UNIVERSITY COLLEGE LONDON
 Faculty of Engineering Sciences

Department of Computer Science
COMP0142: Problem Set 0

Dr. Dariush Hosseini (dariush.hosseini@ucl.ac.uk)

1. Consider the following vectors and matrices:

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{cc}
3 & -4 \\
-2 & -1
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
-1 & -4 & 5 \\
-2 & 2 & 3
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{cc}
0 & 1 \\
-3 & 4 \\
2 & 2
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right]
$$

(a) Calculate the eigenvectors and eigenvalues of \mathbf{A}.

State whether these expressions make sense and evaluate them if they do:
(b) $\mathbf{v} \cdot \mathbf{w}$
(c) \mathbf{A}^{-1}
(d) \mathbf{A}^{T}
(e) $\mathbf{B C}$
(f) CB
(g) $\mathbf{A C}$
(h) $\mathbf{A}+\mathbf{B}$
(i) $\mathbf{D}+\mathbf{A}$
(j) $\operatorname{det} \mathbf{A}$
(k) $\mathbf{v}^{T} \mathbf{A w}$
(1) \mathbf{D}^{-1}
2. Consider the following function:

$$
f(x, y)=\frac{2 x+\ln y}{2 x^{2}-3 y+1}
$$

(a) What is $\frac{\partial f}{\partial x}$?
(b) What is $\frac{\partial f}{\partial y}$?
(c) What is $\frac{\partial^{2} f}{\partial x \partial y}$?
3. Consider the following function:

$$
g(x)=\sum_{i=1}^{n}\left(x-y_{i}\right)^{2}
$$

where $\left\{y_{i} \in \mathbb{R}\right\}_{i=1}^{n}$ are all distinct.

Which value of x achieves the minimal value of $g(x)$?
4. Demonstrate, using Taylor's expansion:

$$
(1-x)<e^{-x}
$$

5. Consider the following probability density function (pdf):

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Where $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^{+}$.
(a) What is the name usually given to this pdf?
(b) State the mode of $p(x)$.
(c) Demonstrate that the stationary point of $p(x)$ is equal to the mode.
6. Suppose that X is a discrete random variable, with outcomes 0 and 1 , with a distribution characterised such that $\operatorname{Pr}(X=1)=\theta$.
(a) What is the mean of X ?
(b) What is the variance of X ?
(c) Assuming that a sequence of n samples are drawn iid from this distribution. State the log-likelihood function for this sequence.
(d) Now assume that we observe one such sequence of outcomes: $\{1,1,0,0,1\}$. Use the technique of maximum likelihood estimation to infer a value for θ.

