INVERSE BOUNDARY VALUE PROBLEMS IN THE HOROSPHERE

HIROSHI ISOZAKI, TSUKUBA UNIVERSITY

We consider a boundary value problem for the Schrödinger operator $-\Delta + q(x)$ in a ball $\Omega : (x_1+R)^2 + x_2^2 + (x_3-r)^2 < r^2$, whose boundary we regard as a horosphere in the hyperbolic space \mathbf{H}^3 realized in the upper half space. Let $S = \{|x| = R, x_3 > 0\}$ be a hemisphere, which is generated by a family of geodesics in \mathbf{H}^3 . By imposing a suitable boundary condition on $\partial\Omega$ in terms of a pseudo-differential operator, we compute the integral mean of q(x) over $S \cap \Omega$ from the local knowledge of the associated (generalized) Neumann-to-Dirichlet map for $-\Delta + q(x)$ around $S \cap \partial\Omega$. The potential q(x) is then reconstructed by virtue of the inverse Radon transform on the hyperbolic space. This justifies the well-known Barber-Brown algorithm in the electrical impedance tomography.