INVERSE BOUNDARY VALUE PROBLEMS IN THE HOROSPHERE

HIROSHI ISOZAKI, TSUKUBA UNIVERSITY

We consider a boundary value problem for the Schrödinger operator $-\Delta+q(x)$ in a ball $\Omega:\left(x_{1}+R\right)^{2}+x_{2}^{2}+\left(x_{3}-r\right)^{2}<r^{2}$, whose boundary we regard as a horosphere in the hyperbolic space \mathbf{H}^{3} realized in the upper half space. Let $S=\left\{|x|=R, x_{3}>0\right\}$ be a hemisphere, which is generated by a family of geodesics in \mathbf{H}^{3}. By imposing a suitable boundary condition on $\partial \Omega$ in terms of a pseudo-differential operator, we compute the integral mean of $q(x)$ over $S \cap \Omega$ from the local knowledge of the associated (generalized) Neumann-to-Dirichlet map for $-\Delta+q(x)$ around $S \cap \partial \Omega$. The potential $q(x)$ is then reconstructed by virtue of the inverse Radon transform on the hyperbolic space. This justifies the well-known Barber-Brown algorithm in the electrical impedance tomography.

