard neural network training algorithms
(such as back-propagation) cannot be used in this paradigm, as such they do not offer
the complete set of input and output values needed for training. An alternative is to
therefore use the same mechanism nature does – evolution through ‘natural selection’.

There are, however, many issues to consider when evolving neural networks. Fun-
damental to any of these is the evolution of network topology (i.e., modifications to
its underlying node and connection structure). Here we address the question of the
process by which network elements are to be added (and removed) by focusing, not
on evolved network solutions as such, but on the evolvability of the systems itself.

Evolvability is the ability of a population to produce offspring fitter than any yet in
existence [1], and not to produce less fit variants [13], and is therefore fundamental to
the process of evolution itself. Evolvability is also known as evolutionary adaptability
[8] and as such, a major element of evolvability is the capacity to adapt to changing
environments by learning to exploit commonalities over time in those environments.
By understanding evolvability and how to promote it, not only will it be possible to

 Analysing the Evolvability of Neural Network Agents Through Structural Mutations 313

solve increasingly complex problems, but one may also better understand evolution of
network systems generally.

The key properties required to generate systems exhibiting high evolvability are
not well understood, particularly in the context of ecologically relevant artificial life
simulations. Nonetheless, several factors are thought to be correlated with high
evolvability.

(1) The mapping of genetic variation onto phenotypic variation [4, 15], and the se-
lection of search operators used, determine the distribution of local optima in
the search space, and affect search difficulty [1, 7]. More specifically, a many-
to-one genotype-to-phenotype mapping (a redundant mapping), is essential for
evolvability. By enabling some mutations to be phenotypically irrelevant, it is
possible to better explore the search space through neutral networks [5]. Evo-
lution of neural networks, in our view, particularly those that are used for con-
trol and classification, qualifies for the complex mapping condition; Fogel [6]
defined an evolved neural network’s phenotype as its behaviour, and not its
constituent weights. Using this definition, changing many aspects of a neural
network would not necessarily change its phenotype (behaviour).

(2) Gradual effects of the search operators seem to play an important part [2, 9].
(3) Structural duplication and modularity are recognised as promoters of evolva-

bility [17], as they enable evolution to ‘reuse’ structures within networks [10].
(4) Finally, the ability of evolution of adapting elements of itself can also promote

evolvability, since it enables evolution to differentially tune search operators
throughout evolution [4, 7].

This paper analyses the effect on the evolvability of an artificial life simulation, as
measured by the evolvability indicator, Etotal, using five different types of structural
mutations. Each of the mutation types incorporates the various principles described
above for increasing evolvability. Secondary effects on evolved traits were also
measured, such as the number of successful ‘runs’, quality of evolved solutions, and
the variability of the evolved forms.

2 System

Mosaic World is an A-Life system designed for exploring the computational princi-
ples by which vision can overcome stimulus ambiguity [12]. Mosaic World offers a
virtual environment made up of a 2D grid of ‘coloured’ surfaces under multiple simu-
lated light sources. This environment emulates key characteristics of natural scenes.
The space is inhabited by virtual agents, ‘critters’, that survive by consuming positive
resources and avoiding negative resources. Every surface’s value is determined from
its reflectance – its colour. Consumed resources slowly regenerate.

The critter population is maintained by the critter reproduction. Critters can repro-
duce both sexually and asexually. In the event that all critters perish, a new population
is created, where 80% are random critters and the rest are mutated clones of critters
that showed general promising survival skills earlier in the run. Every critter starts out
with a certain amount of energy, and dies if it runs out of energy. Critters slowly lose

314 E. Schlessinger, P.J. Bentley, and R.B. Lotto

energy over time, or due to moving, turning, resource consumption and reproducing.
A critter dies if it steps over the edge of the world, or into a hole.

Critter behaviour (such as mating, eating, and moving) is determined by the output
of a modified 3D feed-forward neural network. Network topology is determined by
the critter’s genome, though its behaviour is an emergent property of the interaction
between the nodes within this topology. The input layer contains receptors (which are
input units modified to enable evolution of vision) and a health monitor unit, which
receives the percentage of the critter’s remaining health. The hidden layer contains
standard hidden units. The output layer contains standard output units, which deter-
mine the critter’s behaviour. Every unit in the network has an [x,y] coordinate relative
to the critter’s centre, which defines its location in its layer. Using the layer and the
[x,y] coordinate, networks of different architectures can be crossed over during sexual
reproduction, as each network possesses the same coordinate reference frame.

The units of the network communicate through connections that can extend be-
tween units from higher layers to lower layers, and can also connect units to empty
coordinates in the network (unconnected connections). Connections can be active or
inactive. Only active connections participate in the feed-forward process.

2.1 Mutation Operators

In this work, we focus on an investigation of evolvability using several types of struc-
tural mutations. A full description of the non-structural mutations is in [12].

For a mutation type to be useable, it must have the ability to completely alter a
neural network’s structure by adding and deleting elements. In order that we are able
to test the effects of suggested principles thought to increase evolvability, every muta-
tion type used in our experiments incorporated some of these principles. The three
principles tested are: incremental changes to network topology, where every change
done to the network structure is very small, adaptive evolution, where evolution can
modify some aspects of itself, and structural duplication, where existing substructures
of the network are copied and can be reused.

Deletion and addition of units (receptors, hidden) are performed using Delete Unit
(0.5% per unit) and Add Unit mutations (2%). Deletion and addition of connection
weights are performed using Delete Connection (0.1% per connection) and Add Con-
nection mutations (1%). When a unit is added, it is randomly placed in the appropriate
layer with a bias towards the centre and forms connections with units in the adjacent
layers. All new connections are initialised with random values. When a unit is re-
moved, all its outgoing connections are removed. If, as a result of a unit being deleted,
a connection now has no end destination, it remains in the network. These connec-
tions are termed ‘unconnected connections’, and as such are not used in feed-forward
processing, only becoming functional again if the old unit is replaced.

Receptors in the input layer can change locations through Drift mutation (0.3% per
receptor). Switch mutations (0.3% per element) can cause a connection or a receptor
to become active or inactive. An inactive element is not used in the feed-forward
process, and is deleted from the genome when a number of generations have not acti-
vated it again.

The above probabilities were empirically determined to be suitable during the
course of 15 experiments (roughly 750 runs).

 Analysing the Evolvability of Neural Network Agents Through Structural Mutations 315

Fig. 1. Illustrating addition of a hidden unit using the five types of mutations. [A] The original
neural network with 1 receptor, 3 hidden units, and 2 output units. [B] Using mutation type (i),
new unit (H5,6) is fully connected through 3 random connections. [C] Using mutation type (ii),
new unit (H5,6) connects to (R1,1) and (O2,2). [D] Using mutation type (iii), new unit (H5,6) is
a clone of (H1,1). [E] Using mutation type (iv) new unit (H12,8) only connects to (O2,2) as the
distance parameter is very high. [F] Using mutation type (v) new unit (H12,8) connects to the
closest receptor (R1,1) and closest output unit (O2,2).

The following types of structural mutations were used in the experiments (see fig.
1). The probabilities of these mutations occurring are identical for all types. The
tested principle appears in parenthesis.

Type 1 - fully connected (non-gradual changes): New units connect to all units in
adjacent layers. Using this mechanism, every mutation makes a large change to the
networks.
Type 2 - single connection (gradual changes): New units connect to a single, ran-
domly chosen, unit in every adjacent layer. The Delete Unit mechanism is disabled –
units are automatically removed when they have no outgoing or no incoming connec-
tions. Using this mechanism, every mutation makes a small change to the network.
Type 3 – reuse of structures (structural duplication): Added units are cloned from
a random unit in the same layer. The new unit possesses a copy of every incoming
and outgoing connection of the original.
Type 4 – distance dependent (adaptive evolution, gradual changes): Added units
connect to all units in adjacent layers within a given distance. The distance parameter
is an evolvable gene of a critter. By evolving a low distance parameter, the change to
the network can be very small or very large.
Type 5 – shortest connection (adaptive evolution, gradual changes): Added units
connect to the closest unit in every adjacent layer. The Delete Unit mechanism is
disabled – units are automatically removed when they have no outgoing or no incom-

316 E. Schlessinger, P.J. Bentley, and R.B. Lotto

ing connections. Using this mechanism, every mutation makes a small change to the
network. Additionally, evolution can now utilise the 3D coordinate system to create
modules, which adds an adaptive element (albeit weaker than type 2).

2.2 Measuring Evolvability in Mosaic World

Mosaic World is more than just a population of individual critters – it is a dynamic
ecosystem in which critters survive if their genomes enable them to interact with each
other and their current environment effectively enough to gather resources [12].

Previously suggested measurements of evolvability [1, 13] do not take into account
conditions specific to the ecologically relevant conditions of Mosaic World, and as a
result they could not be used. These methods require accurately measuring fitness,
which is not feasible for three reasons: First, no one statistic encapsulates all the re-
quired behaviours a critter must know to be termed fit. Second, the fitness of all crit-
ters is linked, as critters compete against each other on resources; a fit critter, effec-
tively, decreases the fitness of other critters. Third, although reproduction does not
directly contribute to a critter’s fitness, controlling reproduction is crucial to the spe-
cies’ collective fitness: The population, as a whole, must replenish itself at a rate that
is sustainable by the available resources of the world. Thus, a critter must share some
of this collective fitness.

Therefore, the evolvability measurement we use here is based on the evolvability
used in the Avida ALife environment [11]. This measurement was expanded by fac-
toring environment difficulty. We believe that evolvability can either be expressed by
demonstrating that a population gradually improves over time, or alternatively, by
showing a population adapting to an environment that gradually becomes more chal-
lenging. By quantifying these aspects, we define the total evolvability indicator in
Mosaic World, Etotal, using equation (1) – its range of possible values is 0 to 1, and the
evolvability function through time, using equation (2). Both measures incorporate four
different elements: survivability, population success, environment difficulty and time
variance.

Survivability: The critter’s survival ability is best expressed by its age. A critter that
can survive for long obviously managed to learn important skills required to survive
in the world. Furthermore, by surviving longer, a critter may get more opportunities to
reproduce and as a result spread fit genetic material to its offspring.
Population success: A population’s ‘fitness’ is best expressed by its size at a given
time. A population that managed to maintain itself through time, collectively learned
how to balance resource consumption and reproduction through its constituent crit-
ters. Also, a larger population has more individuals that pass on traits to offspring, and
is more likely to survive a ‘catastrophe’ purely because of its greater size.
World difficulty: In many experiments the environment is altered over time to make
it more challenging for a critter to survive. A population that manages to survive un-
der conditions in which the selection pressure continuously grows, shows an indica-
tion of adaptability, and thus, evolvability. This aspect of the equation is controllable
by the researcher and must be directly tied in, from a numerical point of view, to the
difficulty of the world in order to measure evolvability, i.e. if survival in the world at
time t is twice as hard as the initial conditions, the difficulty factor at time t is 2.

 Analysing the Evolvability of Neural Network Agents Through Structural Mutations 317

Time: Only by looking at the relative changes of survivability, population success
and world difficulty over time, we can precisely obtain the total evolvability measure.

In conclusion, these four elements measure the capacity of Mosaic World’s popula-
tion to evolve. A population that maintains large numbers, where each agent survives
for long, in an increasingly difficult environment, consistently through time – can be
said to be a population with a great capacity to evolve. Therefore, this function meas-
ures the capacity of a population to generate fit offspring through time.

max

0 max

,

max

)(
)(

P

A

A

D

tD
tE

tP

i

it∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= (1)
max

0

)(

t

tE
E

t

i
total

∑
== (2)

Resilience =
2

0

2

0

)(

)()(

tni

ttEniEi

t

i

t

i

−

−

∑

∑

=

= (3) Stamina = tResilience)(−tE (4)

Where: Etotal is a population’s evolvability indicator, E(t) is the evolvability at time t,
D(t) is the difficulty factor at time t, Dmax is the maximal difficulty of D(t), Pt is the size
of the population at time t, At,p is the age of a member of population p at time t, Amax
is the critter maximum life span, Pmax is the maximal population the environment can
support, tmax is the total length of time of the experiment, n is the number of data val-
ues.

Example: With a population size P of 400 at time 10000, all critter ages A are 1500,
the difficulty factor D at time 10000 is 100, using maximum difficulty Dmax of 350,
maximum population size Pmax of 10000, and maximum age Amax of 15000, evolvabil-
ity at time 10000 is E(10000)=100/350*(400*1500/15000)/10000=0.00114.

By extracting the height and the slope of a linear trendline of the evolvability func-
tion through time (using equations (3) and (4)), we gain two extra indicators: (i) Resil-
ience (slope): Defines the resilience of the population to change. Lower values indi-
cate populations more tolerant to change. (ii) Stamina (height): Defines the popula-
tion’s ability to thrive when conditions are easy.

3 Experiments

The main objective of the experiments was to measure the evolvability function
through time, E(t), and the total evolvability, Etotal. A secondary objective was to ob-
tain additional statistics examining effects other than evolvability of the structural
mutations used: Variability of evolved forms (average structure), quality of critter
solutions and the percentage of successful runs (a run failed when no population of
critters evolved without the need for a restart).

318 E. Schlessinger, P.J. Bentley, and R.B. Lotto

To this end, two sets of experiments were performed. Each of the experiments re-
quired multiple populations that were evolved using the five structural mutations.
Therefore, at least eight successfully evolved populations were collected for each of
the mutation types (using the same randomly generated world). Each run started with
identical population characteristics (all critters possessing fully connected networks: 3
receptors, 3 hidden units and 8 output units, 33 connections), and was stopped after
550,000 time steps. During each run, the regeneration rate of consumed surfaces was
slowly reduced to increase challenge and force critter populations to adapt. Initially,
consumed surfaces regenerated every 13 time steps 3% of their maximal value. Every
3,500 time steps regeneration slowed down by one unit, until the regeneration rate of
99 was reached. To analyse the effects of the mutation operators only, crossover was
disabled during all runs and experiments.

Experiment 1 - Measuring Evolvability through Adaptation: This experiment
attempted to test the maximum difficulty that a population can adapt to. Using the
collected data and equations (1) and (2), E(t) was charted and Etotal was calculated.
Since the regeneration rate has a direct effect on the difficulty of the world, the rate
was used as the difficulty factor in equation (1). Therefore, five copies of the five
longest-lived critters of every evolved population were placed in an identical test
world. The starting regeneration rate was set to 99, and every 1,000 time steps the it
slowed down by one unit, indefinitely. A run was finished when all critters died.

Experiment 2 - Measuring the Quality of Evolved Solutions. This experiment
attempted to measure the quality of evolved solutions, the critters. The criterion used
was critter survivability, which was measured by averaging the critter survival ages
across runs. To do this accurately, the effect of the critters on each other was negated
by prohibiting reproduction, and by placing a very small number of critters in every
world. Furthermore, the difficulty of the world was made static by fixing the regen-
eration rate (to 99). Therefore, five copies of the five longest lived critters of every
run were placed in an identical test world. Critters were expected to survive as long as
they could. All runs were stopped after 10,000 time steps, and were repeated 3 times.
Critters that survived until the end of the run were assumed to have died then.

4 Results

In table 1, we see Etotal for each type (as a percentage of the maximum Etotal of type 4),
and the resilience and stamina for each type (using equations (3) and (4) and divided
by type 4’s resilience for comparison purposes). In fig. 2, we see the evolvability
function (weighted average) through time with Etotal appearing in the legends for every
type. Table 2 shows the minimum, maximum and average of the maximum regenera-
tion rate a population could adapt to and of critter average survival age, as well as the
percentage of successful runs and the average critter structure per type.

When comparing the Etotal of all types, it is clear that adaptive evolution and grad-
ual changes to networks increase Etotal, whereas non-gradual changes, and structural
duplication decrease it. Types 4 and 5, both utilising adaptive evolution and gradual

 Analysing the Evolvability of Neural Network Agents Through Structural Mutations 319

Table 1. The evolvability elements incorporated, the obtained Etotal (as a percentage of Etotal of
type 4) and the extracted resilience and stamina values using a linear trendline of E(t) for every
type (divided by type 4’s resilience for comparison purposes)

Mutation type Element Incorporated Etotal (%) Resilience Stamina
4 Adaptive evolution, Gradual changes 100.00% -1 5.68
5 Adaptive evolution, Gradual changes 98.12% -1.13 6.39
2 Gradual changes 78.50% -0.98 5.53
1 Non-gradual changes 71.47% -0.94 5.29
3 Structural duplication 41.58% -0.41 2.34

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0 50000 100000 150000 200000
Time Step (Difficulty)

E
(t

)

Mutation 1
(71.47%)

Mutation 2
(78.5%)

Mutation 3
(41.58%)

Mutation 4
(100%)

Mutation 5
(98.12%)

Fig. 2. The evolvability function (weighted average) for the five types of structural mutations
and their relative evolvability indicator (of Etotal for mutation type 4)

Table 2. Several statistics (average, min, max) describing the maximum regeneration rates the
tested populations adapted to and the critter survivability, in addition to the average critter
structure, and percentage of successful runs; broken down according to mutation types

Mutation
 type

Maximum adapted
regeneration rate:
Ave. (Min.-Max)

Survival age:
Ave. (Min.-Max.)

Ave. critter structure:
Receptors,

Hidden (Connections)

Suc-
cess-
ful

runs
(%)

Random
Critter

 57.36 (56.08-59.48) 3, 3 (33)

1 191.14 (119–222) 3182.37 (1277.23-4600.12) 4.03, 3.13 (29.47) 64%

2 197.12 (159–237) 3733.34 (2781.13-4801.6) 8.32, 10.74 (108.70) 73%

3 163.87 (109–277) 2388.49 (893.44-5339.6) 4.86, 4.51 (41.45) 50%

4 224.36 (171–272) 3905.31 (1625.16-5021.96) 4.98, 6.26 (55.48) 69%

5 202.62 (167–305) 3651.06 (2613.92-5321.28) 10.39, 12.21 (144.25) 62%

320 E. Schlessinger, P.J. Bentley, and R.B. Lotto

 changes, had the highest Etotal with type 4 the higher of the two. The difference in their
evolvability functions were, however, significantly different: Type 5 had – on average
– a higher stamina, but it was less resilient than type 4, and its populations quickly
weakened as difficulty increases. Type 4 was more resilient, as evident in its average
adaptation rate. Overall, the data suggests that the Type 4 structural mutation is slightly
more evolvable [note that Type 4's average survival age was also the best of all runs;
Type 5's was lower, but still very good]. It could be said, however, that Type 5, having
a higher stamina, and lasting the longest in our adaptation experiment, is the most
evolvable type. However, we believe the total area under the curve is the best indica-
tion of evolvability, since this measure takes into account both stamina and resilience.

Type 2, causing only small increments to the network, had a higher Etotal than the
Type 1's. It also had the best average survival age, and best rates of success. Despite
its populations’ decent performance, once the environment becomes too challenging,
however, it its evolvability decreases significantly, causing its populations to perish.

Type 1, causing large changes to the network, had mediocre statistics and a low Eto-

tal. Generally, it seemed unable to utilise the structural mutations: on average, only one
receptor, and no hidden units, were added at all. We believe this is another gauge of
its low evolvability.

Type 3, utilising structural duplication, had the lowest Etotal as well as the lowest
scores on all other tests. It would be easy to dismiss this method of evolution as com-
pletely non evolvable, except for the fact that, despite having the low results of the
vast majority of type 3's runs, some of its individual runs scored the highest average
survival age and the near highest adaptation rates. The weakness of this approach is
that cloning a fully connected hidden unit usually results in very large changes to the
network (in some instances, 10+ connections being added at once), so it is possible
this negative evolvability promoter far outweighs the positive evolvability gained by
the structural duplication aspect. We can only deduce that this method has potential,
but its weakness far outweighs its strength.

Looking at the evolved forms, it is obvious that all types utilised the structural mu-
tations to increase their network’s complexity, with some more than others. Some
types in particular (types 2, 5) resulted in networks significantly larger than the start-
ing networks. However, it does not seem as if the larger networks were inherently
better or worse than the smaller ones. Interestingly, it seems as if these larger net-
works tended to provide the most consistent critters in terms of average survival age.

A possible criticism would suggest that highly evolvable populations would con-
tinue evolving forever, with E(t) values always above zero and Etotal tending to infin-
ity. However, in our system this is impossible. At the slowest rates of regeneration
tested in our experiments, there are not enough resources left to support individuals,
regardless of their genomes. Inevitably, evolvability must drop to zero at some point,
for there will be no critters left in the population to evolve. Such eventual resource
limitation leading to extinction is inevitable in all real and modeled systems (time will
always be limited, if nothing else), so an infinite Etotal may be impossible to achieve.

5 Conclusions

The aim of this study was to investigate the evolvability of neural networks within an
artificial life simulation. Specifically, we tested the efficacy of five different types of

 Analysing the Evolvability of Neural Network Agents Through Structural Mutations 321

structural mutations, which incorporate different general principles thought to be
important for network evolvability. Two experiments were performed, and the result-
ing Etotal and evolvability function over time were calculated and compared.The ex-
periments conducted indicate that certain principles increase evolvability when used
to evolve neural network artificial agents. The two most significant promoters of
evolvability are adaptive evolution and gradual changes to the networks. Structural
duplication, despite exhibiting on average very low evolvability, showed some potential
by evolving some of the best individual runs. Non-gradual changes to the networks
seemed to be detrimental to evolvability (or at least, did not seem to increase it).

To summarise: the method chosen to in evolving neural networks for artificial life
simulations plays a significant factor in all elements of the evolved runs. Researchers
attempting to evolve neural networks are encouraged to use these principles.

References

1. Altenberg, L. (1994). The Evolution of Evolvability in Genetic Programming. In: Ad-
vances in Genetic Programming, K. E. Kinnear Jr., ed. MIT Press.

2. Altenberg, L. (1995). Genome growth and the evolution of the genotype-phenotype map.
in W. Banzhaf and F. H. Eeckman, eds, Evolution and Biocomputation: Computational
Models of Evolution. 205-259. New York. Springer-Verlag, Berlin, Heidelberg, 1995.

3. Astor, J. and Adami, C. (1998). Development and evolution of neural networks in an arti-
ficial chemistry. Proc. Third German Workshop on Artificial Life, Verlag Deutsch, 15-30

4. Bedau, M. A. and Packard, N.H. (2003). Evolution of evolvability via adaptation of muta-
tion rates. Biosystems 69(2-3): 143-162

5. Ebner, M., Shackleton, M. and Shipman, R. (2001). How neutral networks influence
evolvability. Complexity, 7(2) 19-33, Wiley Periodicals, 2001.

6. Fogel, D.B. (1995). Phenotypes, Genotypes, and Operators in Evolutionary Computation.
Proceedings of the 1995 IEEE International Conference on Evolutionary Computation,
Perth, Australia, IEEE Press, 193-198.

7. Glickman, M. and Sycara, K. (1999). Comparing Mechanisms for Evolving Evolvability.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 1999
Workshop Program. Orlando, Florida, USA, July 13, 1999.

8. Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the National Academy
of Sciences, 95:8420-8427.

9. Kumar, S. and Bentley, P. J.(2000). Implicit Evolvability: An Investigation into the
Evolvability of an Embryogeny. A late-breaking paper in the Genetic and Evolutionary
Computation Conference (GECCO 2000), July 8-12, 2000, Las Vegas, Nevada, USA.

10. Nolfi, S. and Parisi, D. (2002). Evolution of artificial neural networks. In Handbook of
brain theory and neural networks, Second Edition. Cambridge, MA: MIT Press, 418-421.

11. Ofria, C., Adami, C., and Collier, T. C. (2002) Design of Evolvable Computer Languages.
IEEE Transactions on Evolutionary Computation, 6:420-424.

12. Schlessinger, E., Bentley P.J. and Lotto R.B. (2005) Evolving Visually Guided Agents in
an Ambiguous Virtual World. To appear in the Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO) 2005. Washington, DC, USA, June 25-29, 2005.

13. Smith, T.M.C., Husbands, P., Layzell, P. and O'Shea, M. (2002). Fitness Landscapes and
Evolvability. Evolutionary Computation, 10(1):1-34.

14. Stanley, K.O. and Miikkulainen, R. (2002). Evolving Neural Networks Through Augment-
ing Topologies. Evolutionary Computation 10(2):99-127.

15. Wagner, P. W. and Altenberg, L. (1996). Complex adaptations and the evolution of
evolvability. Evolution 50, 967-976.

	Introduction
	System
	Mutation Operators
	Measuring Evolvability in Mosaic World

	Experiments
	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

